

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

1

 TMS FNC UI Pack

 DEVELOPERS GUIDE

September 2018
Copyright © 2016 - 2018 by tmssoftware.com bvba

Web: http://www.tmssoftware.com
Email: info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

2

Index

Availability ... 5

List of available controls .. 6

TTMSFNCEdit ... 12

TTMSFNCPopup ... 13

TTMSFNCColorSelector / TTMSFNCColorPicker .. 14

TTMSFNCBitmapSelector / TTMSFNCBitmapPicker .. 14

TTMSFNCFontNamePicker / TTMSFNCFontSizePicker .. 16

TTMSFNCToolBar ... 17

Set of components .. 17

Adding new components at designtime .. 18

Adding new components at runtime .. 19

Toolbar button .. 19

TTMSFNCTabSet / TTMSFNCPageControl ... 21

Adding new tabs .. 27

Removing tabs ... 27

Moving tabs ... 27

Modes .. 28

Position .. 28

Appearance ... 29

Interaction ... 30

Reorder .. 31

Editing .. 31

Progress indication .. 32

Badges ... 33

Custom drawing .. 33

PageControl ... 34

Performance .. 34

TTMSFNCListBox / TTMSFNCCheckedListBox ... 35

Adding new Items .. 38

Default Item ... 38

Appearance ... 39

Interaction ... 39

Clipboard ... 40

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

3

Reordering / Drag & Drop ... 40

Filtering .. 40

Sorting ... 42

Customization .. 43

TTMSFNCRadioGroup / TTMSFNCRadioGroupPicker .. 45

TTMSFNCCheckGroup / TTMSFNCCheckGroupPicker... 45

TTMSFNCPanel .. 46

TTMSFNCNavigationPanel ... 47

Adding new panels .. 50

Removing panels ... 50

Moving panels ... 51

Modes .. 52

Compact Mode .. 53

Options Menu .. 53

Appearance ... 54

Badges ... 55

TTMSFNCListEditor .. 57

Architecture ... 57

Appearance ... 57

Items .. 58

Events .. 58

TTMSFNCToolBarPopup .. 59

TTMSFNCHint .. 60

TMSFNCAnalogTimeSelector / TMSFNCAnalogTimePicker ... 61

Time selection ... 61

Configuration ... 62

TMSNFCDigitalTimeSelector / TMSFNCDigitalTimePicker .. 64

Navigation ... 64

Time selection ... 64

Configuration ... 65

TMSFNCFillKindSelector / TMSFNCFillKindPicker.. 66

TMSFNCStrokeKindSelector / TMSFNCStrokeKindPicker .. 67

TMSFNCColorWheel .. 68

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

4

Color selection ... 68

TMSFNCTaskDialog .. 70

Setting the dialog .. 70

Executing the dialog and retrieving the results ... 72

TMSFNCStatusBar .. 75

Custom panel ... 75

Images ... 75

Progress bar ... 75

TMSFNCSignatureCapture ... 77

Clearing the signature ... 77

Saving the signature .. 77

Loading the signature .. 78

Configuration ... 78

Persistence .. 80

Undo / Redo .. 81

Styling .. 85

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

5

Availability

Supported frameworks and platforms
- VCL Win32/Win64
- FMX Win32/Win64, MacOS-X, iOS, Android
- LCL Win32/Win64, Mac OS-X, iOS, Android, numerous Linux variants including Raspbian
Supported IDE’s
- Delphi XE7 and C++ Builder XE7 or newer releases
- Lazarus 1.4.4 with FPC 2.6.4 or newer official releases.

Important Notice: TMS FNC Blox requires TMS FNC Core (separately available at the My Products
page)

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

6

List of available controls

TTMSFNCHTMLText

Text shape that supports HTML (see MiniHTML
chapter)

TTMSFNCBitmapContainer

Container that holds multiple bitmaps

TTMSFNCPopup

Component that allows displaying any type of
control inside a customizable popup dialog.

TTMSFNCEdit

Autocomplete and lookup enabled control that
extends TEdit. Has the capability of display and
editing various editing types such as float,
money, lowercase, uppercase, …

TTMSFNCColorPicker /
TTMSFNCColorSelector

A color selector and picker with many
customization / custom drawing options
and events.

TTMSFNCBitmapPicker /
TTMSFNCBitmapSelector

A bitmap selector and picker with many

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

7

customization / custom drawing options
and events.

TTMSFNCFontNamePicker /
TTMSFNCFontSizePicker

TTMSFNCToolBar

TTMSFNCTabSet / TTMSFNCPageControl

TTMSFNCListBox /
TTMSFNCCheckedListBox

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

8

TTMSFNCCheckGroup /
TTMSFNCCheckGroupPicker

TTMSFNCRadioGroup /
TTMSFNCRadioGroupPicker

TTMSFNCPanel

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

9

TTMSFNCNavigationPanel

TTMSFNCListEditor

TTMSFNCHint

TTMSFNCToolBarPopup

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

10

TTMSFNCScrollBar

TTMSFNCAnalogTimeSelector /
TTMSFNCAnalogTimePicker

TTMSFNCDigitalTimeSelector /
TTMSFNCDigitalTimePicker

TTMSFNCFillKindSelector /
TTMSFNCFillKindPicker

TTMSFNCStrokeKindSelector /
TTMSFNCStrokeKindPicker

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

11

TTMSFNCColorWheel

TTMSFNCTaskDialog

TTMSFNCStatusBar

TTMSFNCSignatureCapture

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

12

TTMSFNCEdit

TTMSFNCEdit extends TEdit and adds several capabilities such as autocompletion, Lookup and
supports edit types such as alphanumeric, numeric, float, uppercase, lowercase, money, ….

The lookuplist can be enabled by setting the enabled property to true:

 TMSFNCEdit1.Lookup.Enabled := True;

To display the list while typing, items can be added to the displaylist. The amount of displayed

items when typing can be controlled with TMSFNCEdit1.Lookup.DisplayCount.

 TMSFNCEdit1.Lookup.DisplayList.Add('abs');

 TMSFNCEdit1.Lookup.DisplayList.Add('Item 1');

 TMSFNCEdit1.Lookup.DisplayList.Add('Hello World !');

When typing, the list shows after 2 characters, with the property

TMSFNCEdit1.Lookup.NumChars this can be modified. When typing text, the text that is typed

can also be automatically added to the list by setting TMSFNCEdit1.Lookup.History to true.

Autocompletion can be actived with TMSFNCEdit1.AutoComplete := True; The edit
automatically displays the item that matches the characters typed in the edit.

 TMSFNCEdit1.AutoComplete := True;

 TMSFNCEdit1.Lookup.DisplayList.Add('Hello World !');

The text in the edit can be displayed as password characters by setting TMSFNCEdit1.Password
:= True;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

13

TTMSFNCPopup

The TTMSFNCPopup is a component that has the capability to display a control inside a fully
customizable transparent popup window. This component can be easily configured to display itself
positioned at a specific control on the form or a given absolute position.
Header and footer are configurable via following properties:

After setting properties where the popup must be shown you can use the following methods to
popup or close the dialog:

TMSFNCPopup1.Popup;

Example:

This code snippet assigns a TTMSFNCGrid control to be displayed on the popup and configures the
TTMSFNCPopup to open at the bottom of a button on the form.

procedure TForm1.FormCreate(Sender: TObject);

begin

 // assign the tableview as detail control for the popup

 TMSFNCPopup1.ContentControl := TMSFNCGrid1;

 // set the control as reference for position of the popup

 TMSFNCPopup1.PlacementTarget := Button1;

 // show the popup at the bottom of the button centered

 TMSFNCPopup1.Placement := TPlacement.plBottomCenter;

end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

14

TTMSFNCColorSelector / TTMSFNCColorPicker

The TTMSFNCColorSelector and TTMSFNCColorPicker are components that are pre-configured,
adding a standard set of colors to select from. Selecting a color is as easy as implementing the
OnColorSelected event and/or programmatically retrieve the selected color with the
TMSFNCColorSelector.SelectedColor or TMSFNCColorPicker.SelectedColor property. The picker
variant displays the selector in a popup.

The TTMSFNCColorSelector and TTMSFNCColorPicker inherit from a base that allows a high level of
customization. Each base supports an item collection that can be displayed in a column and row
structure. Each item can be optionally hidden and/or disabled, stretched over a column and / or
row span and can also be optionally configured as a seperator. The TTMSFNCColorSelector
component overrides and adds a Color property to the base collection item class.

The base selector and picker classes support custom drawing on three levels: the background, the
content and the text. A sample can be found at the TTMSFNCBitmapSelector /
TTMSFNCBitmapPicker chapter.

TTMSFNCBitmapSelector / TTMSFNCBitmapPicker

The TTMSFNCBitmapSelector and TTMSFNCBitmapPicker are components that support displaying a
collection of images to select from either directly in a selector or through a popup in a picker
variant. Selecting a bitmap is as easy as implementing the OnBitmapSelect event and/or
programmatically retrieve the selected Bitmap with the TMSFNCColorSelector.SelectedBitmap /
TMSFNCColorSelector.SelectedItemIndex or TMSFNCColorPicker.SelectedBitmap property. The
picker variant displays the selector in a popup.

The TTMSFNCBitmapSelector and TTMSFNCBitmapPicker inherit from a base that allows a high level
of customization. Each base supports an item collection that can be displayed in a column and row
structure. Each item can be optionally hidden and/or disabled, stretched over a column and / or
row span and can also be optionally configured as a seperator. The TTMSFNCBitmapSelector
component overrides and adds a Bitmap property to the base collection item class.

The base selector and picker classes support custom drawing on three levels: the background, the
content and the text. Below is a sample that demonstrates this.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

15

procedure TForm1.FormCreate(Sender: TObject);

var

 I: Integer;

begin

 TMSFNCBitmapSelector1.BeginUpdate;

 TMSFNCBitmapSelector1.Items.Clear;

 TMSFNCBitmapSelector1.Columns := 3;

 TMSFNCBitmapSelector1.Rows := 1;

 for I := 0 to 2 do

 TMSFNCBitmapSelector1.Items.Add;

 TMSFNCBitmapSelector1.EndUpdate;

end;

procedure TForm1.TMSFNCBitmapSelector1ItemAfterDrawContent(Sender: TObject;

 AGraphics: TTMSFNCGraphics; ARect: TRectF; AItemIndex: Integer);

var

 pt: TTMSFNCGraphicsPath;

begin

 case TMSFNCBitmapSelector1.Items[AItemIndex].State of

 isHover: InflateRect(ARect,-4, -4);

 isDown,isSelected:

 begin

 InflateRectEx(ARect,-4, -4);

 AGraphics.Stroke.Width := 2;

 AGraphics.Stroke.Color := gcBlack;

 end;

 isNormal: InflateRectEx(ARect, -8, -8);

 end;

 ARect := RectF(Int(ARect.Left)+ 0.5, Int(ARect.Top) + 0.5,

Int(ARect.Right) +0.5, Int(ARect.Bottom) + 0.5);

 case AItemIndex of

 0:

 begin

 AGraphics.Fill.Color := gcBlue;

 AGraphics.DrawEllipse(ARect);

 end;

 1:

 begin

 AGraphics.Fill.Color := gcGreen;

 AGraphics.DrawRectangle(ARect);

 end;

 2:

 begin

 pt := TTMSFNCGraphicsPath.Create;

 pt.MoveTo(PointF(ARect.Left + ARect.Width / 2, ARect.Top));

 pt.LineTo(PointF(ARect.Left + ARect.Width , ARect.Bottom));

 pt.LineTo(PointF(ARect.Left , ARect.Bottom));

 pt.ClosePath;

 AGraphics.Fill.Color := gcRed;

 AGraphics.DrawPath(pt);

 pt.Free;

 end;

 end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

16

end;

TTMSFNCFontNamePicker / TTMSFNCFontSizePicker

The TTMSFNCFontNamePicker and TTMSFNCFontSizePicker are components that are pre-configured,
adding a standard set of font names and font sizes to select from. Selecting a font name / font size
is as easy as implementing the OnFontNameSelected / OnFontSizeSelected event and/or
programmatically retrieve the selected font name / Font size with the
TMSFNCFontNamePicker.SelectedFontName or TMSFNCFontSizePicker.SelectedFontSize property.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

17

TTMSFNCToolBar

The TTMSFNCToolBar is a component to display a group of toolbar buttons / pickers with optional
separators. Each toolbar button is highly configurable and has the ability to show a dropdownbutton
with a dropdowncontrol. There are also built-in font name, font size, bitmap and color pickers.

Set of components

- TTMSFNCToolBar
- TTMSFNCDockPanel
- TTMSFNCToolBarSeparator
- TTMSFNCToolBarButton
- TTMSFNCToolBarFontNamePicker
- TTMSFNCToolBarFontSizePicker
- TTMSFNCToolBarColorPicker

Properties

Appearance: The appearance of the toolbar which includes margins for automatic alignment of the
controls inside the toolbar.
AutoAlign: Automatically aligns the controls inside the toolbar.
AutoSize: Automatically resizes the Toolbar according to the displayed buttons.
CustomOptionsMenu: A custom options menu, displayed when clicking the button at the right side
of the toolbar. The options menu displays a list of controls that are available, and the controls can
be hidden when clicking the appropriate item.
OptionsMenu: Configure the options menu at the right side of the toolbar.
State: The state of the toolbar. By default the state is esNormal, but when developing for mobile
forms, the state can optionally be set to esLarge to allow larger buttons and sharper graphics.

Methods

AddControl(AControl: TControl; AIndex: Integer = -1);
Adds an existing control to the toolbar, optionally at a specified index.

AddControlClass(AControlClass: TControlClass; AIndex: Integer = -1): TControl;
Adds a new control based on the AControlClass parameter, optionally at a specified index.

AddButton(AWidth: Single = -1; AHeight: Single = -1; AResource: String = ''; AResourceLarge:
String = ''; AText: String = ''; AIndex: Integer = -1): TTMSFNCToolBarButton;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

18

Adds a new TTMSFNCToolBarButton with the ability to configure the button size, normal bitmap and
large bitmap resources, text and position within the toolbar.

AddSeparator(AIndex: Integer = -1): TTMSFNCToolBarSeparator;
Adds a new separator to the toolbar.

AddFontNamePicker(AIndex: Integer = -1): TTMSFNCToolBarFontNamePicker;
Adds a new TTMSFNCToolBarFontNamePicker control, which inherits from TTMSFNCToolBarButton.

AddFontSizePicker(AIndex: Integer = -1): TTMSFNCToolBarFontSizePicker;
Adds a new TTMSFNCToolBarFontSizePicker control, which inherits from TTMSFNCToolBarButton.

AddColorPicker(AIndex: Integer = -1): TTMSFNCToolBarColorPicker;
Adds a new TTMSFNCToolBarColorPicker control, which inherits from TTMSFNCToolBarButton.

AddBitmapPicker(AIndex: Integer = -1): TTMSFNCToolBarBitmapPicker;
Adds a new TTMSFNCToolBarBitmapPicker control, which inherits from TTMSFNCToolBarButton.

GetOptionsMenuButtonControl: TTMSFNCToolBarButton;
Returns the right-most options menu button for further customization.

Events

OnOptionsMenuButtonClick: Event called when the menu button at the right side of the Toolbar is
clicked.
OnOptionsMenuCustomize: Event called after the options menu is initialized and further
customizations need to be applied.
OnOptionsMenuItemApplyStyle: Event called when the menu item style is applied.
OnOptionsMenuItemCanShow: Event called when showing
OnOptionsMenuItemClick: Event called when a menu item is clicked.
OnOptionsMenuItemCustomize: Event called when a menu item is initialized and further
customization is necessary.

Adding new components at designtime

When dropping a TTMSFNCToolBar on the form, right-clicking it will give you a context menu with
options to add controls. Adding a Button will create an instance of TTMSFNCToolBarButton and add
it to the TTMSFNCToolBar. By default the AutoSize and AutoAlign is true which will align the button
according to the properties set in the appearance and the width/height of the control.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

19

The TTMSFNCToolBarButton can be further customized through the object inspector. The
TTMSFNCToolBarButton has a few descendants that are listed in the beginning of this chapter, each
inherit all properties from the TTMSFNCToolBarButton and already configure some properties to suit
their purpose. The most important properties, methods and events are listed below.

Adding new components at runtime

For this sample we are taking the previous sample of adding a new TTMSFNCToolBarButton at
designtime. The toolbar has a few helper methods of adding a new or existing control
programmatically.

var

 b: TTMSFNCToolBarButton;

begin

 b := TMSFNCToolBar1.AddButton(100, 30);

 b.Text := 'Hello World !';

We can also add other non-built in type of controls, such as a TEdit.

var

 e: TEdit;

begin

 e := TMSFNCToolBar1.AddControlClass(TEdit) as TEdit;

 e.Text := 'Hello World !';

Toolbar button

Below are the most important properties, methods and events for the TTMSFNCToolBarButton.

Properties

Appearance: The appearance of the button, which includes fill and stroke for all states of the
button including a optional transparent mode and the ability to change the corners and rounding.
AutoOptionsMenuText: The text that is displayed when clicking the options menu button in the
toolbar.
Bitmap: The bitmap for normal state.
BitmapContainer: A container of bitmaps defined by a name property.
BitmapLarge: The bitmap for large state.
BitmapName: The name of the bitmap in normal state used in combination with the
BitmapContainer.
BitmapNameLarge: The name of the bitmap in large state used in combination with the
BitmapContainer.
DropDownControl: A reference to the control displayed inside the dropdown area.
DropDownHeight: The height of the dropdown area where the dropdown control will be displayed.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

20

DropDownKind: The kind of dropdown button configured inside the toolbar button. When setting the
DropDownKind to ddkDropDownButton a separate button is added to the toolbar button which takes
care of displaying the dropdown. When specifying ddkDropDown, the whole toolbar button area will
trigger a dropdown.
DropDownPosition: The position of the dropdown button.
DropDownWidth: The width of the dropdown area where the dropdown control will be displayed.
State: The state of the button, used to show the difference between normal and large states for
desktop and mobile applications.

Methods

GetDropDownButtonControl: TTMSFNCToolBarDropDownButton;
Returns the internally created dropdown control button for further customization.

GetBitmapControl: TTMSFNCBitmap;
Returns the internally created instance of TTMSFNCBitmap used to display a bitmap inside the
toolbar button.

GetTextControl: TTMSFNCHTMLText;
Returns the internally created instance of TTMSFNCHTMLText used to display the text inside the
toolbar button.

DropDown;
Shows the dropdown area.

CloseDropDown;
Closes the dropdown area.

GetPopupControl: TPopup;
A reference to the popup control used to display the dropdown area.

DownState: Boolean
A special state that forces the downstate on the toolbar button.

PopupPlacement: TPlacement
The placement of the dropdown area. By default the dropdown area is shown with the direction set
to bottom.

Normal State vs Large State

The button implements a state property, which is also available on the toolbar and dock panel.
When setting the state property, the buttons are switched to a larger state, and will display a larger
font size, larger size and larger bitmap. The bitmap is the most important because the bitmap will
be loaded from the BitmapLarge properties. When you configure your application to include large
states, you should also include a large state variant for the Bitmap and / or BitmapName properties.

Below is a sample that includes a bitmap for normal and large state.

Normal state

Large state

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

21

TTMSFNCTabSet / TTMSFNCPageControl

Properties

ActivePageIndex/ActiveTabIndex Property to get or set the active page/tab.

BitmapContainer Property to assign a TTMSFNCBitmapContainer
instance in order to retrieve bitmaps via a
name.

ButtonAppearance Appearance of the scroll, insert and close
buttons in the menu.

ButtonAppearance  DisabledFill The fill appearance of a button in disabled
state.

ButtonAppearance  DisabledStroke The stroke appearance of a button in disabled
state.

ButtonAppearance  DownFill The fill appearance of a button in down state.

ButtonAppearance  DownStroke The stroke appearance of a button in down
state.

ButtonAppearance  Fill The fill appearance of a button in normal state.

ButtonAppearance  HoverFill The fill appearance of a button in hover state.

ButtonAppearance  HoverStroke The stroke appearance of a button in hover
state.

ButtonAppearance  InsertIcon The icon of the insert button when the insert
button is shown in the menu or as an additional
tab.

ButtonAppearance  ScrollNextIcon The icon of the scroll to next tab button in the
menu.

ButtonAppearance  ScrollPreviousIcon The icon of the scroll to previous tab button in
the menu.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

22

ButtonAppearance  Size The size of the buttons in the menu.

ButtonAppearance  Stroke The stroke appearance of a button in normal
state.

ButtonAppearance  TabListIcon The icon of the tablist button in the menu.

ButtonAppearnce  CloseIcon The icon of the close button when the close
button is shown in the menu.

Fill The background fill appearance of the
tabset/pagecontrol.

Interaction Various properties to control interaction with
the tabset/pagecontrol.

Interaction  AutoOpenURL When true, automatically opens executes the
URL when HTML text is added to a tab.

Interaction  CloseTabWithKeyboard When true, deletes or hides the tab, depending
on the Options.CloseAction.

Interaction  Editing When true, allows editing a tab.

Interaction  InsertTabWithKeyboard When true, allows inserting a tab with the
keyboard.

Interaction  Reorder When true, allows tab reorder.

Interaction  SelectTabOnFocus When true, automatically selects the focused
tab.

Interaction  SelectTabOnInsert When true, automatically selects the inserted
tab.

Interaction  SelectTabOnScroll When true, automatically selects the tab when
navigating to the next or previous tab.

Layout Properties to change the layout of the
tabset/pagecontrol.

Layout  Multiline Displays the tabs on multiple lines instead of a
single scrollable line.

Layout  Position Displays the tabs at the left, top, right or
bottom position.

Options Additional options to configure the look and feel
of the tabset/pagecontrol.

Options  CloseAction Specifies the way the tab should be removed.
When the CloseAction is set to ttcaFree, the Tab
is destroyed while ttcaHide removes the tab
from the displayed tabs and adds it to the
hidden tab list. When the Options.TabListButton
is true, the button will be visible when the
hidden tab list count is greater than 0.

Options  CloseMode Displays a close button on each tab, or a
separate button in the menu.

Options  InsertMode Displays an insert button as an additional tab, or
a separate button in the menu.

Options  TabListButton Displays a button in the menu that holds a list of
invisible tabs. Tabs that are hidden via the
Visible property set to False, or when deleting
via the CloseAction set to ttcaHide will be
shown in this list.

Stroke The stroke of the background of the
TabSet/PageControl.

TabAppearance The global tab appearance applied to each tab
with UseDefaultAppearance set to True.

TabAppearance  ActiveFill The fill applied on an active tab, when the
UseDefaultAppearance is set to true.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

23

TabAppearance  ActiveStroke The stroke applied on an active tab, when the
UseDefaultAppearance is set to True.

TabAppearance  ActiveTextColor The text color of an active tab, used when the
UseDefaultAppearance is set to True.

TabAppearance  BadgeFill The fill of the badge, used when the
UseDefaultAppearance is set to True.

TabAppearance  BadgeFont The font of the badge.

TabAppearance  BadgeStroke The stroke of the badge, used when the
UseDefaultAppearance is set to True.

TabAppearance  CloseDownFill The fill of the tab close button in down state,
used when the UseDefaultAppearance is set to
True.

TabAppearance  CloseDownStroke The stroke of the tab close button in down
state, used when the UseDefaultAppearance is
set to True.

TabAppearance  CloseFill The fill of the tab close button in normal state,
used when the UseDefaultAppearance is set to
True.

TabAppearance  CloseHoverFill The fill of the tab close button in hover state,
used when the UseDefaultAppearance is set to
True.

TabAppearance  CloseHoverStroke The stroke of the tab close button in hover
state, used when the UseDefaultAppearance is
set to True.

TabAppearance  CloseSize The size of the tab close button.

TabAppearance  CloseStroke The stroke of the tab close button in normal
state, used when the UseDefaultAppearance is
set to True.

TabAppearance  DisabledFill The fill of the tab in disabled state, used when
the UseDefaultAppearance is set to True.

TabAppearance  DisabledStroke The stroke of the tab in disable state, used
when the UseDefaultAppearance is set to True.

TabAppearance  DisabledTextColor The text color of the tab in disabled state, used
when the UseDefaultAppearance is set to True.

TabAppearance  DownFill The fill of the tab in down state, used when the
UseDefaultAppearance is set to True.

TabAppearance  DownStroke The stroke of the tab in down state, used when
the UseDefaultAppearance is set to True.

TabAppearance  DownTextColor The text color of the tab in disabled state, used
when the UseDefaultAppearance is set to True.

TabAppearance  Fill The fill of the tab in normal state, used when
the UseDefaultAppearance is set to True.

TabAppearance  FocusedBorderColor The border color of the rectangle drawn on a
focused tab.

TabAppearance  Font The font of a tab.

TabAppearance  HoverFill The fill of the tab in hover state, used when the
UseDefaultAppearance is set to True.

TabAppearance  HoverStroke The stroke of the tab in hover state, used when
the UseDefaultAppearance is set to True.

TabAppearance  HoverTextColor The text color of a tab in hover state, used
when the UseDefaultAppearance is set to True.

TabAppearance  InsertSize The size of the insert tab button.

TabAppearance  ProgressCircularSize The size of the circular progress indicator.

TabAppearance  ProgressFill The fill of the progress indicator, used when the

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

24

UseDefaultAppearance is set to True.

TabAppearance  ProgressStroke The stroke of the progress indicator, used when
the UseDefaultAppearance is set to True.

TabAppearance  Shape The default shape of the tab, used when the
UseDefaultAppearance is set to True.

TabAppearance  ShapeOverlap The tab shape overlapping.

TabAppearance  ShapeRounding The tab shape rounding.

TabAppearance  ShapeSlope The tab shape slope.

TabAppearance  ShowFocus Shows or hides rectangle drawing on a focused
tab.

TabAppearance  Stroke The stroke of a tab in normal state, used when
the UseDefaultAppearance is set to True.

TabAppearance  TextAlign The alignment of the text of a tab, used when
the UseDefaultAppearance is set to True.

TabAppearance  TextColor The color of the text of a tab in normal state,
used when the UseDefaultAppearance is set to
True.

TabAppearance  Trimming The trimming of the text of a tab, used when
the UseDefaultAppearance is set to True.

TabAppearance  WordWrapping The wordwrapping of the text of a tab, used
when the UseDefaultAppearance is set to True.

Tabs  BadgeColor The color of the badge, used when
UseDefaultAppearance is set to False.

Tabs / Pages A collection used to add / remove new or
existing tabs / pages.

Tabs[Index]  ActiveColor The color of a tab in active state, used when
UseDefaultAppearance is set to False.

Tabs[Index]  ActiveTextColor The color of the text of a tab in active state,
used when UseDefaultAppearance is set to
False.

Tabs[Index]  Badge The badge of the tab, shown in the upper right
corner.

Tabs[Index]  BadgeTextColor The text color of the badge, used when
UseDefaultAppearance is set to False.

Tabs[Index]  Bitmaps The bitmap of the badge, multiple bitmaps can
be added with a different scale to support
different DPI settings.

Tabs[Index]  BitmapSize The size of the bitmap.

Tabs[Index]  BitmapVisible Shows or hides the bitmap.

Tabs[Index]  CloseButton Shows or hides the close button, when
Options.CloseMode is set to tcmTab.

Tabs[Index]  Color The color of a tab in normal state, used when
UseDefaultAppearance is set to False.

Tabs[Index]  DisabledBitmaps The bitmap of the badge in disabled state,
multiple bitmaps can be added with a different
scale to support different DPI settings.

Tabs[Index]  DisabledColor The color of a tab in disabled state, used when
UseDefaultAppearance is set to False.

Tabs[Index]  DownColor The color of a tab in down state, used when
UseDefaultAppearance is set to False.

Tabs[Index]  DownTextColor The color of the text of a tab in down state,
used when UseDefaultAppearance is set to
False.

Tabs[Index]  Enabled Enables or disables the tab.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

25

Tabs[Index]  Hint Shows a hint on the tab, when ShowHint
property is true on TabSet or PageControl level.
(Please note that hints are only supported
starting from 10 Seattle in FMX)

Tabs[Index]  HoverColor The color of a tab in hover state, used when
UseDefaultAppearance is set to False.

Tabs[Index]  HoverTextColor The color of the text of a tab in hover state,
used when UseDefaultAppearance is set to
False.

Tabs[Index]  Progress The progress value of a circular or rectangular
progress indicator.

Tabs[Index]  ProgressColor The color of the progress indicator.

Tabs[Index]  ProgressKind The kind of the progress indicator, rectangular
or circular.

Tabs[Index]  ProgressMax The maximum value of a circular or rectangular
progress indicator.

Tabs[Index]  ProgressMode The mode of the progress indicator, normal or
marquee.

Tabs[Index]  Shape The shape of a tab, used when
UseDefaultAppearance is set to False.

Tabs[Index]  Text The text of a tab.

Tabs[Index]  TextAlign The alignment of the text of a tab, used when
UseDefaultAppearance is set to False.

Tabs[Index]  TextColor The color of the text of a tab, used when
UseDefaultAppearance is set to False.

Tabs[Index]  TextVisible Shows or hides the text.

Tabs[Index]  Trimming Applies trimming on the text, if the text is to
long to fit inside the tab area.

Tabs[Index]  UseDefaultAppearance When UseDefaultAppearance is set to True,
applies the properties of the TabAppearance
property on TabSet or PageControl level. When
UseDefaultAppearance is set to False, applies
the properties of the tab itself.

Tabs[Index]  Visible Shows or hides the tab.

Tabs[Index]  Width Sets the width of a tab in case the TabSize.Mode
is set to tsmFixedSize or
tsmFixedSizeAutoShrink.

Tabs[Index]  WordWrapping Applies wordwrapping to the text in case the
size of the text exceeds the tab size.

TabSize Options to specify the size of the tabs.

TabSize  Height The height of the tabs.

TabSize  Margins The margins applied around the tabs.

TabSize  Mode The size mode of the tabs.

TabSize  Spacing The spacing between the tabs.

TabSize  Width The width of the tabs in tsmFixedSize or
tsmFixedSizeAutoShrink mode.

Methods

AddTab / AddPage Adds a new tab / page

CancelEditing Cancels editing if editing is active.

CloseInplaceEditor Closes the inplace editor if editing is active and
applies updates the tab text value or cancels

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

26

the changes.

FindNextTab Returns the next tab based on the tab index.

FindPreviousTab Returns the previous tab based on the tab
index.

FocusNextTab Focuses the next tab based on the tab index.

FocusPreviousTab Focuses the previous tab based on the tab
index.

FocusTab Focuses a specify tab.

InsertTab / InsertPage Inserts a new tab / page.

IsEditing Returns a boolean if editing is active.

IsTabEnabled Returns a boolean if a tab is enabled.

IsTabVisible Returns a boolean if a tab is visible.

MoveTab / MovePage Moves a tab to a new index.

RemoveTab / RemovePage Removes an existing tab / page.

ScrollToTab Scrolls to a specific tab.

SelectNextTab Selects the next tab.

SelectPreviousTab Selects the previous tab.

SelectTab Selects a specific tab.

StopEditing Stops editing and applies the changes to the
tab.

XYToCloseButton Returns the menu close button at a specific X/Y
coordinate.

XYToCloseTab Returns the tab close indicator at a specific X/Y
coordinate.

XYToInsertButton Returns the menu insert button at a specific X/Y
coordinate.

XYToScrollNextButton Returns the menu scroll next button at a
specific X/Y coordinate.

XYToScrollPreviousButton Returns the menu scroll previous button at a
specific X/Y coordinate.

XYToTab Returns the tab at a specific X/Y coordinate.

XYToTabListButton Returns the menu tab list button at a specific
X/Y coordinate.

Events

OnAchorTabClick Event called when an anchor is clicked at a
specific tab.

OnAfterDrawMenuButton Event called after the menu button is drawn.

OnAfterDrawTabBackground Event called after the background of the tab is
drawn.

OnAfterDrawTabBadge Event called after the badge of the tab is
drawn.

OnAfterDrawTabBitmap Event called after the bitmap of a tab is drawn.

OnAfterDrawTabCloseButton Event called after the close button of a tab is
drawn.

OnAfterDrawTabProgress Event called after the progress of a tab is
drawn.

OnAfterDrawTabText Event called after the text of a tab is drawn.

OnBeforeChangeTab Event called before the active tab will change.

OnBeforeCloseTab Event called before a tab will be closed.

OnBeforeDrawMenuButton Event called before the menu button is drawn.

OnBeforeDrawTabBadge Event called before the badge of a tab is drawn.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

27

OnBeforeDrawTabBitmap Event called before the bitmap of a tab is
drawn.

OnBeforeDrawTabCloseButton Event called before the close button of a tab is
drawn.

OnBeforeDrawTabProgress Event called before the progress indication of a
tab is drawn.

OnBeforeDrawTabText Event called before the text of a tab is drawn.

OnBeforeInsertTab Event called before a new tab is inserted.

OnBeforeOpenInplaceEditor Event called before the inplace editor is
opened.

OnBeforeReorderTab Event called before the tab is reordered.

OnBeforeUpdateTab Event called before the tab is updated with the
new value after editing.

OnChangeTab Event called after the active tab has changed.

OnCloseInplaceEditor Event called after the inplace editor is closed.

OnCloseTab Event called after the tab is closed.

OnCustomizeInplaceEditor Event called to customize the inplace editor.

OnGetInplaceEditor Event called to get a custom inplace editor
class.

OnGetInplaceEditorRect Event called to get the inplace editor rectangle.

OnInsertTab Event called after a new tab is inserted.

OnOpenInplaceEditor Event called after the inplace editor is opened.

OnReorderTab Event called after a tab is reordered.

OnUpdateTab Event called after a tab is updated via editing.

Adding new tabs

By default the TabSet is initialized with three tabs. Adding new tabs can be done by using The tabs
collection directly or by using the helper methods as demonstrated below.

TMSFNCTabSet1.Tabs.Clear;

TMSFNCTabSet1.AddTab('New Tab');

Removing tabs

To remove an existing tab, you can use the tabs collection directly or use the RemoveTab helper
method as demonstrated below.

TMSFNCTabSet1.RemoveTab(0);

Before

After

Moving tabs

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

28

To move a tab to a different location, changing the index of the tab collection item is sufficient, or
you can also use the MoveTab method as demonstrated below. You might notice here that the
ActiveTabIndex is set to the new index. The MoveTab automatically changes the ActiveTabIndex.

TMSFNCTabSet1.MoveTab(0, 1);

Before

After

Modes

The TabSet supports different modes to display tabs. The mode can be change with the
TabSize.Mode property. Below is a description of each mode.

- tsmAutoSize
Automatically resizes / stretches all tabs to fit in the available size of the TabSet. No
scrolling capabilities as each tab will be displayed.

- tsmAutoTabSize
Calculates the necessary tab size based on the text, bitmap, progress indicator and close
button. Scrolling is available if the amount of tabs that need to be display exceed the
available size of the TabSet.

- tsmFixedSize
Sets a fixed width on the tab. Scrolling is available if the amount of tabs that need to be
displayed exceed the available size of the TabSet. The default width is 100.

- tsmFixedSizeAutoShrink

Sets a fixed width on the tab. When the amount of tabs is going to exceed the available size
of the TabSet, the tabs are automatically resized to fit the available size of the TabSet. No
scrolling capabilities as each tab will be displayed.

Position

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

29

The TabSet supports 4 positions, changing the position is done with the Layout.Position property.
Each tab can handle rotation for non-HTML formatted text. HTML formatted text is shown
horizontally in case the tab is rotated 90 degrees. The rotation angle is fixed depending on the tab
position. The default position is tlpTop. Alternative values to control the position are tlpLeft,
tlpRight and tlpBottom as shown in the configuration below

Appearance

Each tab has different states (normal, hover, down active and disabled). Each state is represented
with a fill and a stroke under TabAppearance. When the UseDefaultAppearance property is set to
False, the properties under each tab are applied to allow changing the appearance of a single tab.
Each tab has a color for the background and text for each state. By default the
UseDefaultAppearance property is set to False. Below is a sample to indicate the difference
between the states and the purpose of the UseDefaultAppearance property.

var

 I: Integer;

begin

 TMSFNCTabSet1.TabAppearance.Fill.Color := gcLightcoral;

 TMSFNCTabSet1.TabAppearance.ActiveFill.Color := gcCrimson;

 TMSFNCTabSet1.TabAppearance.TextColor := gcWhitesmoke;

 TMSFNCTabSet1.TabAppearance.ActiveTextColor := gcWhite;

 for I := 0 to TMSFNCTabSet1.Tabs.Count - 1 do

 begin

 TMSFNCTabSet1.Tabs[I].Color := gcSteelBlue;

 TMSFNCTabSet1.Tabs[I].ActiveColor := gcLightsteelblue;

 TMSFNCTabSet1.Tabs[I].TextColor := gcWhite;

 TMSFNCTabSet1.Tabs[I].ActiveTextColor := gcDarkblue;

 end;

end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

30

In the above code, you notice that the tabs are responsible for the actual appearance. Note that the
UseDefaultAppearance is set to False by design, which allows to further customize the appearance
of each tab separately. If we would set the UseDefaultAppearance property to True, the appearance
would change and take on the properties from the global TabAppearance as demonstrated in the
following sample.
var

 I: Integer;

begin

 TMSFNCTabSet1.TabAppearance.Fill.Color := gcLightcoral;

 TMSFNCTabSet1.TabAppearance.ActiveFill.Color := gcCrimson;

 TMSFNCTabSet1.TabAppearance.TextColor := gcWhitesmoke;

 TMSFNCTabSet1.TabAppearance.ActiveTextColor := gcWhite;

 for I := 0 to TMSFNCTabSet1.Tabs.Count - 1 do

 begin

 TMSFNCTabSet1.Tabs[I].Color := gcSteelBlue;

 TMSFNCTabSet1.Tabs[I].ActiveColor := gcLightsteelblue;

 TMSFNCTabSet1.Tabs[I].TextColor := gcWhite;

 TMSFNCTabSet1.Tabs[I].ActiveTextColor := gcDarkblue;

 TMSFNCTabSet1.Tabs[I].UseDefaultAppearance := True;

 end;

end;

Interaction

The TabSet supports interaction in various ways, through the mouse and keyboard. By default,
clicking on a tab will set the active tab and show an optional focus indication. The home, end and
arrow keys can be used to navigate through the different tabs. When
Interaction.CloseTabWithKeyboard and Interaction.InsertTabWithKeyboard is true, the TabSet
destroys or hides (depending on Options.CloseAction) the tab with the Delete key and inserts a new
tab with the insert key. Pressing the F2 or Return key on the keyboard will start editing when
Interaction.Editing is true.

When the mode is set to tsmFixedSize, tsmAutoTabSize and the amount of tabs exceed the available
size of the TabSet, scroll buttons appear to allow scrolling through the tabs. By default, the scroll
buttons will change the active tab but when Interaction.SelectTabScroll is set to False, the scroll
buttons will only navigate through the tabs by changing the focused tab. To make the focused tab
active, the Space or Return key can be used.

Inserting tabs via the tab insert button

New tabs can be inserted programmatically, but also via user interaction. When setting the
Options.InsertMode to timTab a new special insert tab appears.

Clicking on this tab will insert a new tab and via the OnBeforeInsertTab the index can be set at
which position the tab needs to be inserted. By default this is always at the last position.
Optionally, the insert tab button can be changed to a menu button via the timMenu option. This

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

31

button has the same purpose but it stays visible inside the menu instead of as an additional special
tab.

Closing tabs via the tab close button

Tabs can be removed / closed programmatically via the free action or setting the visible property to
false, but can also be closed via a tab or menu close button. Setting the Options.CloseMode to
tcmTab will show an additional close button at each tab. Clicking the close button will destroy or
hide the tab depending on the Options.CloseAction. In case the Options.CloseAction is ttcaFree the
tab will be destroyed. In case the Options.CloseAction is ttcaHide, the tab visible propery will be
set to False and the tab will be displayed in the separate invisible tab list, available when the
Options.TabListButton is set to true.

Reorder

Reordering can be enabled by setting the Interaction.Reorder property to true. When pressing the
finger/left-mouse button on a tab and dragging left or right, up or down depending on the position,
the tab will detach from its current position and will navigate the to where the finger/left-mouse
button is currently located. When releasing the finger/left-mouse button the new tab position is
detected and the tab will move to the new location. Events can determine if a tab can be moved or
moved to (OnBeforeReorderTab & OnReorderTab).

TMSFNCTabSet1.Interaction.Reorder := True;

Editing

Editing can be enabled by setting the Interaction.Editing property to true. When selecting a tab,
pressing the F2 or clicking on the text area will start editing and show the default inplace editor
(TEdit). The event OnBeforeOpenInplaceEditor is called to determine if a tab can be edited. The
editor class itself can be changed to support custom inplace editors (demonstrated in a separate
sample) and the editor class is retrieved via the OnGetInplaceEditor event. Before the editing is
shown, but after the event that is called to determine if a tab can be edited the editor is further
customized via the optional OnCustomizeInplaceEditor event. By default, the text rectangle is used
as coördinates for the inplace editor, but this can also be customized via the
OnGetInplaceEditorRect. After the inplace editor is configured and approved, the
OnAfterOpenInplaceEditor is called. In this event, the Parent of the inplace editor is already set.

TMSFNCTabSet1.Interaction.Editing := True;

After editing is done, pressing the Return or F2 will apply changes in the inplace editor. The
OnCloseInplaceEditor event is called which will contain parameters to control the text that is being
applied to the tab. After optionally changing the value, the OnBeforeUpdateTab and OnUpdateTab
event are called. The OnBeforeUpdateTab can be used to specify if a tab can be updated.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

32

When pressing the Escape key, The OnCloseInplaceEditor is called with different parameters and the
changes are cancelled.
Custom inplace editor

As mentioned, the TabSet supports editing via a custom inplace editor. In this sample, we create,
customize and use a TComboBox as inplace editor. The code below demonstrates this behavior.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCTabSet1.Interaction.Editing := True;
 TMSFNCTabSet1.TabSize.Mode := tsmFixedSize;
 TMSFNCTabSet1.TabSize.Width := 120;
 TMSFNCTabSet1.Width := 400;
end;

procedure TForm1.TMSFNCTabSet1CustomizeInplaceEditor(Sender: TObject;
 ATabIndex: Integer; AInplaceEditor: TControl);
var
 cbo: TComboBox;
begin
 cbo := (AInplaceEditor as TComboBox);
 cbo.Items.Add('Audi');
 cbo.Items.Add('BMW');
 cbo.Items.Add('Mercedes');
 cbo.ItemIndex := cbo.Items.IndexOf(TMSFNCTabSet1.Tabs[0].Text);
end;

procedure TForm1.TMSFNCTabSet1GetInplaceEditor(Sender: TObject;
 ATabIndex: Integer; var AInplaceEditorClass: TTMSFNCTabSetInplaceEditorClass);
begin
 AInplaceEditorClass := TComboBox;
end;

Progress indication

Each tab has the ability to show progress, in the form of a rectangular or circular progress indicator.
The Progress and ProgressMax properties determine the visual representation. By default, the
ProgressMax property is 100.

TMSFNCTabSet1.Tabs[0].ProgressKind := tpkRectangular;
TMSFNCTabSet1.Tabs[0].Progress := 50;

TMSFNCTabSet1.Tabs[0].ProgressKind := tpkCircular;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

33

TMSFNCTabSet1.Tabs[0].Progress := 50;

Optionally, the progress indicator can also be configured in marquee mode with the ProgressMode
property. The progress indicator will, independent of the ProgressKind property setting,
continuously indicate a busy operation. The ProgressColor property is used to further customize the
appearance of the progress indicator for each tab separately.

Badges

Each tab can show a badge, which is placed in the upper right corner relative to its position. To
show a badge, enter a value for the Badge property at a specific tab.

TMSFNCTabSet1.Tabs[0].Badge := ‘Hello’;

Custom drawing

Each element in the TabSet can be customized via the TabAppearance or ButtonAppearance
properties. When the UseDefaultAppearance property on tab level is set to False, further
customizations can be applied using the color and text color properties for each state. Even if these
customizations are not sufficient, the TabSet exposes a set of events for custom drawing. Below is a
sample that demonstrates this.

In this sample we took the badge sample from the previous chapter, we draw a rectangle instead of
a rounded rectangle, and change the font name and color.

TMSFNCTabSet1.Tabs[0].Badge := ‘Hello’;

procedure TForm1.TMSFNCTabSet1BeforeDrawTabBadge(Sender: TObject;
 AGraphics: TTMSFNCGraphics; ATabIndex: Integer; ARect: TRectF; AText: string;
 var ADefaultDraw: Boolean);
begin
 ADefaultDraw := False;
 AGraphics.DrawRectangle(ARect);
 AGraphics.Font.Color := gcWhite;
 AGraphics.Font.Name := 'Comic Sans MS';
 AGraphics.DrawText(ARect, AText, False, gtaCenter);
end;

The next sample is customization of the close button. The close button is custom drawn, but it
might be useful to show a close button icon instead. Implementing the
OnBeforeDrawTabCloseButton will help you with this.

procedure TForm1.FormCreate(Sender: TObject);

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

34

begin
 TMSFNCTabSet1.Options.CloseMode := tcmTab;
 TMSFNCTabSet1.TabAppearance.CloseSize := 20;
end;

procedure TForm1.TMSFNCTabSet1BeforeDrawTabCloseButton(Sender: TObject;
 AGraphics: TTMSFNCGraphics; ATabIndex: Integer; ARect: TRectF;
 AState: TTMSFNCTabSetButtonState; var ADefaultDraw: Boolean);
begin
 ADefaultDraw := False;
 AGraphics.DrawBitmap(ARect, TMSFNCBitmapContainer1.FindBitmap('close'));
end;

Note that in this sample, the close bitmap is actually the same bitmap for each state, but when a
separate bitmap for each state is preferrable then this can be handled easily via the AState
parameter.

PageControl

The PageControl inherits from the TabSet and adds the ability to show pages that act as a container
for other controls. There is a separate Pages property that inherits from the Tabs collection and
exposes PageControl specific event handlers. Except for the page containers there is no difference
in properties and appearance, so all the above code is also valid for the PageControl.

Performance

The TabSet/PageControl is optimized for handling a large amount of tabs/pages. When the amount
of tabs/pages are less than or equal to 10 then you can safely use the code above as-is. If the
amount of tabs/pages exceed this number it is recommended to wrap the code with a
BeginUpdate/EndUpdate code block. This block bundles all recalculate and repaint instructions in to
one call and makes sure that adding 1000 tabs do not result in a time and resource consuming task.

TMSFNCTabSet1.BeginUpdate;
for I := 1 to 1000 do
 TMSFNCTabSet1.Tabs.Add;
TMSFNCTabSet1.EndUpdate;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

35

TTMSFNCListBox / TTMSFNCCheckedListBox

Properties

DefaultItem The default item properties, which are applied
when creating a new item.

DefaultItem  Bitmap The Bitmap of the item.

DefaultItem  BitmapName The name of the bitmap of the item (used in
combination with a TTMSFNCBitmapContainer).

DefaultItem  DisabledTextColor The color of the text of the item in disabled
state.

DefaultItem  Enabled Sets an item enabled or disabled.

DefaultItem  Height The height of an item. When using this property,
the auto-height calculation or fixed size settings
in ItemsAppearance is overriden.

DefaultItem  SelectedTextColor The color of the text of the item in selected
state.

DefaultItem  Text The text of the item.

DefaultItem  TextAlign The alignment of the text of the item.

DefaultItem  TextColor The color of the text of the item in normal
state.

DefaultItem  Trimming The trimming of the text of the item.

DefaultItem  WordWrapping The wordwrapping of the text of the item.

DefaultItem  Checked
(TTMSFNCCheckedListBox)

The checked state of the item.

Fill The background fill of the listbox.

Header The header of the listbox.

Header  Fill The background fill of the header of the listbox.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

36

Header  Font The font of the header.

Header  HorizontalTextAlign The horizontal text align of the header.

Header  Size The size of the header.

Header  Stroke The background stroke of the header.

Header  Text The text of the header.

Header  Trimming The trimming of the header.

Header  VerticalTextAlign The vertical text align of the header.

Header  Visible The visibility of the header.

Header  WordWrapping The wordwrapping of the header.

Interaction The interaction properties of the listbox.

Interaction  ClipboardMode The clipboard mode of the listbox.

Interaction  DragDropMode The drag & drop mode of the listbox.

Interaction  Filtering The filtering options of the listbox.

Interaction  Lookup The lookup options of the listbox.

Interaction  MultiSelect Enables multi-select on the listbox.

Interaction  Reorder Enables reordering on the listbox.

Interaction  Sorting Enables sorting on the listbox

Interaction  TouchScrolling Allows touch scrolling.

ItemIndex The selected item index.

Items The collection of listbox items.

ItemsAppearance The general appearance of the listbox items.

ItemsAppearance  DisabledFill The fill of an item in disabled state.

ItemsAppearance  DisabledStroke The stroke of an item in disabled state.

ItemsAppearance  Fill The fill of an item in normal state.

ItemsAppearance  FixedHeight The fixed height of an item in case the
HeightMode is set to lihmFixed.

ItemsAppearance  Font The font of the items.

ItemsAppearance  HeightMode The height mode of the items.

ItemsAppearance  SelectedFill The fill of an item in selected state.

ItemsAppearance  SelectedStroke The stroke of an item in selected state.

ItemsAppearance  Stroke The stroke of an item in normal state.

Stroke The stroke of the background of the listbox.

VerticalScrollBarVisible Shows or hides the vertical scrollbar.

Methods / public properties

AddItem(AText: string = ’’):
TTMSFNCListBoxItem

Adds a new item

ApplyFilter; Applies the filter, configured programmatically
with the filter property.

Checked[AItemIndex: Integer]: Boolean;
(TTMSFNCCheckedListBox)

Returns the checked state for an item based on
the index.

CheckedItems: TTMSFNCListBoxCheckedItems;
(TTMSFNCCheckedListBox)

Returns all the checked items in the listbox.

CheckedItems[AItem:
TTMSFNCCheckedListboxItem]: Boolean;
(TTMSFNCCheckedListBox)

Returns the checked state for an item.

ClearSorting; Clears all sorting applied to the listbox.

CopyToClipboard(ATextOnly: Boolean = False); Copies the selected items to the clipboard.

CutToClipboard(ATextOnly: Boolean = False); Cuts the selected items to the clipboard.

Filter: TTMSFNCListBoxFilter; The filter, used for programmatic filtering in
the listbox.

GetItemsFromClipboard:
TTMSFNCListBoxCopyItems

Gets the items from the clipboard.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

37

IsItemSelectable(AItem: TTMSFNCListBoxItem):
Boolean;

Returns a boolean whether an item is selectable
or not.

LoadFromFile(AFileName: String); Loads the listbox items from a flie.

LoadFromStream(AStream: TStream); Loads the listbox items from a stream.

LoadFromStrings(AStrings: TStrings); Loads the listbox items from a TStrings instance.

LookupItem(ALookupString: String;
ACaseSensitive: Boolean = False; AAutoSelect:
Boolean = False): TTMSFNCListBoxItem;

Looks up an item, and optionally selects it.

PasteFromClipboard; Pastes items from the clipboard.

RemoveFilter; Removes the active filter.

RemoveFilters; Removes all filters from the listbox.

RemoveItem(AItem: TTMSFNCListBoxItem); Removes an item from the listbox.

SaveToFile(AFileName: String; ATextOnly:
Boolean = True);

Saves the listbox to a file, optionally text-only
to be compatible with other item loading
components such as TTreeView / TListBox.

SaveToStream(AStream: TStream; ATextOnly:
Boolean = True);

Saves the listbox to a stream, optionally text-
only to be compatible with other item loading
components such as TTreeView / TListBox.

SaveToStrings(AStrings: TStrings); Saves the listbox item to a TStrings instance.

ScrollToItem(AItemIndex: Integer); Scrolls to the itemindex.

SelectedItem: TTMSFNCListBoxItem; Returns the selected item.

SelectedItemCount: Integer Returns the selected item count.

SelectedItems[AIndex: Integer]:
TTMSFNCListBoxItem;

Returns the selected item based on the index in
the selected items collection.

SelectItem(AItemIndex: Integer); Selects an item.

SelectItems(AItemIndexes:
TTMSFNCListBoxItemArray);

Selects an array of items.

Sort(ACaseSensitive: Boolean = True;
ASortingMode: TTMSFNCListBoxItemsSortMode);

Sorts the items.

XYToItem(X, Y: Single): TTMSFNCListBoxItem; Returns the item under X and Y coordinate.

XYToItemIndex(X, Y: Single): Integer; Returns the item index under X and Y
coordinate.

Events

OnAfterCopyToClipboard Event called after a clipboard copy operation is
completed.

OnAfterCutToClipboard Event called after a clipboard cut operation is
completed.

OnAfterDrawItem Event called after an item is drawn.

OnAfterDrawItemCheck
(TTMSFNCCheckedListBox)

Event called after an item checkbox is drawn.

OnAfterDrawItemIcon Event called after an item icon is drawn.

OnAfterDrawItemText Event called after the text of an item is drawn.

OnAfterDropItem Event called after an item has been dropped by
a drag & drop operation.

OnAfterPasteFromClipboard Event called after content has been pasted from
the clipboard.

OnAfterReorderItem Event called after an item is reordered.

OnBeforeCopyToClipboard Event called before a clipboard copy operation
is completed.

OnBeforeCutToClipboard Event called before a clipboard cut operation is
completed.

OnBeforeDrawItem Event called before an item is drawn.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

38

OnBeforeDrawItemCheck
(TTMSFNCCheckedListBox)

Event called before an item checkbox is drawn.

OnBeforeDrawItemIcon Event called before an item icon is drawn.

OnBeforeDrawItemText Event called before the text of an item is
drawn.

OnBeforeDropItem Event called before an item has been dropped
by a drag & drop operation.

OnBeforePasteFromClipboard Event called before content has been pasted
from the clipboard.

OnBeforeReorderItem Event called before an item is reordered.

OnFilterSelect Event called when a item from the filter listbox
is clicked.

OnItemAnchorClick Event called when an anchor inside an item text
is clicked.

OnItemCheckChanged (TTMSFNCCheckedListBox) Event called when an item check state has
changed.

OnItemClick Event called when an item is clicked.

OnItemCompare Event called when an item is compared with
another item when sorting is applied.

OnItemDblClick Event called when an item is double-clicked.

OnItemSelected Event called when an item is selected.

OnNeedFilterDropDownData Event called when the filter request the data
that needs to be placed inside the filter box.

OnVScroll Event called when the listbox is scrolled.

Adding new Items

Items can be added at designtime through the items collection, but can also be added
programmatically using the AddItem function. Below is a sample using both the collection and the
helper function.

TMSFNCListBox1.AddItem(‘Hello’);

it := TMSFNCListBox1.Items.Add;
it.Text := ‘Hello’;

Default Item

When adding new item, the values from the DefaultItem property are copied. This way, you can add
a default icon, text, text color and many more. Below is a sample that demonstrates this.

var
 it: TTMSFNCListBoxItem;
begin
 TMSFNCListBox1.BeginUpdate;
 TMSFNCListBox1.Items.Clear;
 TMSFNCListBox1.DefaultItem.Text := 'Hello';
 it := TMSFNCListBox1.Items.Add;
 it.Text := it.Text + ' 1';
 it := TMSFNCListBox1.Items.Add;
 it.Text := it.Text + ' 2';
 TMSFNCListBox1.DefaultItem.TextColor := gcRed;
 it := TMSFNCListBox1.Items.Add;
 it.Text := it.Text + ' 3';
 it := TMSFNCListBox1.Items.Add;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

39

 it.Text := it.Text + ' 4';
 TMSFNCListBox1.EndUpdate;
end;

Appearance

The listbox exposes a set of properties for overall item appearance. The background of an item can
be customized for various states such as normal, selected, disabled. Below is a sample that
demonstrates how to customize the selection color of an item.

TMSFNCListBox1.ItemsAppearance.SelectedFill.Color := gcRed;
TMSFNCListBox1.ItemsAppearance.SelectedStroke.Color := gcRed;

Interaction

The Listbox supports interaction through mouse and keyboard. When clicking on an item that is
selectable, the item is selected. When navigating with the keys up, down, home, end, page up or
page down the selected item will be changed. Disabled items are not selectable.

When the property MultiSelect is true, multiple items can be selected with the CTRL and SHIFT key
with either the mouse or keyboard. The selected items can be retrieved with the
SelectedItemCount function and SelectedItems property. Selection of items can be done with the
SelectItem or SelectItems method. The SelectItems method takes an array of items.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

40

Clipboard

Cut, Copy and Paste is supported when setting the Interaction.ClipboardMode property to
tcmTextOnly or tcmFull. The tcmTextOnly value only copies the text and does not copy along other
attributes such as the check state or the item icon. The tcmFull clipboard mode copies all attributes
of the item. Cut will first copy the item and then remove it from the listbox. There are additional
events that are triggered when performing a cut, copy or paste action.

Reordering / Drag & Drop

When setting Interaction.Reorder to True, clicking on an already selected item will duplicate the
item and attach it while dragging. When releasing the item over another item it will reorder the
item to the new location. Please note that touch scrolling is disabled when reordering is true on the
selected item part. On the non-selected item parts, touch scrolling is still active.

When setting Interaction.DragDropMode to ldmMove or ldmCopy the same approach can be used as
reordering, and will allow you to drop the item to a different location. Drag & drop takes
precedence over reordering, and with drag & drop you cannot only move or copy items in the same
listbox but also move items to another listbox.

Filtering

When setting Interaction.Filtering.Enabled := True; a filter dropdown button appears at the right
side of the header. Clicking on the filter button will show a filter dropdown list with unique values.
After clicking a value, the listbox shows a filtered list.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

41

After filtering, the node that matches the chosen filter is shown.

To clear filtering, click the ‘(All)’ entry in the filter list.
Note that filtering is also available programmatically. Below is a sample that filtes the items with
an O:

var
 f: TTMSFNCListBoxFilterData;
begin
 TMSFNCListBox1.Filter.Clear;
 f := TMSFNCListBox1.Filter.Add;
 f.Condition := '*P*';
 TMSFNCListBox1.ApplyFilter;
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

42

To clear all filtering programmatically, you can use the following code:
TMSFNCListBox1.RemoveFilters;

Sorting

When clicking on the header, the items are sorted and the listbox is updated. Below is a sample
that demonstrates this.

TMSFNCListBox1.Interaction.Sorting := lcsNormal;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

43

Sorting can also be done programmatically, with the following code, which will show the same
result as the screenshot above.

TMSFNCListBox1.Sort(False, ismAscending);

Customization

The listbox supports various kinds of customization, such as custom drawing, custom filtering and
sorting. Below is a sample that demonstrates how to draw a rating icon for each item through the
OnAfterDrawItem event.

procedure TForm1.FormCreate(Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to TMSFNCListBox1.Items.Count - 1 do
 TMSFNCListBox1.Items[I].DataInteger := RandomRange(1, 6)
end;

procedure TForm1.TMSFNCListBox1AfterDrawItem(Sender: TObject;
 AGraphics: TTMSFNCGraphics; ARect: TRectF; AItem: TTMSFNCListBoxItem);
var
 r: Integer;
 I: Integer;
 bmp: TBitmap;
 rrt: TRectF;
begin
 r := AItem.DataInteger;
 bmp := TMSFNCBitmapContainer1.FindBitmap('rating');
 for I := 0 to r - 1 do

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

44

 begin
 rrt := RectF(Round(ARect.Right - ((bmp.Width + 4) * (I + 1))), Round(ARect.Top + (ARect.Height -
bmp.Height) / 2),
 Round(ARect.Right - ((bmp.Width + 4) * I)), Round(ARect.Top + (ARect.Height - bmp.Height) / 2
+ bmp.Height));

 AGraphics.DrawBitmap(rrt, bmp);
 end;
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

45

TTMSFNCRadioGroup / TTMSFNCRadioGroupPicker

The TTMSFNCRadioGroup and TTMSFNCRadioGroupPicker are components that display a group of
radiobuttons. With the ItemIndex property you can set which value is selected. The
OnRadioButtonClick event is triggered when a value is selected. Both components can display HTML.

TTMSFNCCheckGroup / TTMSFNCCheckGroupPicker

The TTMSFNCCheckGroup and TTMSFNCCheckGroupPicker are components that display a group of
checkboxes. With the Value property you can set which checkes are checked. The OnCheckBoxClick
event is triggered when a value is selected. Both components can display HTML.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

46

TTMSFNCPanel

The TTMSFNCPanel is capable of hosting controls and has the ability to display a header and footer.
Optionally, both the header and footer can display a close, expand, compact and dropdown button.
The close button can destroy the panel, or can set it visible to false. The expand button expands or
collapses the panel so only the header / footer is visible. The compact button, will shrink the panel
width so only the compact button is visible. Optionally, sections can be added that divide the
control in different areas. The TTMSFNCPanel is used inside the TTMSFNCNavigationPanel.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

47

TTMSFNCNavigationPanel

The TTMSFNCNavigationPanel displays a set of TTMSFNCPanel instances based on a panel collection.
The navigation panel can display items, buttons and has a separate compact mode.

Properties

ActivePanelIndex Property to get or set the active panel.

BitmapContainer Property to assign a TTMSFNCBitmapContainer
instance in order to retrieve bitmaps via a
name.

ButtonsAppearance A set of properties to configure the buttons
appearance at the bottom of the navigation
panel.

ButtonsAppearance  ActiveFill The fill of the button in active state.

ButtonsAppearance  ActiveStroke The stroke of the button in active state.

ButtonsAppearance  BackgroundFill The background fill of the button area.

ButtonsAppearance  BackgroundStroke The background stroke of the button area.

ButtonsAppearance  DisabledFill The fill of the button in disabled state.

ButtonsAppearance  DisabledStroke The stroke of the button in disabled state.

ButtonsAppearance  DownFill The fill of the button in down state.

ButtonsAppearance  DownStroke The stroke of the button in down state.

ButtonsAppearance  Fill The fill of the button in normal state.

ButtonsAppearance  HoverFill The fill of the button in hover state.

ButtonsAppearance  HoverStroke The stroke of the button in hover state.

ButtonsAppearance  OptionsButtonBulletColor The color of the bullets in the options button.

ButtonsAppearance  ShowOptionsButton Shows or hides the options button.

ButtonsAppearance  Size The size of the buttons area.

ButtonsAppearance  Spacing The spacing between the buttons.

ButtonsAppearance  Stroke The stroke of the button in normal state.

CompactMode Switches between normal and compact mode. In
compact mode the CompactModeSize is applied

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

48

to the width.

CompactModeSize The width of the navigation panel in compact
mode.

ItemsAppearance A set of properties to configure the items
appearance.

ItemsAppearance  ActiveFill The fill of the item in active state.

ItemsAppearance  ActiveFont The font of the item in active state.

ItemsAppearance  ActiveStroke The stroke of the item in active state.

ItemsAppearance  BadgeFill The fill of the badge of the item.

ItemsAppearance  BadgeFont The font of the badge of the item.

ItemsAppearance  BadgeStroke The stroke of the badge of the item.

ItemsAppearance  CompactDisabledFill The fill of the compact item in disabled state.

ItemsAppearance  CompactDisabledStroke The stroke of the compact item in disabled
state.

ItemsAppearance  CompactDownFill The fill of the compact item in down state.

ItemsAppearance  CompactDownStroke The stroke of the compact item in down state.

ItemsAppearance  CompactHoverFill The fill of the compact item in hover state.

ItemsAppearance  CompactHoverStroke The stroke of the compact item in hover state.

ItemsAppearance  DisabledFill The fill of the item in disabled state.

ItemsAppearance  DisabledStroke The stroke of the item in disabled state.

ItemsAppearance  DownFill The fill of the item in down state.

ItemsAppearance  DownStroke The stroke of the item in down state.

ItemsAppearance  Fill The fill of the item in normal state.

ItemsAppearance  Font The font of the item in normal state.

ItemsAppearance  HoverFill The fill of the item in hover state.

ItemsAppearance  HoverFont The font of the item in hover state.

ItemsAppearance  HoverStroke The stroke of the item in hover state.

ItemsAppearance  Size The size of the items.

ItemsAppearance  Spacing The spacing between the items.

ItemsAppearance  Stroke The stroke of the items in normal state.

MaxButtonCount The maximum number of buttons shown in the
buttons area. If the number of buttons exceed
this number the buttons are automatically
added to the context menu, shown with the
options button.

MaxItemCount The maximum number of items shown in the
items area. If the number of items exceed this
number the items are automatically added to
the context menu, shown with the options
button.

Mode The mode of the navigation panel. The default
mode is mixed, to show items and buttons. The
other modes are configured to only display
items, or only display buttons.

Panels The panel items collection.

Panels[Index]  Badge The badge of an item.

Panels[Index]  Bitmaps The bitmaps of an item.

Panels[Index]  CompactText The text of a compact item.

Panels[Index]  Enabled The enabled state of an item.

Panels[Index]  Hint The hint of an item.

Panels[Index]  Kind The kind of an item, to configure the item as a
button or a normal item.

Panels[Index]  Text The text of an item.

Panels[Index]  Visible The visibility of an item. If an item is not

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

49

visible, the item is transferred to the context
menu in the “Add or Remove items option.

ShowCompactModeButton Shows or hides the compact mode button in the
header of the panel.

ShowFooter Shows or hides the footer of each panel inside
the navigation panel.

ShowHeader Shows or hides the header of each panel inside
the navigation panel.

Splitter The splitter of the navigation panel to show
more or less items.

Splitter  BulletColor The color of the bullets of the splitter.

Splitter  Fill The fill of the splitter.

Splitter  Size The size of the splitter.

Splitter  Stroke The stroke of the splitter.

Splitter  Visible The visibility of the splitter.

Methods

AddPanel Adds a new panel.

InsertPanel Inserts a new panel at a specific index.

MovePanel Moves an existing panel to a specific index.

RemovePanel Removes an existing panel.

SelectNextPanel Selects the next panel starting from the active
panel index.

SelectPanel Selects a specific panel.

SelectPreviousPanel Selects the previous panel starting from the
active panel index.

SplitItems Converts / splits a number of items in buttons.

Events

OnAfterDrawButton Event called after a button is drawn.

OnAfterDrawCompactItem Event called after a compact item is drawn.

OnAfterDrawItem Event called after an item is drawn.

OnAfterDrawItemBadge Event called after a badge is drawn.

OnAfterDrawOptionsButton Event called after the options button is drawn.

OnAfterDrawSplitter Event called after a splitter is drawn.

OnBeforeDrawButton Event called before a button is drawn.

OnBeforeDrawCompactItem Event called before a compact item is drawn.

OnBeforeDrawItem Event called before an item is drawn.

OnBeforeDrawItemBadge Event called before a badge is drawn.

OnBeforeDrawOptionsButton Event called before the options button is drawn.

OnBeforeDrawSplitter Event called before a splitter is drawn.

OnCompactItemClick Event called when an item in compact mode is
clicked.

OnCustomizeContextMenu Event called to further customize the context
menu shown from the options menu button.

OnItemAnchorClick Event called when an anchor is clicked at a
specific item.

OnItemClick Event called when an item is clicked.

OnSplitterMove Event called when the splitter is moved.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

50

Adding new panels

By default the NavigationPanel is initialized with three panels. Adding new panels can be done by
using the panels collection directly or by using the helper methods as demonstrated below.

TMSFNCNavigationPanel1.Panels.Clear;

TMSFNCNavigationPanel1.AddPanel('New Panel');

Removing panels

To remove an existing panel, you can use the panels collection directly or use the RemovePanel
helper method as demonstrated below.

TMSFNCNavigationPanel1.RemovePanel(0);

Before

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

51

After

Moving panels

To move a panel to a different location, changing the index of the panel collection item is
sufficient, or you can also use the MovePanel method as demonstrated below. You might notice
here that the ActivePanelIndex is set to the new index. The MovePanel function automatically
changes the ActivePanelIndex.

TMSFNCNavigationPanel1.MovePanel(0, 1);

Before

After

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

52

Modes

The navigation panel supports three modes.

npmItems

Setting the mode property to npmItems will show the items in the panel collection above the
buttons area. Using the splitter to hide items will not show them as buttons but instead will add
them as menu items in the options menu.

npmButtons

Setting the mode property to npmButtons will show the items in the panel collection as buttons
inside the buttons area. There is no splitter as there will also be no items above the buttons area.
The buttons are shown from right left and are automatically added as menu items to the options
menu when they would exceed the available size.

npmMixed (default)

Setting the mode property to npmMixed will show the items in the panel collection above the
buttons area and inside the buttons area, depending on the Kind property. When the kind property
is set to pikItem, the panel item is added as an item above the buttons area. When the kind
property is set to pikButton, the panel item is added as a button inside the buttons area. When the
splitter is moved, the items are added as buttons when moving down, and buttons are converted to
items when moving up. When the available size is exceeded or the maximum number of items /
buttons is exceeded, then the panel items are added as entries in the options menu.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

53

Compact Mode

The navigation panel has a separate compact mode that can be activated programmatically via the
CompactMode property or visually via the compact mode button inside the panel. By default the
header of the panel contains a compact button (optionally shown with ShowCompactModeButton) as
shown in the screenshot below, and when clicking it, the panel width is reduced to the
CompactModeSize property.

Normal mode Compact mode

In the compact mode, the items are reduced to bitmap only, and the content of the panel
disappears. The content area is then filled with a separate button and contains vertical text that is
set with the CompactText property of a panel item. The button also has a separate compact
appearance under the ItemsAppearance property. When clicking this button the
OnCompactItemClick event is triggered.

Options Menu

As already explained in the modes chapter, when some items are set unvisible, or are hidden during
a splitter or resize operation they are transferred to the options menu. The options menu is shown
after clicking on the three-dotted button at the buttons area. This button can optionally be shown
using the ButtonsAppearance.ShowOptionsButton (True by default). Clicking on this button shows a
context menu with the hidden items, the ability to show more or less items above the buttons area
and the list of items to add or remove from the visible items / buttons lists.

In the sample below, the MaxButtonCount property is set to 1, which means that when dragging the
splitter down, only one item will be converted as a button item, and the rest of the items will be
added to the options menu. As they are three items, and one item remains in the items area, there
is one additional item available in the options menu. Clicking that item will show the corresponding
panel and trigger the OnItemClick event.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

54

Appearance

The appearance of the navigation panel can be customized in three areas: the items area, the
buttons area and the panel area. The items area is customized with the ItemsAppearance property
where each state (normal, disabled, hover, down and active) of the item can be customized. The
same applies to the buttons area, where the ButtonsAppearance property is responsible for the
appearance of each button and its state. The buttons have the same states as the items. The panel
header, footer and content area is styled by the panel itself. The panel can be accessed at
designtime / runtime and has separate property to control the appearance. Below is a sample that
customizes the appearance of the navigation panel.

var
 I: Integer;
begin
 Fill.Color := gcWhite;
 Fill.Kind := TBrushKind.Solid;
 TMSFNCNavigationPanel1.ButtonsAppearance.BackgroundFill.Color := gcSteelblue;
 TMSFNCNavigationPanel1.ButtonsAppearance.OptionsMenuButtonBulletColor := gcWhite;
 TMSFNCNavigationPanel1.ButtonsAppearance.BackgroundStroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ButtonsAppearance.Stroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ButtonsAppearance.ActiveFill.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ButtonsAppearance.ActiveStroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ButtonsAppearance.HoverStroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ButtonsAppearance.DownStroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ItemsAppearance.Stroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ItemsAppearance.ActiveFill.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ItemsAppearance.ActiveStroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.ItemsAppearance.HoverStroke.Color := gcDarkblue;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

55

 TMSFNCNavigationPanel1.ItemsAppearance.DownStroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.Splitter.Fill.Color := gcDarkblue;
 TMSFNCNavigationPanel1.Splitter.Stroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.Splitter.BulletColor := gcWhite;
 TMSFNCNavigationPanel1.Stroke.Color := gcDarkBlue;

 for I := 0 to TMSFNCNavigationPanel1.Panels.Count - 1 do
 begin
 TMSFNCNavigationPanel1.Panels[I].Container.Header.Fill.Color := gcSteelBlue;
 TMSFNCNavigationPanel1.Panels[I].Container.Header.Font.Color := gcWhite;
 TMSFNCNavigationPanel1.Panels[I].Container.Header.Stroke.Color := gcDarkblue;
 TMSFNCNavigationPanel1.Panels[I].Container.Fill.Color := gcLightsteelblue;
 TMSFNCNavigationPanel1.Panels[I].Container.Stroke.Color := gcDarkblue;
 end;

Badges

Each panel item can display a badge, at the right side of the item. The badge can be any text you
like, including HTML formatted text. Badges are separately styled with the Badge* properties under
ItemsAppearance. Below is a sample that displays a simple numeric badge as well as a completely
styled HTML formatted text with images badge.

TMSFNCNavigationPanel1.Panels[0].Badge := '5';

TMSFNCNavigationPanel1.ItemsAppearance.BadgeFill.Color := gcYellowgreen;
TMSFNCNavigationPanel1.ItemsAppearance.BadgeFont.Color := gcBlack;
TMSFNCNavigationPanel1.ItemsAppearance.BadgeStroke.Color := gcBlack;
TMSFNCNavigationPanel1.BitmapContainer := TMSFNCBitmapContainer1;
TMSFNCNavigationPanel1.Panels[0].Badge := '<p> <img
src="'+TMSFNCBitmapContainer1.RandomBitmapName+'"/> calendar</p>';

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

56

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

57

TTMSFNCListEditor

Architecture

TTMSFNCListEditor is an edit control to edit a list of values in a flexible way similar to the Microsoft
Outlook or iOS email address input. It consists of a collection of items that can be edited, added,
deleted via the control. Items are displayed in the control as clickable rectangular areas with an
appearance that is controlled by the property TTMSFNCListEditor.ItemAppearance. In addition to
text, each item can optionally also display an image before and/or after the text. The images can
be clicked to perform further actions on.

Appearance

The appearance of the TTMSFNCListEditor is controlled by TTMSFNCListEditor.ItemAppearance. This
property holds settings for normal state of items and for selected state. The settings include:

FillNormal: sets the background color of items in normal state
FontFillNormal: sets the text color of items in normal state
StrokeNormal : sets the color of the item border in normal state
RoundingNormal: sets the rectangle rounding of the item in normal state
FillSelected: sets the background color of items in selected state
FontFillSelected: sets the text color of items in selected state
StrokeSelected : sets the color of the item border in selected state
RoundingSelected: sets the rectangle rounding of the item in Selected state

Further, there is:
HorizontalSpacing : horizontal spacing in pixels between items in the list
VerticalSpacing : vertical spacing in pixels between items in the list
Note that the size of an item is determined by the text width & height (as well as optionally the
width & height of a left and/or right image in the item). This means that to increase the height of
an item for example, the font size shall be increased.

DefaultLeftImage, DefaultLeftImageName:
Sets the image or image name for the (optional) image on the left side of items. When
DefaultLeftImage, DefaultLeftImageName is set, all new items get the image specified by
DefaultLeftImage or DefaultLeftImageName.

DefaultRightImage, DefaultRightImageName:
Sets the image or image name for the (optional) image on the right side of items. When
DefaultRightImage, DefaultRightImageName is set, all new items get the image specified by
DefaultRightImage or DefaultRightImageName.

Note that the image on left side or right side can also be set per item via the item's LeftImage,
LeftImageName and RightImage, RightImageName properties.

Note that in order to use DefaultLeftImageName or DefaultRightImageName, a
TTMSFNCBitmapContainer must be connected to TTMSFNCListEditor.BitmapContainer. This is a

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

58

container control that holds multiple images and these images can be accessed via a unique name
identifier.

Items

TTMSFNCListEditor.Items is the collection that holds the items for the list. When the user adds or
removes items, this is automatically reflected in the items collection. An item has following
properties:

LeftImage, LeftImageName : sets the image to appear on the left side of the item
RightImage, RightImageName : sets the image to appear on the right side of the item
Tag : general purpose integer property
Text: holds the text of the item
Value: additional text property per item, available for storing extra information such as a hyperlink
etc...

Adding items can be easily done via TTMSFNCListEditor.Items.Add.Text := 'New item' and deleting
an item programmatically via TTMSFNCListEditor.Items.Delete(Index);

Events

In addition to the standard FireMonkey control events, TTMSFNCListEditor exposes some additional
events relating to the process of editing items in the editor:

OnEditorCreate: event triggered when the inplace editor is about to be created and allows to
customize the editor class. The default editor class is TEdit
OnEditorGetSize : event triggered just before the inplace editor will be displayed in the control and
allows to customize the size of the editor in the control
OnEditorGetText: allows to retrieve a text value for the value of the editor. When the inplace
editor derives from TCustomEdit, the .Text property is automatically used but this event allows to
use inplace editors that expose the value via another property than .Text for example.
OnEditorHide : event triggered when the inplace editor will be hidden
OnEditorShow : event triggered when the inplace editor will be displayed
OnEditorUpdate : event triggered when the value of the inplace editor has changed
OnItemCanDelete : event triggered when the user presses the DEL key for a selected item and
allows to query for confirmation before the item is actually deleted
OnItemClick : event triggered when an item is clicked
OnItemDelete : event triggered when an item is deleted
OnItemInsert : event triggered when a new item is inserted via inplace editing
OnItemLeftImageClick : event triggered when the left image for an item is clicked
OnItemRightImageClick :event triggered when the right image for an item is clicked
OnItemUpdate : event triggered when the inplace editing stops and the value needs to be retrieved
to update the item with.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

59

TTMSFNCToolBarPopup

The TTMSFNCToolBarPopup is a popup version of the TTMSFNCToolBar. The TTMSFNCToolBarPopup
has a set of properties to configure the buttons and has public access to the TTMSFNCToolBar. To
show the toolbar simply call Activate.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

60

TTMSFNCHint

The TTMSFNCHint is a non-visual component that allows displaying HTML formatted hints on any
visual control that supports the hints. An instance of TTMSFNCHint can be dropped on the form and
replace the default hint appearance. The properties fill and stroke define the background and
border of the hint window. The Hint property of a control is then displayed with the properties
applied in the TTMSFNCHint component. The text can be HTML formatted based on the minihtml
reference.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

61

TMSFNCAnalogTimeSelector / TMSFNCAnalogTimePicker

The TMSFNCAnalogTimeSelector and TMSFNCAnalogTimePicker are components that display a
watch, and they can be used for time selection.

Time selection

To select the hour, click inside of the circle that is defined by the minute indication marks. To
select the minute, click outside of this circle. Holding down the mouse button and dragging the
mouse will cause the hour/minute hand to follow the cursor if the FollowMouse property is enabled.
If the AM/PM rectangle is visible, then clicking it will switch between AM and PM. Time selection is
also possible with the keyboard.

The time can be selected programmatically as well, by using the TMSFNCAnalogTimeSelector.Time
or TMSFNCAnalogTimePicker.SelectedTime property.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCAnalogTimeSelector1.Appearance.ShowSecondPointer := True;
 TMSFNCAnalogTimePicker1.SelectorAppearance.ShowSecondPointer := True;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 TMSFNCAnalogTimeSelector1.Time := StrToTime('15:49:04');
 TMSFNCAnalogTimePicker1.SelectedTime := StrToTime('03:49:04');
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

62

Configuration

The TMSFNCAnalogTimeSelector has a Settings property which contains the following settings: Auto,
ReadOnly and TimeOffset. With the Auto enabled, the TMSFNCAnalogTimeSelector will display the
device’s current time, and no selection can be made until this setting remains enabled. If the
ReadOnly is enabled, then again, no selection can be made by the user. The TimeOffset property
will only have an affect if the Auto is enabled. It will set the displayed time back / forward with the
given value in minutes.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCAnalogTimeSelector1.Appearance.ShowSecondPointer := True;
 TMSFNCAnalogTimeSelector2.Appearance.ShowSecondPointer := True;
 TMSFNCAnalogTimeSelector1.Settings.Auto := True;
 TMSFNCAnalogTimeSelector2.Settings.Auto := True;
 TMSFNCAnalogTimeSelector2.Settings.TimeOffset := 60;
end;

The TMSFNCAnalogTimeSelector .Styles property has some predefined appearances, but you can set
your preferred appearance using the TMSFNCAnalogTimeSelector.Appearance and
TMSFNCAnalogTimePicker.SelectorAppearance properties.

The TMSFNCAnalogTimePicker has an Editable property. With the Editable enabled, you can write
the time you’d like to select, and clicking the dropdown will automatically set the watch to the
time that’s written into the field.

In the TMSFNCAnalogTimeSelector component the OnTimeChanged event gets triggered when the
time has changed. Similarly, the OnSecondChanged/OnMinuteChanged/OnHourChanged event gets
triggered when the second/minute/hour has changed.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

63

In the TMSFNCAnalogTimePicker component the OnTimeSelected event gets triggered when a time
is selected.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

64

TMSNFCDigitalTimeSelector / TMSFNCDigitalTimePicker

The TMSFNCDigitalTimeSelector and TMSFNCDigitalTimePicker are components that display a grid of
selectable time values. The header is used for navigating between the pages of these values. In
both components the OnTimeSelected/OnTimeDeselected event gets triggered when a time gets
selected/deselected.

If you would like to change the amount of selectable times that is being displayed on one page, you
can use the Rows and Columns properties to set the number of rows and columns.

Navigation

In the TMSFNCDigitalTimeSelector there are a few methods and properties that can be accessed
programmatically.
Only the currently displayed times are stored in a collection, so if you need to jump to a specific
time, you can use the InitializePage(ATime: TTime) method, which will clear out the currently
stored times and set the new ones based on the start time, time interval, interval unit and of
course, the ATime parameter.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCAnalogTimeSelector1.Settings.Auto := True;
 TMSFNCDigitalTimeSelector1.InitializePage(Now);
end;

To navigate between the pages, you can use the NavigateBack and NavigateForth methods.

Time selection

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

65

To access the currently stored/displayed times, use the Items property. Setting and accessing the
selected time can be done via the SelectedTime property, as you can see in the example code
shown below:

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCDigitalTimeSelector1.InitializePage(Now);
 TMSFNCDigitalTimeSelector1.SelectedTime := StrToTime('12:30:00');
end;

Configuration

In both components you can use the StartTime and EndTime properties to set the selectable time
range. By defult, there’s a 5 minute interval between each time item, but this can be easily
reconfigured with the TimeInterval and IntervalUnit properties. You can set the IntervalUnit to
tsuMilliseconds, tsuSeconds, tsuMinutes and tsuHours. The TimeInterval property requires an Integer
value. The default time format is hh:nn:ss, but it can be changed via the TimeFormat property.

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCDigitalTimeSelector1.StartTime := StrToTime('08:00:00');
 TMSFNCDigitalTimeSelector1.EndTime := StrToTime('16:30:00');
 TMSFNCDigitalTimeSelector1.TimeInterval := 30;
 TMSFNCDigitalTimeSelector1.TimeFormat := 'hh:nn';
end;

The TMSFNCDigitalTimePicker has an Editable property. With the Editable enabled, you can write
the time you’d like to select, and clicking the dropdown will automatically set the grid to the time
that’s written into the field.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

66

TMSFNCFillKindSelector / TMSFNCFillKindPicker

The TMSFNCFillKindSelector and TMSFNCFillKindPicker are components that display a list of
TMSFNCGraphicsFillKind values. You can select a fill kind by implementing the OnFillKindSelected
event and/or programmatically retrieving the selected fill kind with the
TMSFNCFillKindSelector.SelectedFillKind or TMSFNCFillKindPicker.SelectedFillKind property.

procedure TForm1.TMSFNCFillKindPicker1FillKindSelected(Sender: TObject;
 AFillKind: TTMSFNCGraphicsFillKind);
begin
 TMSFNCPanel2.Fill.Kind := AFillKind;
end;

procedure TForm1.TMSFNCFillKindSelector1FillKindSelected(Sender: TObject;
 AFillKind: TTMSFNCGraphicsFillKind);
begin
 TMSFNCPanel1.Fill.Kind := AFillKind;
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

67

TMSFNCStrokeKindSelector / TMSFNCStrokeKindPicker

The TMSFNCStrokeKindSelector and TMSFNCStrokeKindPicker are components that display a list of
TMSFNCGraphicsStrokeKind values. You can select a stroke kind by implementing the
OnStrokeKindSelected event and/or programmatically retrieving the selected stroke kind with the
TMSFNCStrokeKindSelector.SelectedStrokeKind or TMSFNCStrokeKindPicker.SelectedStrokeKind
property.

procedure TForm1.TMSFNCStrokeKindPicker1StrokeKindSelected(Sender: TObject;
 AStrokeKind: TTMSFNCGraphicsStrokeKind);
begin
 TMSFNCPanel2.Stroke.Kind := AStrokeKind;
end;

procedure TForm1.TMSFNCStrokeKindSelector1StrokeKindSelected(Sender: TObject;
 AStrokeKind: TTMSFNCGraphicsStrokeKind);
begin
 TMSFNCPanel1.Stroke.Kind := AStrokeKind;
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

68

TMSFNCColorWheel

The TMSFNCColorWheel is a component for color selection. It includes the color wheel itself, sliders
and edit fields for the R, G and B values and a HEX edit field as well.

Properties

BValue The BValue property can be used to set/retrieve
the B value of the currently selected color.

GValue The GValue property can be used to set/retrieve
the G value of the currently selected color.

HEXValue The HEXValue property can be used to
set/retrieve the HEX value of the currently
selected color.

RValue The RValue property can be used to set/retrieve
the R value of the currently selected color.

SelectedColor The SelectedColor property can be used to
set/retrieve the selected color.

Methods

ColorToBValue(AColor: TTMSFNCGraphicsColor) Returns the B value of the AColor parameter.

ColorToGValue(AColor: TTMSFNCGraphicsColor) Returns the G value of the AColor parameter.

ColorToRValue(AColor: TTMSFNCGraphicsColor) Returns the R value of the AColor parameter.

RGBToGraphicsColor(R, G, B: Integer) Returns a TTMSFNCGraphicsColor that is defined
by the R, G and B parameter values.

Events

OnColorSelected Event called when the selected color has
changed.

OnBValueChanged Event called when the B value has changed.

OnGValueChanged Event called when the G value has changed.

OnRValueChanged Event called when the R value has changed.

Color selection

Selecting a color can be done in multiple ways. You can either click and drag the mouse on the color
wheel, use the RGB sliders and/or RGB edit fields or write a HEX value inside the given edit field.
You can also preselect a color during design time via the SelectedColor property, and you can
change the RValue, GValue and BValue properties too.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

69

To access the selected color programmatically, you can use the TMSFNCColorWheel.SelectedColor
property:

procedure TForm1.Button1Click(Sender: TObject);
begin
 TMSFNCColorWheel1.SelectedColor := gcDodgerblue;
end;

If only the R, G or B value needs to be changed then the RValue, GValue and BValue properties can
be used:

procedure TForm1.Button2Click(Sender: TObject);
begin
 TMSFNCColorWheel1.BValue := 130;
end;

You can retrieve or set the HEX value via the TMSFNCColorWheel.HEXValue property.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

70

TMSFNCTaskDialog

The TMSFNCTaskDialog is a component with expandable text, footer and input. Additionally a
progress bar, a list of radio buttons, custom buttons or command links can be displayed.

Setting the dialog

Setting up the dialog can be done with the provided properties both at designtime and
programmatically. You can find a list of these properties further below, but here are a few
examples:

procedure TForm1.Button1Click(Sender: TObject);
begin
 TMSFNCTaskDialog1.Execute;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCTaskDialog1.Title := 'Title of the task dialog';
 TMSFNCTaskDialog1.Instruction := 'Instruction of the task dialog';
 TMSFNCTaskDialog1.Icon := tdiInformation;
 TMSFNCTaskDialog1.Options := TMSFNCTaskDialog1.Options + [tdoCommandLinks,
tdoCommandLinksNoIcon];
 TMSFNCTaskDialog1.CustomButtons.Add('Custom button 1');
 TMSFNCTaskDialog1.CustomButtons.Add('Custom button 2');
 TMSFNCTaskDialog1.CustomButtons.Add('Custom button 3');
 TMSFNCTaskDialog1.ExpandedText := 'This is the expandable text';
 TMSFNCTaskDialog1.ExpandControlText := 'Expand';
 TMSFNCTaskDialog1.CollapseControlText := 'Collapse';
 TMSFNCTaskDialog1.Footer := 'This is the footer area!';
 TMSFNCTaskDialog1.FooterIcon := tdiWarning;
 TMSFNCTaskDialog1.VerifyText := 'Verify text';
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

71

Example of setting a custom input control and predefining its value:

procedure TForm1.Button1Click(Sender: TObject);
begin
 TMSFNCTaskDialog1.Execute;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 TMSFNCTaskDialog1.Title := 'Title of the task dialog';
 TMSFNCTaskDialog1.Instruction := 'Instruction of the task dialog';
 TMSFNCTaskDialog1.Icon := tdiInformation;
 TMSFNCTaskDialog1.InputType := titCustom;
 TMSFNCTaskDialog1.InputControl := TMSFNCColorWheel1;
end;

procedure TForm1.TMSFNCTaskDialog1DialogCreated(Sender: TObject);
begin
 TTMSFNCColorWheel(TMSFNCTaskDialog1.InputControl).SelectedColor := gcDarkcyan;
end;

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

72

Executing the dialog and retrieving the results

Executing the dialog can be done in multiple ways for each platform. Calling
TMSFNCTaskDialog.Execute will show the dialog in every platform, but due to the differences in
them, retrieveing the result may vary. However, you can retrieve the results with one code base
everywhere with the use of the OnDialogResult event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 TMSFNCTaskDialog1.Execute;
end;

procedure TForm1.TMSFNCTaskDialog1DialogResult(Sender: TObject;
 AModalResult: TModalResult);
begin
 case AModalResult of
 mrOk: ShowMessage ('OK clicked');
 mrYes: ShowMessage ('Yes clicked');
 mrNo: ShowMessage ('No clicked');
 mrCancel: ShowMessage('Cancel clicked');
 else
 ShowMessage('Value returned: ' + IntToStr(mr));
 end;
end;

There are properties such as VerifyChecked and RadioButtonResult to return the state of the verify
box and the selected radio button. For a predefined input field the InputText property can be used
to return the value after closing the dialog. In case of a custom input control you have to take care
of the custom control’s results yourself via the TMSFNCTaskDialog.OnDialogClosed event and
InputControl propery.

procedure TForm1.TMSFNCTaskDialog1DialogClosed(Sender: TObject);
begin
 Label1.Caption := TTMSFNCColorWheel(TMSFNCTaskDialog1.InputControl).HEXValue;
end;

If you are targeting one platform only, it’s nice to mention the following possibilities of the
TMSFNCTaskDialog:

In VCL, FMX non-mobile and LCL calling the TMSFNCTaskDialog.Execute function will stop the code
from further processing until the dialog is closed. The Execute function will return with a
TModalResult value.

procedure TForm1.Button1Click(Sender: TObject);
var
 mr: TModalResult;
begin
 mr := TMSFNCTaskDialog1.Execute;

 case mr of
 mrOk: ShowMessage('OK Clicked');
 mrYes: ShowMessage('Yes Clicked');
 mrNo: ShowMessage('No Clicked');
 mrCancel: ShowMessage('Cancel Clicked');
 else

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

73

 ShowMessage('Value returned: ' + IntToStr(mr));
 end;
end;

In FMX mobile, the Execute method is a bit different because it cannot be a blocking call.
Therefore it’s implemented as TMSFNCTaskDialog.Execute(const ResultProc: TProc<TModalResult>).
It uses an anonymous method which will be executed after the TMSFNCTaskDialog gets closed.

procedure TForm1.Button1Click(Sender: TObject);
begin
 TMSFNCTaskDialog1.Execute(
 procedure(ModalResult: TModalResult)
 begin
 case ModalResult of
 mrOk: ShowMessage('OK Clicked');
 mrYes: ShowMessage('Yes Clicked');
 mrNo: ShowMessage('No Clicked');
 mrCancel: ShowMessage('Cancel Clicked');
 else
 ShowMessage('Value returned: ' + IntToStr(ModalResult));
 end;
 end);
end;

Similarly to FMX mobile, in the WEB the Execute method is also a bit different. Due to the async
nature of the web, the Execute method will not stop the code from further executing, so a
TDialogResultProc parameter is needed where the given AProc procedure will execute after the
dialog is closed. The results can be processed in this method, with a similar code that was used in
the other frameworks:

procedure TForm2.WebButton1Click(Sender: TObject);
 procedure DialogProc(AValue: TModalResult);
 begin
 case AValue of
 mrOK: ShowMessage('OK Clicked');
 mrYes: ShowMessage('Yes Clicked');
 mrNo: ShowMessage('No Clicked');
 mrCancel: ShowMessage('Cancel Clicked');
 else
 ShowMessage('Value returned: ' + IntToStr(AValue));
 end;
 end;
begin
 TMSFNCTaskDialog1.Execute(@DialogProc);
end;

Properties

AutoCloseTimeOut Sets the auto closing timeout of the dialog. 1000
= 1 second.

CollapseControlText Sets the collapse text that is being displayed
next to the expand button.

Content Sets the content text of the dialog. It’s HTML
formatting compatible.

CustomIcon Sets a custom icon to be displayed next to the

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

74

instruction.

DefaultRadioButton Sets the default selected radio button.

DialogPosition Sets the dialog’s position to the owner form’s
center or the screen’s center.

ExpandControlText Sets the expand text that is being displayed
next to the expand button.

ExpandedText Sets the expandable text of the dialog. It’s
HTML formatting compatible.

Footer Sets the footer text of the dialog. It’s HTML
formatting compatible.

FooterIcon Sets the footer icon type of the dialog.

Icon Sets the instruction icon type of the dialog.

InputControl Sets the custom input control of the dialog.

InputItems Sets the input items of the dialog (for titMemo
and titComboList).

InputText Sets and return the input text of the dialog.

InputType Sets the input type of the dialog.

Instruction Sets the instruction text of the dialog.

RadioButtonResult Returns an integer which indicates the selected
radio button. Index starts from 0.

Title Sets the title of the dialog. By default it’s the
application’s name.

VerifyResult Returns the verify checkbox result of the dialog.

Methods

Execute Runs the modal and it’s accessible in every
framework. Stops the code from further
executing in VCL, FMX non-mobile and LCL, and
returns a TModalResult value.

Execute(const ResultProc:
TProc<TModalResult>)

Runs the modal, the result can be captured via
an anonymous method. Accessible only in FMX
mobile.

Execute(AProc: TDialogResultProc) Runs the modal, the result can be captured via
the parameter method. Accessible only in the
WEB.

Events

OnAutoClose Event called when the dialog closes
automatically.

OnDialogButtonClick Event called when a button is clicked.

OnDialogClosed Event called after the dialog is closed.

OnDialogCreated Event called after the dialog is created.

OnDialogProgress Event called when the dialog’s OnTimer event is
called. The position of the progress bar can be
set via the event’s Pos property.

OnDialogRadioClick Event called when a radio button is clicked.

OnDialogResult Event called when the dialog gets its
ModalResult set.

OnDialogTimer Event called when the dialog’s OnTimer event is
called.

OnDialogVerifyClick Event called when the verify checkbox is
clicked.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

75

TMSFNCStatusBar

The TTMSFNCStatusBar is a component for displaying different styles of panels. These styles include
simple text, ellipse text, HTML text, images, date, time, progress bar and custom drawing can be
made too.

Custom panel

There are various styles of panels, but drawing your custom panel is also possible. You can achieve
this by implementing the OnDrawCustomPanel event.

procedure TForm1.FormCreate(Sender: TObject);
var
 p: TTMSFNCStatusBarPanel;
 I: Integer;
begin
 TMSFNCStatusBar1.BitmapContainer := TMSFNCBitmapContainer1;
 for I := 0 to 3 do
 TMSFNCStatusBar1.Panels.Add;

 p := TMSFNCStatusBar1.Panels.Items[0];
 p.Style := spsOwnerDraw;
 p.Width := 100;
end;

procedure TForm1.TMSFNCStatusBar1DrawCustomPanel(Sender: TObject;
 AGraphics: TTMSFNCGraphics; ARect: TRectF; APanel: TTMSFNCStatusBarPanel);
begin
 AGraphics.DrawEllipse(ARect);
end;

Images

It’s also possible to show images in a panel with the use of a TMSFNCBitmapContainer. You can set
the panel style to spsImage or spsImageList. The spsImage can be used if a single image and optional
text have to be shown. The spsImageList will display a given amount of images (Panel.ImageCount)
from the desired index (Panel.ImageIndex).

p := TMSFNCStatusBar1.Panels.Items[0];
p.Style := spsImage;
p.ImageIndex := 0;
p.Text := 'Cursor';
p.AutoSize := True;

p := TMSFNCStatusBar1.Panels.Items[1];
p.Style := spsImageList;
p.ImageIndex := 1;
p.ImageCount := 3;

Progress bar

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

76

Every single panel has a Progress property which includes many options for the progress bar to be
set. There are 4 levels you can play around with and set them to your own preference. The limit of
the levels can be set via the Panel.Progress.Level1Perc and Level2Perc properties.

Level 0 goes from Panel.Progress.Min to Panel.Progress.Level1Perc.
Level 1 goes from Panel.Progress.Level1Perc to Panel.Progress.Level2Perc.
Level 2 goes from Panel.Progress.Level2Perc to Panel.Progress.Max – 1.
Level 3 equals to Panel.Progress.Max.

To increment the progress bar by 1, the Panel.Progress.StepIt procedure can be called.

p := TMSFNCStatusBar1.Panels.Items[3];
p.Style := spsProgress;
p.Progress.Level1Perc := 50;
p.Progress.Level2Perc := 75;
p.Progress.Position := 30;

p.Progress.Position := 55;

p.Progress.Position := 80;

p.Progress.Position := 100;

Methods

XYToPanel(AX, AY: Single):
TTMSFNCStatusBarPanel

Returns the panel at the given X, Y coordinates.

GetPanelRect(Index: Integer): TRectF Returns the panel rectangle at the given index.

Events

OnAfterDrawPanel Event called after drawing a panel item.

OnAnchorClick Event called when an anchor is clicked.

OnBeforeDrawPanel Event called before drawing a panel item.

OnDrawCustomPanel Event called when drawing a custom panel item.

OnPanelLeftClick Event called when a panel item is clicked with
the left mouse button.

OnPanelRightClick Event called when a panel item is clicked with
the right mouse button.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

77

TMSFNCSignatureCapture

The TMSFNCSignatureCapture is a component for capturing signatures that are made by the user.
The signature can be cleared and saved in different file formats.

Clearing the signature

The signature is created by the user, similarly to when they are signing something on paper – but in
this case by using their mouse. If the user clicks the clear icon it will clear the signature so they can
recreate it to their liking. However, the signature can also be cleared programmatically by setting
the TMSFNCSignatureCapture.Empty property to True.

Saving the signature

There are multiple ways to save the signature that has been created by the user. These methods
include saving to a TMemoryStream, to a file or to an image.

To save the signature to a TMemoryStream, you can call the SaveToStream(AStream:
TMemoryStream) method:

TForm1 = class(TForm)
 TMSFNCSignatureCapture1: TTMSFNCSignatureCapture;
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
private
 ms: TMemoryStream;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 ms := TMemoryStream.Create;
end;

procedure TForm1.Button1Click(Sender: TObject);

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

78

begin
 TMSFNCSignatureCapture1.SaveToStream(ms);
end;

To save the signature to a file, you can call the SaveToFile(FileName: string) method:

procedure TForm1.Button2Click(Sender: TObject);
begin
 TMSFNCSignatureCapture1.SaveToFile('signature.txt');
end;

And finally, to save a signature to an image, you can call the SaveToImageFile(FileName: string)
method:

procedure TForm1.Button3Click(Sender: TObject);
begin
 TMSFNCSignatureCapture1.SaveToImageFile('signature.png');
end;

Loading the signature

You can load a signature to the TMSFNCSignatureCapture component from a TMemoryStream if you
have saved a signature to that stream. To do this, you can use the LoadFromStream(AStream:
TMemoryStream) method:

procedure TForm1.Button4Click(Sender: TObject);
begin
 TMSFNCSignatureCapture1.LoadFromStream(ms);
end;

If you have saved a signature to a file, then you can load it from a file as well by calling the
LoadFromFile(FileName: string) method:

procedure TForm1.Button5Click(Sender: TObject);
begin
 TMSFNCSignatureCapture1.LoadFromFile('signature.txt');
end;

Configuration

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

79

By default a ‘Sign here.’ text is displayed at the bottom of the TMSFNCSignatureCapture. To change
this text, you can use the Text property. To change the position of this text, use the TextPosition
property.
To change the clear icon, use the ClearSig.Image property and to change its position, use the
ClearSig.Position property.

The pen’s color, width and kind can also be changed via the Pen property.

The text, the clear icon and the pen can be configured during design time or programmatically with
the mentioned properties.

Properties

ClearSig The clear icon can be modified via the ClearSig
property.

Empty Determines if the signature is empty. It can also
clear the signature if it’s set to True
programmatically.

Pen The pen that is used for signing can be modified
via the Pen property.

Text The text that is being shown. The default value
is ‘Sign here.’.

TextPosition The position of the text can be changed via the
TextPosition property.

Methods

GetBase64Img Only accessible in the WEB. Returns the
signature in Base64 format.

LoadFromFile(FileName: string) Not acccessible in the WEB. Loads a signature
from a file that is given as a parameter.

LoadFromStream(AStream: TMemoryStream) Not acccessible in the WEB. Loads a signature
from a TMemoryStream that is given as a
parameter.

SaveToFile(FileName: string) Not acccessible in the WEB. Saves the signature
to the given file.

SaveToImageFile(FileName: string) Not acccessible in the WEB. Saves the signature
to the given image file.

SaveToStream(AStream: TMemoryStream) Not acccessible in the WEB. Saves the signature
to the given TMemoryStream.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

80

Persistence

Each component in the TMS FNC UI Pack is capable of saving its published properties (settings), to a
file or stream. The format that is being used is JSON. To save a specific component, use the code
below.

MyFNCComponent.SaveSettingsToFile();
MyFNCComponent.SaveSettingsToStream();

To load an existing settings stream/file use the following code.

MyFNCComponent.LoadSettingsFromFile();
MyFNCComponent.LoadSettingsFromStream();

Each component additionally exposes events to control which properties need to be saved to the
settings file. In some circumstances, it might be required to only save a specific set of properties.
The OnCanLoadProperty and OnCanSaveProperty events are responsible for this. Below is a sample
that excludes a property ‘Extra’ from the persistence list.

procedure TForm1.MyFNCComponentCanLoadProperty(Sender, AObject: TObject;
 APropertyName: string; APropertyType: TTypeKind; var ACanLoad: Boolean);
begin
 ACanLoad := ACanLoad and not (APropertyName = ‘Extra’);
end;

procedure TForm1.MyFNCComponentCanSaveProperty(Sender, AObject: TObject;
 APropertyName: string; APropertyType: TTypeKind; var ACanSave: Boolean);
begin
 ACanSave := ACanSave and not (APropertyName = ‘Extra’);
end;

Please note that the above AND operation is crucial to maintain the existing exclusion list.
Returning a true for each property will additionally save its default published properties such as
Align, Position and many more.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

81

Undo / Redo

Each component exposes a public UndoManager property that is capable of loading a previous state
of the component. To push a state, use the following code:

MyFNCComponent.UndoManager.PushState('default state');
MyFNCComponent.ChangeText;
MyFNCComponent.UndoManager.PushState('text changed');
MyFNCComponent.UndoManager.Undo;

This code will set a default state with the original text, and restore the text changed with the
ChangeText method via the MyFNCComponent.UndoManager.Undo; to go forward in the stack list
use MyFNCComponent.UndoManager.Redo; The default maximum amount of undo/redo operations is
20 ,which can be increased per component with the MaxStackCount property.

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

82

TMS Mini HTML rendering engine

Another core technology used among many components is a small fast & lightweight HTML rendering
engine. This engine implements a subset of the HTML standard to display formatted text. It supports
following tags :

B : Bold tag
 : start bold text
 : end bold text

Example : This is a test

U : Underline tag
<U> : start underlined text
</U> : end underlined text

Example : This is a <U>test</U>

I : Italic tag
<I> : start italic text
</I> : end italic text

Example : This is a <I>test</I>

S : Strikeout tag
<S> : start strike-through text
</S> : end strike-through text

Example : This is a <S>test</S>

A : anchor tag
 : text after tag is an anchor. The 'value' after the href identifier is the anchor. This
can be an URL (with ftp,http,mailto,file identifier) or any text.
If the value is an URL, the shellexecute function is called, otherwise, the anchor value can be found
in the OnAnchorClick event : end of anchor

Examples : This is a test
This is a test
This is a test

FONT : font specifier tag
 : specifies font of
text after tag.
with

 face : name of the font

 size : HTML style size if smaller than 5, otherwise pointsize of the font

 color : font color with either hexidecimal color specification or color constant name, ie
gcRed,gcYellow,gcWhite ... etc

 bgcolor : background color with either hexidecimal color specification or color constant
name : ends font setting

Examples: This is a test
This is a test

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

83

P : paragraph
<P align="alignvalue" [bgcolor="colorvalue"] [bgcolorto="colorvalue"]> : starts a new paragraph, with
left, right or center alignment. The paragraph background color is set by the optional bgcolor
parameter. If bgcolor and bgcolorto are specified,
a gradient is displayed ranging from begin to end color.
</P> : end of paragraph

Example : <P align="right">This is a test</P>
Example : <P align="center">This is a test</P>
Example : <P align="left" bgcolor="#ff0000">This has a red background</P>
Example : <P align="right" bgcolor="gcYellow">This has a yellow background</P>
Example : <P align="right" bgcolor="gcYellow" bgcolorto="gcRed">This has a gradient
background</P>*

HR : horizontal line
<HR> : inserts linebreak with horizontal line

BR : linebreak

 : inserts a linebreak

BODY : body color / background specifier
<BODY bgcolor="colorvalue" [bgcolorto="colorvalue"] [dir="v|h"] background="imagefile specifier"> :
sets the background color of the HTML text or the background bitmap file

Example : <BODY bgcolor="gcYellow"> : sets background color to yellow
<BODY background="file://c:\test.bmp"> : sets tiled background to file test.bmp
<BODY bgcolor="gcYellow" bgcolorto="gcWhite" dir="v"> : sets a vertical gradient from yellow to
white

IND : indent tag
This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent" pixels

Example :
This will be <IND x="75">indented 75 pixels.

IMG : image tag
<IMG src="specifier:name" [align="specifier"] [width="width"] [height="height"] [alt="specifier:name"]
> : inserts an image at the location

specifier can be: name of image in a BitmapContainer

Optionally, an alignment tag can be included. If no alignment is included, the text alignment with
respect to the image is bottom. Other possibilities are: align="top" and align="middle"

The width & height to render the image can be specified as well. If the image is embedded in
anchor tags, a different image can be displayed when the mouse is in the image area through the
Alt attribute.

Examples :
This is an image

SUB : subscript tag
<SUB> : start subscript text
</SUB> : end subscript text

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

84

Example : This is ⁹/₁₆ looks like 9/16

SUP : superscript tag
<SUP> : start superscript text
</SUP> : end superscript text

UL : list tag
 : start unordered list tag
 : end unordered list

Example :
List item 1
List item 2

 Sub list item A
 Sub list item B

List item 3

LI : list item
<LI [type="specifier"] [color="color"] [name="imagename"]>: new list item specifier can be "square",
"circle" or "image" bullet. Color sets the color of the square or circle bullet. Imagename sets the
PictureContainer image name for image to use as bullet

SHAD : text with shadow
<SHAD> : start text with shadow
</SHAD> : end text with shadow

Z : hidden text
<Z> : start hidden text
</Z> : end hidden text

Special characters
Following standard HTML special characters are supported :
< : less than : <
> : greater than : >
& : &
" : "
 : non breaking space
™ : trademark symbol
€ : euro symbol
§ : section symbol
© : copyright symbol
¶ : paragraph symbol

TMS SOFTWARE

TMS FNC UI Pack
DEVELOPERS GUIDE

85

Styling

Each control in the TMS FNC UI Pack supports styling on FMX and VCL. When setting the
AdaptToStyle property to true, the style loaded in the application will be applied to the control.
Below is a sample after applying styles to the TTMSFNCTabSet/TTMSFNCPageControl.

