
1Blaise Pascal Magazine 110 2023

110 / 111110 / 111

Blaise Pascal

BLAISE PASCAL MAGAZINE
Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

Image Classifier with loading and testing a pre-trained model
The Number guessing project

Debugging with the new debugger in Lazarus - lessons part 2
AI-enabled brain scanner reads thoughts

Lazarus compiling Delphi code
BLAISE PASCAL MAGAZINE LIBRARY By internet and on USB Stick

The Library kit for BPM has been extended with new features:
Search over ALL 111 issues and per issue.

Raize SoftWare DropMaster
Lazarus for Visual Studio

Delphi Community version for Delphi 11
Jim McKeeth leaving Embarcadero/Delphi

FastReport for Lazarus on LINUX
in a Trial and as Professional version

2Blaise Pascal Magazine 110 2023

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal

International Conference Universidad Salamanca Page 42
Database Workbench Page 34
Lazarus Handbook Pocket Page 6
PDF Viewer 2023 Blaise Pascal Library USB stick Page 16
Lazarus Handbook PDF + Subscription Page 20
Fast Report Page 102
Subscription 2 year Page 48
Superpack 5 Items Page 70
Barnsten Delphi Products Page 89
Help for Ukraine Page108
Components for Developers Page 110

110 / 111110 / 111

Blaise Pascal

BLAISE PASCAL MAGAZINE
Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

From your Editor Page 4
From our technical advisor: Humor Page5
Image Classifier with loading and testing a pre-trained model Page 7
The Number guessing project Page 17
Debugging with the new debugger in Lazarus - lessons part 2 Page 22
AI-enabled brain scanner reads thoughts Page 31
Lazarus compiling Delphi code Page 35
BLAISE PASCAL MAGAZINE LIBRARY By internet and on USB Stick Page 49
The Library kit for BPM has been extended with new features:
Search over ALL 111 issues and per issue.
Raize SoftWare DropMaster Page 71
Lazarus for Visual Studio Page 90
Delphi Community version for Delphi 11 Page 99
Jim McKeeth leaving Embarcadero/Delphi Page 101
FastReport for Lazarus on LINUX Page 103
in a Trial and as Professional version

ADVERTISING

CONTENT

ARTICLES

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left
below) in 1968–69 and published in 1970, as a small, efficient language intended to encourage good
programming practices using structured programming and data structuring. A derivative known as Object
Pascal designed for object-oriented programming was developed in 1985. The language name was chosen
to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).Niklaus Wirth

3Blaise Pascal Magazine 110 2023

Subscriptions (2022 prices) TOTAL

 € 348Printed Issue (8 per year) ±60 pages :
Electronic Download Issue (8 per year) ±60 pages :

Member and donor of

COPYRIGHT NOTICE

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu
Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to: ABN AMRO Bank Account no. 44 19 60 863 or by credit card or PayPal
Name: Pro Pascal Foundation (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Ondersteuning Programmeertaal Pascal)
Subscription department Edelstenenbaan 21 / 3402 XA Ĳsselstein, Netherlands Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot
accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a
correction where relevant.

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless
otherwise noted and may not be copied, distributed or republished without written permission. Authors agree that code
associated with their articles will be made available to subscribers after publication by placing it on the website of the
PGG for download, and that articles and code will be placed on distributive data storage media. Use of program listings
by subscribers for research and study purposes is allowed, but not for commercial purposes. Commercial use of
program listings and code is prohibited without the written permission of the author.

Member of the Royal Dutch Library KONINKLĲKE BIBLIOTHEEK

CONTRIBUTORS

WIKIPEDIA
Internat. excl. VAT

€ 200
€ 64,20

Internat. incl. 9% VAT

€ 218
€ 70

Shipment

€ 130

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Stephen Ball
http://delphiaball.co.uk
DelphiABall

Dmitry Boyarintsev
dmitry.living @ gmail.com

Michaël Van Canneyt
,michael @ freepascal.org

Holger Flick
holger @ flixments.com

David Dirkse
www.davdata.nl
mail: David @ davdata.nl

Benno Evers
b.evers @
everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtnernc-
gaertnma@netcologne.de

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Andrea Magni
www.andreamagni.eu andrea.
magni @ gmail.com
www.andreamagni.eu/wp

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta @ cybernautics.nl

Kim Madsen
www.component4developers.com
kbmMW

Boian Mitov
mitov @ mitov.com

Detlef Overbeek
- Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Siegfried Zuhr
siegfried @ zuhr.nl

Anton Vogelaar
ajv @ vogelaar-electronics.com

Danny Wind
dwind @ delphicompany.nl

Jos Wegman
Corrector / Analyst

Jeremy North
jeremy.north @ gmail.com

4Blaise Pascal Magazine 110 2023

From your editor
Hello,
by creating this new issue of our Magazine
I had the summer very much in my mind.
I suppose you do have the same feeling of
need form warmth and sunshine.
My wishes seem to be fulfilled by now: It is
warm an beautiful.

I had so much to tell you that I now had to
make a double issue out of it. There are even
more extra’s but they are for the next issue
112.

We already had talked about the AI (Artificial
Intelligence) and image classifiers.
Now some more disturbing news came up:
I write about that in the article AI enabled
brain scanner.
We need to think what's more to come
because this is a bit spooky. Let’s discus
where this has to end.

I am personally convinced that what ever
comes to your mind we can make it,
how strange it ever may be:
read the article.

To create something that I never would have
thought of: Lazarus for Visual Studio.
It is for good reasons.
Lazarus is the most advanced environment or
is coming to be. Anything you want you can
do with Lazarus. Even you yourself because
the sources are open and the industry wants
this.
All the important Programming Languages
have a direct connection for Visual Studio,
so Lazarus needed that as well.

Of course there is still a lot to do - but we are
getting there. My future goal is to make
Pascal available for the kids and youngsters.
I have some special ideas about that.

I think the team and I should - with playing
and fooling around - make the environment
so friendly for them that they will learn
without noticing by solving problems they
themselves are creating…
AI will play a big role in this because it already
has shown that it can be very useful.
… I would not be able to translate an issue
into other languages without it, because
loosing so much time.

Martin Friebe has created and written the
debugger story and this is a very good way to
learn what it is capable of and doing that.
He extended even more and better functions
for it. Lazarus has now the debugger we
needed so much:
simple in use but very versatile.
- If you have request for it let me know…

I had asked Michael van Canneyt to write the
new PDF Kit for Blaise Pascal Magazine,
so that we can search in all pages and issues
for a special text.
That is an enormous task but he managed to
do so.
It is now available and we can give you even
better service than ever. We will create some
extra examples...

Jim McKeeth left Embarcadero to do
something very new to him: Working on the
web3 version…(I already wrote about about
webs 3 in the last issue)
I spoke to his successor Ian Barker, and we
discussed some new actions for Delphi for
the future.
One of them is that we will get the news
from Delphi early enough to publish so that it
will be REAL news.
I thank him for that in advance.
So for the future we will be able to surprise
you even more about our favourite language
Pascal and try to find young people to learn
about and with it.

Yours

Detlef

5Blaise Pascal Magazine 110 2023

From our technical advisor Jerry King

6Blaise Pascal Magazine 110 2023

LAZARUS HANDBOOK
POCKET PACKAGE (2BOOKS)

Price: € 35,00
Excluding VAT and Shipping

� English
� Printed black & white
� 2 Volumes
� PDF included
� 934 Pages
� Weight: 2kg
� Extra protected
� Including
 40 Example
 projects and
 extra programs

934 PAGES
PDF & INDEX
INCLUDED

BlaisePascalMagazine
PDF viewer included

https://www.blaisepascalmagazine.eu/product-category/books/

ADVERTISEMENT

This app allows you to classify pictures from an
airplane to a truck or a train. And you see
similarities for example a ship (15.2) has some
elements of an airplane or automobile (4.7, 3.5)
in his feature map.Specifically, models are
comprised of small linear filters and the result of
applying filters called activation maps, or more
generally, feature maps. Looking at the following
dataset, it will extract features in a constant dot
product, even though images has shadows or
positioned with various angle. It is important to
note that filters acts as feature detectors from
the original input image, in our case 32*32
bitmaps.

As the name implies, it is a CNN-model. A Convolutional Neural Network (CNN*) is a type of
deep learning algorithm that is particularly for image recognition and object-detection tasks. It is

made up of multiple layers, including convolution layers, pooling layers, and fully connected layers.
 * CNNs also known as Shift Invariant or Space Invariant Artificial NN.

Now let’s have a look at the app/script below with individual images from Cifar test data. For this, we
wrote two useful functions. The first one returns the label associated with predictions made by the

model. The second one accepts one image as an argument. Then it will show the image, the prediction
the model made and the actual class the image belongs to. Also other probabilities are shown in the

multi-classification grid:

7Blaise Pascal Magazine 110 2023

Starter Expert

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 1/9

maXbox

 INTRODUCTION
 This machine learning tutor explains a classifier based on the so called CIFAR-10 Image
Classifier with a pre-trained model. The pre-trained model is a file: ClassifyCNNModel_70.nn

Const PICPATH = '.\data\';
TRAINPATH = '.\model\ClassifyCNNModel_70.nn';

The proper way to use a CNN doesn’t exists. The advice for ugly score is to use a smaller learning
rate or larger batch size for the weights that are being fine-tuned and a higher one for the randomly
initialized weights (e.g. the ones in the softmax classifier) TNNetSoftMax. Pre-trained weights
(in ClassifyCNNModel_70.nn) are already good, they need to be fine-tuned, not distorted.

Blaise Pascal Magazine 110 2023

8Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10
maXbox

The learning rate is the crucial hyper-parameter used during the training of deep convolution neural
networks (DCNN) to improve model accuracy;
By following these ways you can make a CNN model that has a validation set accuracy of more than 95
% but the question is how specific or relevant is this validation.
In our example, values smaller than 0.7 mean false while values bigger than 0.7 mean true. This is called
monopolar encoding. CAI also supports bipolar encoding (-1, +1). Let's have a look directly into the
source code for the labels and the classify method:

The CIFAR-10 dataset consists of 60000 32x32
colour images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000
test images. The dataset is divided into five training
batches and one test batch, each with 10000
images.
We now build the Convolution neural network by
using 1 Convolution layer, 4 Relu-activation
function, dropout- and pooling-layer, 1 fully
Connected layer and a SoftMax activation function.
Below is the list of all layers which we also define
the optimizer and a loss function for the optimizer:

var cs10Labels: array[0..9] of string;

procedure setClassifierLabels;
begin
cs10Labels[0]:= 'airplane';
cs10Labels[1]:= 'automobile';
cs10Labels[2]:= 'bird';
cs10Labels[3]:= 'cat';
cs10Labels[4]:= 'deer';
cs10Labels[5]:= 'dog';
cs10Labels[6]:= 'frog';
cs10Labels[7]:= 'horse';
cs10Labels[8]:= 'ship';
cs10Labels[9]:= 'truck';

end;

Blaise Pascal Magazine 110 2023

Page 2/9

9Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 3/9

maXbox

Blaise Pascal Magazine 110 2023

Debug TNNet.Struct.LoadFromString ST:
-1)TNNetInput:32;32;3;0;0;0;0;0
0)TNNetConvolutionLinear:64;5;2;1;1;0;0;0
1)TNNetMaxPool:4;4;0;0;0;0;0;0
2)TNNetConvolutionReLU:64;3;1;1;1;0;0;0
3)TNNetConvolutionReLU:64;3;1;1;1;0;0;0
4)TNNetConvolutionReLU:64;3;1;1;1;0;0;0
5)TNNetConvolutionReLU:64;3;1;1;1;0;0;0
6)TNNetDropout:2;0;0;0;0;0;0;0
7)TNNetMaxPool:2;2;0;0;0;0;0;0
8)TNNetFullConnectLinear:10;1;1;0;0;0;0;0
9)TNNetSoftMax:0;0;0;0;0;0;0;0

The main procedure to classify incoming images loads the model, decides dropout or not (later
more) and creates input- and output-volumes with the shape of 32;32;3 or a 32x32x3 volume:

Begin
NN:= THistoricalNets.create; //TNNet.Create();
NN.LoadFromFile(TRAINPATH);
label2.caption:= 'load: '+TRAINPATH;

if chkboxdrop.checked then
NN.EnableDropouts(true) else
NN.EnableDropouts(false);

pInput:= TNNetVolume.Create0(32, 32, 3, 1);
pOutPut:= TNNetVolume.Create0(10, 1, 1, 1);

LoadPictureIntoVolume(image1.picture, pinput);
pInput.RgbImgToNeuronalInput(csEncodeRGB);
NN.Compute65(pInput,0);
NN.GetOutput(pOutPut);
writeln('result get class type: '+itoa(pOutPut.GetClass()));

Then, we need to add RgbImgToNeuronalInput and with the use of SoftMax, we can
print output class probabilities to show in the Stringgrid.
The *.nn file in TRAINPATH serves as a pre-trained file (FAvgWeight) to classify/predict
images we trained on. Also the CIFAR-10 classification
examples with experiments/testcnnalgo/testcnnalgo.lpr and a number of
CIFAR-10 classification examples are available on /experiments.
Imagine the accuracy goes up and the loss-function (error-rate) goes down. The loss
function is the bread & butter of modern machine learning; it takes your algorithm from
theoretical to practical and transforms matrix multiplication into deep learning.

10Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 4/9

maXbox
DROP OUT EXPERIMENTS
It’s usually very hard to understand neuron by neuron how a neural network
dedicated to image classification internally works.
In this technique, an arbitrary neuron is required to activate and then the
same back-propagation method used for learning is applied to an input
image producing an image that this neuron expects to see.
Adding neurons and neuronal layers is often a possible way to improve
artificial neural networks when you have enough hardware and computing
time. In the case that you can’t afford time, parameters and hardware, you’ll
look for efficiency with Separable Convolutions (SCNN).
But there's another for me interesting point, the dropout regularisation.
The dropout layer is a mask that nullifies the contribution of some neurons
towards the next layer and leaves unmodified all others. In our model you
can see layer 6 as the dropout:

 6) TNNetDropout:2;0;0;0;0;0;0;0

We can apply a Dropout layer to the input vector, in which case it nullifies
some of its features; but we can also apply it to a hidden layer, in which
case it nullifies some hidden neurons.

Dropout is a technique where randomly selected neurons are
ignored during training. They are "dropped out" randomly.
Every time you click on Classify you get another result in small
changes. The ship in the first screen is classified with 15.2
now above with 17.1. This means that their contribution to the
activation of downstream neurons is temporally removed on
the forward pass, and any weight updates are not applied to
the neuron on the backward pass. If you want a comparable
result, deactivate the checkbox. So what's the advantage of
dropout? You can imagine that if neurons are randomly
dropped out of a network during training, other neurons will
have to step in and complement the representation required
to make predictions for those missing neurons.

The effect is that a CNN (or whatever deep learning nn)
becomes less sensitive to some specific weights of neurons.
This in turn, results in a network capable of better
generalisation and less likely to specialise training data, means
you get on the average with new or in training unseen pictures
a better result. For example we take a new picture out of the
known classification labels. For this we convert the picture at
first as a cifar 32*32 24-bit bitmap:

Blaise Pascal Magazine 110 2023

11Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 5/9

maXbox
Then we load the picture as *.bmp (just drop in the ./data directory)
and try to classify an unknown class with unseen training, but - and
that's sort of surprising - we get a result:

So the result is devastating and amazing too, somewhat between dog and horse is the kind of bionics!
But this can be a baseline for similarities in a recommender system or you can classify the age or sex of
a person, enable also in a gender gap research. In our model, a new dropout layer between
TNNetConvolutionReLU (activation layer) and the hidden layer TNNetMaxPool was added.
You can also make them visible, but its more art than science or more science than fiction:

Blaise Pascal Magazine 110 2023

12Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 6/9

maXbox
This visual technique above used to help with

the understanding about what individual neurons represent is called Gradient Ascent.
You can find more about gradient ascent at http://yosinski.com/deepvis.

In the archive MachineLearningPackage.zip you find the script, model and data you need,
which works with Lazarus, Jupyter and maXbox too:

Blaise Pascal Magazine 110 2023 Blaise Pascal Magazine 110 2023

Page7/9

13Blaise Pascal Magazine 110 2023

maXboxmaXbox
Blaise Pascal Magazine 110 2023

14Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 8/9

maXbox

The FormCreate() can also be triggered with this few lines of code:

procedure TForm1FormCreate(Sender: TObject);
var k,t: integer;
items: TStringList;

begin
items:= TStringList.create;
for k:= 0 to 9 do
StringGrid1.Cells[0, k+1]:= cs10Labels[k];

//FindAllFiles(ComboBox1.Items, 'csdata');
FindFiles(exepath+'data', '*.bmp',items);
writeln(items.text);
for t:= 1 to items.count-1 do
ComboBox1.Items.add(items[t]);

if ComboBox1.Items.Count > 0 then begin
ComboBox1.text:= ComboBox1.Items[0];
if FileExists(ComboBox1.text) then begin
Image1.Picture.LoadFromFile(ComboBox1.text);
Image2.Picture.LoadFromFile(ComboBox1.text);
label1.Caption:= extractfilename(ComboBox1.text);

end;
end;

end;

FindFiles(exepath+'data','*.bmp',items) is an adoption from Lazarus. In the case that an input image
isn't 32x32, you can resize (via copying):

TVolume.CopyResizing(Original: TVolume; NewSizeX,NewSizeY: integer);
And Given that you have a trained NN, you could call this:
TNeuralImageFit.ClassifyImage(pNN: TNNet; pImgInput,pOutput:TNNetVolume);

Blaise Pascal Magazine 110 2023

15Blaise Pascal Magazine 110 2023

maXboxmaXbox

 maXbox Starter 105 – Image Classifier with loading and testing a pre-trained model.

CLASSIFY CIFAR10 Page 9/9

maXbox

https://github.com/joaopauloschuler/neural-api

https://sourceforge.net/projects/cai/files/

https://github.com/maxkleiner/neural-api

REFERENCE:

As a Jupyter Notebook:
https://github.com/maxkleiner/maXbox/blob/master/
EKON24_SimpleImageClassificationCPU.ipynb

and the same in colab.research:

https://colab.research.google.com/github/maxkleiner/maXbox/blob/master/
EKON24_SimpleImageClassificationCPU.ipynb

The whole package with app, script, tutorial, data and model:
https://github.com/maxkleiner/neural-api/blob/master/examples/
SimpleImageClassifier/MachineLearningPackage.zip

Doc and Tool: https://maxbox4.wordpress.com

Script Ref: 1135_classify_cifar10images1_5.pas

Blaise Pascal Magazine 110 2023

Conclusion:
The neural-API or CAI API (Conscious Artificial Intelligence) is some-thing like

TensorFlow for Pascal and is platform-independent open source library for artificial
intelligence or machine learning in the field of speech recognition, image

classification, OpenCL, big data, data science and computer vision2.

To be able to run this example, you'll need to load an already trained neural network file
and then select the image you intend to classify.

CAI stores both architecture and weights into the same *.nn file!
Dropout is a simple and powerful regularization technique for neural networks and deep

learning models.

Loss functions are different based on a problem statement to which deep learning is being
applied. The cost function is another term used inter-changeably for the loss function, but it holds

a more different meaning. A loss function is for a single training example, while a cost function is
an average loss over the complete train dataset.

8 2022 Blaise Pascal Magazine 110 2023

€ 100
More than 6500 pages

110110

Blaise Pascal

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

ADVERTISEMENT

THE NEW FUTURE
BLAISE PASCAL LIBRARY 2023
ON USB STICK INCLUDING THE INDEXER FOR ALL ITEMS AND PER ITEM ON CREDIT CARD USB STICK

Each bit of information reduces the number of destinations by half.
In general, if the choice is of N1 destinations before and N2 choices after
receiving information the number of bits of information I = log2(N1/N2)
From the top of the tree we may reach 16 destinations.
At the bottom this number is 1.
So, we received log2(16/1) = 4 bits information.

THE PROGRAM
A small program was written to show how information reduces the
choices.
The user is requested to take in mind a number less than 1000 (actually
less than 1024).
The computer then asks questions to find the number.
At each Yes/No answer of the user the range of numbers is halved.
It takes 10 questions because 210 = 1024.

GUESS:
NUMBER GUESSING PROJECT.

17Blaise Pascal Magazine 110 2023

INTRODUCTION
Computers are information processing machines.
Receiving information is the answer of a question.
So, the smallest amount of information is the
answer Yes or No.
Calling "No" = 0 and "Yes"=1 we have one binary
digit, called BIT.
A bit is the unity of information.

Receiving n bits of information, one per splitting
road, we are able to find the way to 2n different
destinations.

Starter Expert

PAGE 1/2

gamecontrol calls procedures procStart, procQuestion(var Q: boolean);
for action.
Q returns the type of question that was asked.
cmYes and cmNo are messages from "Yes" and "No" button clicks.

For details, please refer to the source code.
Delphi 7/11 and Lazarus code is available

type TGameStatus = (gsStart,gsQuestion,gsEnd);
TcontrolMessage =(cmStart,cmYes,cmNo,cmNextQuestion,cmEnd);

 var gameState : TGamestatus;
base,range : word;
QGR : boolean;

.....

.....

procedure gamecontrol(cm : TControlmessage);

ALGORITHM
At the start the smallest possible number is 0, the largest number is 1023.
base=0, range=1024-0=1024.
At each answer, the range halves.
The question is N ≥ base + range/2.
If true, base = base + range/2.
This repeats until range=1.
Then, the base is the number.
More vivid play
Asking the same type of question is boring.
So the questions are randomly chosen from
N ≥ range + base/2 and
N < range + base/2

Program description
Decisions are taken in procedure gamecontrol
The game is controlled by messages to gamecontrol.

18Blaise Pascal Magazine 110 2023

GUESS:
NUMBER GUESSING PROJECT. PAGE 2/2

Blaise Pascal Magazine 110 2023

19Blaise Pascal Magazine 110 2023

ADVERTISEMENT

https://www.blaisepascalmagazine.eu/product-category/books/

Blaise Pascal Magazine 110 2023

20Blaise Pascal Magazine 110 2023 Blaise Pascal Magazine 107/108 2022

LAZARUS HANDBOOK (PDF)
+SUBSCRIPTION 1 YEAR

SPECIAL OFFER € 75

● Lazarus Handbook
● Printed in black and white
● PDF Index for keywords
● Almost 1000 Pages
● Including 40 Examples
● Blaise Pascal Magazine
● English and German
● Free Lazarus PDF Kit Indexer
● 8 Issues per year
● minimal 60 pages
● Including example
 projects and code

Image Classifier with loading and testing a pre-trained model
Delphi Community version for Delphi 11

Jim McKeeth leaving Embarcadero/Delphi
Library kit

The Library kit for BPM has been extended with new features: Search over ALL 109
issues and per issue.

Lazarus compiling Delphi code
Lazarus for Visual Studio

Debugging with the new debugger in Lazarus - lessons part 2

110110

Blaise Pascal

BLAISE PASCAL MAGAZINE
Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

+

ADVERTISEMENT

PART 2: NEXT STEPS - STEPPING

THE LAZARUS DEBUGGER

21Blaise Pascal Magazine 110 2023

Starter Expert

PAGE 1/8

FOLLOWING THE CODE
In the previous article we have used breakpoints to pause at specific lines.
That gives a rather limited view of just a few snapshots. The debugger
offers functionality like running a single line and automatically pausing at
the next line without requiring a breakpoint there. This is called stepping. In
this article we will explore different methods of stepping.

If we run the example code:

1. program primes;
2.
3. const
4. MAX_NUM = 100;
5.
6. var FoundPrimes: Array of integer;
7.
8. procedure AddPrime(APrimeNum: Integer);
9. var
10. l: SizeInt;
11. begin
12. l := Length(FoundPrimes);
13. SetLength(FoundPrimes, l+1);
14. FoundPrimes[l] := APrimeNum;
15. end;
16.
17. function CheckPrime(APrimeCandidate, ATestIndex: Integer): boolean;
18. begin
19. Result := True;
20. if ATestIndex >= Length(FoundPrimes) then
21. exit;
22.
23. Result := APrimeCandidate mod FoundPrimes[ATestIndex] <> 0;
24. if not Result then
25. exit;
26.
27. Result := CheckPrime(APrimeCandidate, ATestIndex + 1);
28. end;
29.
30. procedure FindPrimes(AMaxNum: integer);
31. var
32. i: Integer;
33. begin
34. for i := 2 to AMaxNum do
35. if CheckPrime(i, 1) then
36. AddPrime(i);
37. end;
38.
39. procedure PrintPrimes;
40. var
41. i: Integer;
42. begin
43. for i := 0 to Length(FoundPrimes) - 1 do
44. WriteLn(FoundPrimes[i]);
45. end;
46.
47. begin
48. FindPrimes(MAX_NUM);
49. PrintPrimes;
50. readln;
51. end.

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

22Blaise Pascal Magazine 110 2023

PAGE 2/8

2
3
5
7
11
13

We would expect the output to begin with:

But instead it starts with a series including the number “4”

2
3
4
5
7
11
13

STEP OVER
In the last article we used a breakpoint and looked at the data to predict
what the code would do.To start the debug session we will set a breakpoint
at line 34 and run with F9. (Figure 1)

Once the debugger reached the line the app is paused. Instead of running
the program to hit the breakpoint again, we will execute it line by line.

If we press F8 the debugger will “step over”. It will execute the current line
and pause on the next line. The arrow that had been shown in the red dot
of the breakpoint, will now be in front of the next line. (Figure 2).

As the debugger has now executed the “for i := 2 to AMaxNum” the
variable “i” is now initialized, and we can watch its value in the Locals
window. (Ctrl-Alt-L).
Line 35 marked as current by the arrow has not yet been executed. We will
run that line by pressing F8 again. The debugger will execute the entire line,
that is it will run the call to “CheckPrime” as a single step. It will not stop
inside of “CheckPrime”.
As “i” has the value 2 and that is a prime the next line should be the
conditional “then” statement. We can see that this is indeed the case,
as the green arrow is now in front of line 36. The next “step over” (F8) will
execute “AddPrime” and bring us back to the start of the loop. “i” is still 2,
it will increase to 3 when we execute the “for i := “ line.

Figure 1

Figure 2

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

23Blaise Pascal Magazine 110 2023

PAGE 3/8

STEP INTO
We can step through the loop again (using F8), and when we enter
the 3rd iteration of the loop “i” will become 4. (Figure 3)

As we have seen in the output, the number 4 will be incorrectly added to
the list of primes. This means we need to check what happens in
“CheckPrime”.
Instead of setting a breakpoint (as we did in the last article) we will use
“step into” (F7) to enter the function.

The debugger will step to the first line in “CheckPrime” (Figure 4).
From there we can step again line by line, using “step over” (F8).
The function “CheckPrime” will test recursively if any of the already found
primes is a natural divisor of the current APrimeCanditate.
If the candidate is not divisible by any of those primes,
then it is itself a prime number.
If we use “step over” (F8) we will go over the lines that check if
“ATestIndex” is within the length of the FoundPrimes array.
We will reach the line

At this point we should add a watch for “FoundPrimes[ATestIndex]”,
so we can see what the code is testing. (Figure 5)

Figure 3

Figure 4

Figure 5

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

24Blaise Pascal Magazine 110 2023

PAGE 4/8

Stepping over line 23 the value for “Result” will be calculated, and shown
in the “locals window”. 3 is not a natural divider of 4.
And Result is true since no natural divider has been found. The code so far
supposes that 4 may be a prime.
We use further “step over” to go over the “if not result” to the code
line with the recursive call of “CheckPrime”. Here we use “step into” (F7)
to enter the nested function call and see how it continues to check if 4 is
prime or not.
The debugger takes us again to line 18 the “begin” of “CheckPrime”. We
use “step over” to follow the code execution. This time stepping over the
“if ATestIndex >= Length(FoundPrimes)” will take us to the “end”
line of the function. This means the “then exit” was executed. But due
to code optimizations by the compiler, the “exit” line was skipped.

NOTE that, if we had compiled the project with “optimization
level 0 – no optimizations” instead of the default “level 1”
then the stepping would have included the line 21 “exit”.

So the code returns that all primes had been checked as divisor, and none
had divided the current candidate “4”. But we only saw it being tested with
3 as divisor. Yet we know that 2 had been found as a prime too.
So we need to inspect our code, why it skipped 2.
In the loop in “FindPrimes” we call “if CheckPrime(i, 1) then”.
The 1 as 2nd param should start the prime checking with the first found
prime. However we use the param “ATestIndex” as index to the array
“FoundPrimes” and dynamic array indexes are zero based. So that line
should be
 35. if CheckPrime(i, 0) then

If we recompile the project and run it (after removing the breakpoint),
we will get the correct output. So we have successfully debugged the
project using “step over” and “step into”.

STEP OUT
We are going to look at a few other methods of stepping.
We wont be finding any more bugs, but we will use the same example code
(with the above fix applied)
We used “step in” to enter a subroutine. Now lets do the reverse. Lets set a
breakpoint on line 24 “if not Result then” (after “Result :=
APrimeCandidate mod …”) and run the project.

When we pause at that line we can check locals of the function.
If we hit “run” (F9) several times we will see the locals
“ATestIndex”=1 and “APrimeCanditate”=9.
Now that we have those particular values, we wish to know what the caller
of the function will do with the result.
It is possible to hit F8 several times, until we get to the “end;” line, and then
F8 would take us to the code in the caller. However, we can take an easier
route. We can press Shift-F8 (“step out”).
This will do the same, it will run the rest of the current function (including
any code called by the current function), and then stop as soon as
execution returns to the caller.

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

25Blaise Pascal Magazine 110 2023

PAGE 5/8

We can also see that we are in the calling code, as the value of
“ATestIndex” changed from 1 to 0.

Note: depending on the calling code, “step out” may return to the line
that contains the call, in this case line 27 that has
“CheckPrime(APrimeCandidate, ATestIndex + 1)”. Or it may return to
the line after the call, which would the “end” at line 28. Both is a
valid result.

As we have returned to line 27, that line has not yet been fully executed.
The “result” variable of the caller may not yet have been set. But as soon
as we step to the next line (using F8) it will be set, to what the function
returned.

We can now continue to debug in the code of the caller. We can also “step
out” again and this would take us to line 35 in “FindPrimes”. Indicated by
the red line in Figure 6.

BREAKPOINTS VERSUS STEPPING

There are some differences between running to a breakpoint, and stepping
to the next line, into or out of a function.
When you have recursive code, a breakpoint will always pause your code if
you get to that line.

1. procedure foo;
2. begin
3. if recurse_done then exit;
4. foo();
5. writeln;
6. end;

Figure 6

Once we invoked “step out” the debugger will continue to line 27.
However, this is line 27 in the calling code. See the green arrows in
Figure 6, the debugger has run over the nested call to “CheckPrime” on
line 27, reached the “end” on line 28, returned and paused on line 27,
which had called the function.

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

26Blaise Pascal Magazine 110 2023

PAGE 5/8

If you are on the line 4 “foo()” and you want to go to line 5 “writeln”
then you can use “step over”. This will execute the entire nested (and sub-
nested) invocation(s) of “foo” and pause at line 5 in the current call of
“foo”.
But if you set a breakpoint on line 5 “writeln”, and run (F9) to the
breakpoint, then you will pause inside the (sub)nested call of “foo”. It is
the same line of code, but at a very different context.
The same happens for “step out”.
If you are inside a nested call of “foo” and at line 4, then step out will run
any further nested calls of foo, it will run to the end of foo at the current
level, and then return to the caller. Setting a break point at line 5 (the line
in the caller, at which you would need to pause after returning from
the current invocation of “foo”) will not allow you to do this. It will hit the
breakpoint inside the nested call to foo, or if that exits to do “recurse_
done”=true, then it will just hit the breakpoint on the next line, before
ever reaching the “end” statement and returning from there.

BREAKPOINTS STOP STEPPING
In all the examples we have either used run (F9) to breakpoint or stepping.
It should be mentioned that breakpoints also take precedence over
stepping.
If you “step over” a procedure and there is a breakpoint inside that
procedure, then the breakpoint will be hit. This means that the step will not
run to the line that was next when you invoked the step.
If this happens you can use a series of “step out” to get back to the code
were you started.
Similarly “step out” can be interrupted by a breakpoint.
Either if the breakpoint is in any sub-routine that is called while leaving the
current routine, or if the breakpoint is in the current routine before the
“end” is reached.

STEPPING LINES, NOT STATEMENTS
As a language Pascal is statement based. But in the debugger the execution
works by line(s).
This can manifest itself in different scenarios. You may have a line with
several statements on it.

 1. a := 1; b := 2; c := a+b;

In this case stepping will execute all 3 statements at once.

You can also have a single statement, that wraps over more
that one line;

 1. writeln(

 2. random(1),

 3. random(2),

 4. random(3)

 5.);

In this case, each line can be executed separately. Your project will first run the
code for each of the 3 parameters (calls to “random”), and once it has the
values it will invoke “writeln” with the values. Because FPC evaluates function
arguments from right to left (backwards), if you step the above code, the first
line to execute is “random(3)”, then “random(2)”, random(1) and finally
“writeln”.

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

27Blaise Pascal Magazine 110 2023

PAGE 7/8

If those were functions in your own code, and they had debug info, you
could on each line decide to use “step in” (F7) to go into the functions.

Note that between the execution of the “random” statements, the code
may step to the “writeln” line, as it stores the result for the later
invocation.

STEP OUT – AND IN AGAIN
“Step out”, that may mean neither by line, nor by statement. Earlier in this
article it was mentioned that “step out” could either return to the line that
contained the actual calling statement, or it could return to the next line
after that statement.
In generally it returns to the middle of the line, right to the position after
the call. The remainder of the line can then for example be the assignment
of the returned value to a variable. Or it can be further statements, or
further calls.

 1. DoSomething(GetFoo(), GetBar());

If you “step in” on the above line you will enter “GetBar” (remember
parameters are evaluated right to left). Now if you “step out” from
“GetBar” then you may still want to enter “GetFoo” or “DoSomeThing” or
both. If “step out” would go to the next line after the statement, then both
of those functions would have run already.
But because “step out” (red arrows) stops in the middle of the line, once
you stepped out of “GetBar” you can use “Step in” again and enter
“GetFoo” and after that “DoSomething”.
If you just want to enter “GetFoo” then you must step into “GetBar”. But
you can then immediately “step out” and “step into” “GetFoo”.
Note that for this to work, you must use “step out”. If you enter
“GetBar” and single step to its “end” statement, and then use “step
over” to return from it, then the debugger will execute the rest of the
calling line, and only stop at the next line after it.

If you do stop through the entire code of “GetBar” and are at its “end”
statement, then you can use “step into” (F7) to step into the next routine,
which will be “GetFoo”. In that case “Step into” will return to the middle of
the calling line, and it will immediately step into the next routine. (On some
debugger settings, it may only step out and require a 2nd step into)

Figure 7

PART 2: NEXT STEPS - STEPPING
THE LAZARUS DEBUGGER

28Blaise Pascal Magazine 110 2023

PAGE 8/8

“RUN TO CURSOR” OR “STEP OVER TO CURSOR”
Sometimes it may be necessary to step several lines at once. Maybe to
leave a loop, that has too many iterations left to run and could not be
single stepped with F8. Setting a breakpoint may be possible, but only if it is
not recursive.
For this you can use “step over to cursor”. Position the text-cursor on the line at
which you like to pause. Then press F4. The code will run until it either hits
that line, or the current function returns to it caller. The latter is a safety net,
if the line was for some reason not reached (e.g. if it was in a conditional
block). “Step over to cursor” will only pause on that line, if it is reached in the
current invocation level.
It will ignore it, if it happens in a recursion.
As “step over to cursor” only pauses the application with the current invocation
level, it can not be used to run to any line outside the current function.
In order to do this you can use “run to cursor” from the menu. This is the
same as setting a breakpoint, run, and remove the breakpoint. “Run to cursor”
will also pause if the line is hit inside recursive calls.

SUMMARY
In this article we have explored 3 methods of stepping through the code.
● Step over
Run the code in the current line, and pause at the next line.
⚫ F8
⚫ Menu: Run � Step over
⚫ Toolbutton:
● Step into
If the current code contains a function call, step to the first line of the
called routine.
Also act as shortcut for “Step out” + “Step in”, if at the “end” line of a routine,
and another routine is called from the same line than this routine was
called from.
⚫ F7
⚫ Menu: Run � Step into
⚫ Toolbutton:
● Step out
Execute the rest of the current routine and pause at the calling line.
Pauses in the middle of the calling line, so further routine calls on that line
can be “stepped into”.
⚫ Shift-F8
⚫ Menu: Run � Step out
⚫ Toolbutton:
● Step over to cursor
Execute code until it reaches the line where the text-cursor is.
Only reacts in the current function and ignores hits during recursion.
Only available in Lazarus since version 2.2.
⚫ F4
⚫ Menu: Run � Step over to cursor
● Run to cursor
Execute code until it reaches the line where the text-cursor is.
Acts like running to a breakpoint at that line.
⚫ Menu: Run � Run to cursor

The images for tool-buttons have changed between Lazarus versions.
They may differ in your version.

Note 2: In Lazarus before versions 2.4 the FpDebug based debugger
has an issue, which can in some cases cause "Step out" to pause to
early. Depending on the debugger config you use (e.g. Fp-Lldb on
Mac) those two commands may not be available.

8 2022 Blaise Pascal Magazine 110 2023

€ 100
More than 6500 pages

110110

Blaise Pascal

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

ADVERTISEMENT

THE NEW FUTURE
BLAISE PASCAL LIBRARY 2023
ON USB STICK INCLUDING THE INDEXER FOR ALL ITEMS AND PER ITEM ON CREDIT CARD USB STICK

IMMEDIATE SEARCH
OVER ALL FILES AND ISSUES

AVAILABLE ON YOUR OWN USB STICK

8 2022 Blaise Pascal Magazine 110 2023

€ 100
More than 6500 pages

110110

Blaise Pascal

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

ADVERTISEMENT

THE NEW FUTURE
BLAISE PASCAL LIBRARY 2023
ON INTERNET INCLUDING THE INDEXER FOR ALL ITEMS AND PER ITEM ON CREDIT CARD USB STICK

IMMEDIATE
SEARCH

OVER ALL FILES AND ISSUES

AVAILABLE ON INTERNET FOR

31Blaise Pascal Magazine 110 2023

ARTICLE PAGE 18/18AI-ENABLED BRAIN SCANNER READS THOUGHTS
By Detlef Overbeek
The original article had been published in Nature, issue 11may 2023/Vol.617

Figure 1 from https://www.itnonline.com/content/machine-learning-uncovers-new-insights-human-brain-through-fmri

A brain scanner can now, at least occasionally, can decode the background
voice in your head.
The first non-invasive technique for analysing the content of imagined
speech has been developed by researchers. It can offer a potential means
of communication for those who are unable to speak.
But how close is the currently available technology, which is only slightly
accurate, to realizing true mind-reading?

How can policymakers guarantee that these
advancements (in the future) aren't misapplied?
The majority of thought-to-speech systems in use today make use of brain
implants to track motor cortex activity in users and anticipate the words
that their lips are attempting to utter. Alexander Huth and Jerry Tang,
computer scientists at the University of Texas at Austin, collaborated with
other researchers to combine artificial intelligence (AI) algorithms with
functional magnetic resonance imaging (fMRI), a non-invasive method of
measuring brain activity, to understand the true meaning behind the
thought.
(Functional magnetic resonance imaging or functional MRI
measures brain activity by detecting changes associated with
blood flow. This technique relies on the fact that cerebral blood
flow and neuronal activation are coupled. When an area of the
brain is in use, blood flow to that region also increases.)

Figure 2 (from Wikipedia)
A fMRI image with yellow areas showing increased activity compared with a control condition.

Purpose Measures brain activity detecting changes due to blood flow.

The brains of no one
 should be decoded

without their consent.

32Blaise Pascal Magazine 110 2023

ARTICLE PAGE 2/3AI-ENABLED BRAIN SCANNER READS THOUGHTS

These algorithms, also known as LARGE LANGUAGE MODELS (LLM’s), are what power
ChatGPT and are trained to anticipate the next word in a passage of text.
In a study described in J. Tang et al. Nature Neuroscience 26, 858-866; 2023, the
researchers had three volunteers lie in a fMRI-scanner and record their brain
activity while they were listening to podcasts.
The researchers created an encoded map of how each individual's brain
responds to various words and phrases by combining this knowledge with the
LLM's capacity to comprehend how words relate to one another.

The participants then either listened to a story, pictured telling one, or watched
a silent movie while the researchers recorded the fMRI activity. The researchers
then attempted to decode this new brain activity using a combination of the
patterns they had previously encoded for each individual and algorithms that
figure out how a sentence is likely to be constructed based on other words in it.

Figure 3 Brain scans showing MRI mapping for 3 tasks across 2 different days. Warm colors show how the
results hold up in groups. Cool colors show how results are less reliable person to person. (Annchen Knodt/
Duke University)

Additionally, it performed a decent job of accurately explaining what viewers
were seeing in the movies. But many of the sentences it came up with were
wrong. The researchers also discovered that the technology was simple to
swindle. The decoder was unable to discern the words participants were hearing
when they imagined a different story while listening to a recorded one.
Additionally, the encoded map varied between people, making it impossible for
the researchers to develop a universal decoder.

WAKE UP CALL
On whether the most recent development poses a threat to mental privacy,
NEUROETHICISTS disagree. BIOETHICIST Gabriel Lázaro-Muoz from Harvard
Medical School in Boston, Massachusetts, said:
"I'm not calling for panic, but the development of sophisticated, non-invasive technologies
like this one seems to be closer on the horizon than we expected. think it's a major wake-up
call for the public and policymakers,

Adina Roskies, a science philosopher at Dartmouth University in Hanover, New
Hampshire, disagrees, claiming that the technology is currently too incorrect and
difficult to use to be a threat.
First of all, because fMRI machines are not portable, it is challenging to scan
someone's brain without their consent. She also questions whether training a
decoder for an individual would be worthwhile in terms of both time and money
if the goal were something other than regaining communication skills.

It's not the time (yet) to start worrying. There are numerous additional ways that
the government has a variety of additional ways to learn what we are thinking. It
is encouraging to Greta Tuckute, a cognitive NEUROSCIENTIST at the
Massachusetts Institute of Technology in Cambridge, since people can readily fool
the decoding system by thinking of other things and that it cannot be applied
across individuals. It's a fantastic illustration of the degree of agency we actually
possess, she says. Do so with caution.

Roskies warns that issues can develop if attorneys or judges utilise the decoder
without being aware of its technical limits. For instance, the sentence
"I just jumped out [of the car]" was translated into "I had to push her out of the car"
in the current study. The differences are so glaring that they could significantly
alter the outcome of a legal case.

Tang stated at a press conference that "the polygraph is not accurate but has had
negative consequences." The brains of no one should be decoded without their
consent. He and Huth urged authorities to aggressively address the legalities of
using mind-reading technologies.

According to Lázaro-Muoz, this regulation might be modelled after a US statute
that prohibits insurers and employers from utilising genetic information for
discriminatory purposes. He is especially concerned about the effects of the
decoder on persons who may have intrusive, unwelcome ideas about harming
others even though they would never take such action.

A NEUROSCIENTIST at the US NATIONAL INSTITUTE OF MENTAL HEALTH in
Bethesda, Maryland, named Francisco Pereira thinks it's unclear how precise
decoders will get or whether they'll ever become universal rather than person-
specific. Though the decoder might ultimately improve at foretelling the
following word in a series, it might have trouble deciphering metaphors or
sarcasm.
Putting words together and understanding how the brain encodes the
relationships between them are two very different things, according to Pereira."

33Blaise Pascal Magazine 110 2023

ARTICLE PAGE 3/3AI-ENABLED BRAIN SCANNER READS THOUGHTS

34Blaise Pascal Magazine 110 2023

maXboxmaXbox

35Blaise Pascal Magazine 110 2023

PAGE 1/7

� INTRODUCTION

� THE DELPHI TOOL

The Delphi IDE is suitable for windows only.
Lazarus can be used on many platforms. So what if you wish to work on
your delphi code on your mac, but still compile with Delphi?
Theoretically, you can: the Delphi command-line compiler can easily be
executed in wine, a platform that provides a windows-compatible API on
UNIX systems, which can run windows binaries directly on LINUX (and on
MAC).
Although it should be noted that not all versions of wine are suitable to run
the Delphi command-line compiler (let alone the full IDE).
Even on windows, there can be reasons to prefer using the Lazarus IDE
over the Delphi IDE: The Lazarus IDE is faster, and has superior code tools
compared to the Delphi IDE: the code completion is far better.
You could edit in lazarus, and execute the delphi command-line compiler in
a terminal or console window.
But Lazarus can do better. While it is of course primarily designed for
pascal code, it can in fact also be used to edit and compile C code or
JAVASCRIPT - or indeed any compiler.
Lazarus offers an API to help you call a compiler and analyse the output of
that compiler. For example, there is a package that can analyse the output
of the GCC (GNU C Compiler) compiler and jump to the right place in the
code on GCC error messages.

USING THE DELPHI COMPILER IN
THE LAZARUS IDE
By Michaël Van Canneyt

The Lazarus IDE has some advantages over the
Delphi IDE. For one thing, it works cross-platform:
you can use Lazarus on your Mac or on Linux.
So can you use it to work on your Delphi project and compile
the result with the Delphi compiler? In this article, we show how.

ABSTRACT

Delphi comes with a command-line compiler.
Can this API not be used to execute the Delphi compiler ?
The answer is: yes, of course !
Since some time, there is a package that does exactly that:
the Delphitool package.
It is in the Lazarus source tree, and will be shipped with the next major
release. It allows you to call the Delphi compiler,
and will analyze the output messages of the Delphi compiler,
and display them in the messages window
in a manner that allows you to click on the message
and the IDE will jump to the relevant source location.
The package goes further than that:
optionally, it will take the compiler command-line options used for the FPC
compiler and convert them to equivalent Delphi command-line options:
paths for units, generation of debug information or optimizations are just
some of the options that are converted to delphi options.

36Blaise Pascal Magazine 110 2023

PAGE 2/7USING THE DELPHI COMPILER IN
THE LAZARUS IDE

3 IDE CONFIGURATION
Before you can use the Delphi compiler, you must configure the Lazarus
IDE. In the Tools - Options dialog, there is a new frame 'Delphi compiler', see
figure 1 on page 3 of this article. On this page, the following settings are
available:

Delphi compiler executable
 This is the full path of the delphi command-line compiler.
Delphi configuration file extension
 When the IDE generates a configuration file for the Delphi
 commmand-line compiler, it will use the same name as the Lazarus
 project file, but with the extension indicated here.
Map filenames from Windows to Unix notation
 This option is only available on Linux or mac. When checked, the IDE
 will convert all filenames in the output of the Delphi compiler to UNIX
 notation, and will replace drive letters assigned by Wine with the
 correct directory on your UNIX system.
Additional compiler options
 these options will be passed on the command-line
 to the compiler in addition to the configuration file,
 for every project you wish to compile.
On Linux and MacOS, the compiler can be called
through wine. Distributed with the delphi tool is a
script dcc.sh that handles this for you:
it will transform paths, and will make the generated
binary executable (something which the delphi
compiler does not do). You can point the IDE to this
script instead of wine and the actual DCC binary.
The script can also be used on the command-line,
it is not specific to Lazarus.

The options are written to a configuration file, and you can use this
configuration file in your command-line to invoke the Delphi compiler.
Since the only practical way to execute the Delphi command-line compiler
on Linux or mac is to use Wine, the Lazarus IDE will offer you to convert
the filenames in output messages from Windows notation to Unix notation:
it will map drive letters to directories on your Linux or mac machine, and
changes backslashes to slashes. It will analyze the wine drive letter
mapping to be able to correctly map the paths.
Installing this package is done in the usual manner:
The package is in Lazarus' source tree, in the development branch
of the lazarus git repository. It is located in the
components/compilers/delphi directory, and
the package file is lazdelphi.lpk.
If you don't have a git version of Lazarus on your system,
you can also simply download the files for this package from Gitlab and
install the package in an older IDE:
the API’s used by this package exist for quite some time.
Open the package file lazdelphi.lpk, and install it with the 'Use - install'
context menu. After rebuilding the IDE and restarting the IDE you should
have new pages in the IDE tools - options dialog and in the project options
dialog.

37Blaise Pascal Magazine 110 2023

PAGE 3/7USING THE DELPHI COMPILER IN
THE LAZARUS IDE

4 PROJECT CONFIGURATION
In order to use the Delphi compiler for a project, you need to configure the
project for this. This is of course done in the project options dialog.
There are 2 steps to configure. The first is general and can be configured in
the frame 'Delphi compiler', see figure 2 on page 4 of this article - options
can be set here:
Generate Delphi config file based on FPC compiler options when checked,
the IDE will - on every compile - generate a configuration file with the
current options from the FPC compiler configuration.
Additional compiler options
these options will be passed on the command-line to the compiler in
addition to the configuration file, only for this project.
The second configuration is to adjust the compiler call. This is done in the
'Compiler commands' frame, the last frame under the compiler options.
See figure 3 on page 4 of this article things must be done:
1. In the 'Execute before' box, enter the delphi compile
 command you wish to execute when giving the
 "compile" or "build" commands and check the
 'compile' 'build' and 'run' check boxes. More about
 the command below.
2. In the 'Execute before' box , check the
 'Delphi compiler' in the list of Parsers.
 This tells the IDE that it should parse and
 analyse the output of the compile command
 with the 'Delphi compiler' parser tool. This tool has been
 registered by the 'lazdelphi' package.
3. In the 'Compiler' box, uncheck the 'compile' 'build'
 and 'run' checkboxes.

Figure 1: The delphi tool
configuration page

Figure 3: The project
compiler commands page

38Blaise Pascal Magazine 110 2023

PAGE 4/7USING THE DELPHI COMPILER IN
THE LAZARUS IDE

Figure 2: The project delphi
configuration page

After this, when compiling or building the project in the IDE, the 'execute
before' command-line will be executed and the FPC compiler will not be
called.
NOTE that you can perfectly have 2 build modes: one to compile your
project with Delphi, one to compile your project with FPC.
So how to specify the delphi compile command in the 'Execute before' edit
box ?
You can specify the compile command completely yourself, for example:
c:\delphi\bin\dcc32.exe -V c:\projects\myproject.dpr
Or you can use macros. The lazdelphi package defines several macros,
which you can use to compose your command as you see fit:

39Blaise Pascal Magazine 110 2023

PAGE 5/7USING THE DELPHI COMPILER IN
THE LAZARUS IDE

DCC
 This macro is expanded to the Delphi compiler binary path as set
 in the IDE options.
DCCCONFIG
 This macro is expanded to the delphi compiler configuration file
 generated by the IDE for your project. The filename is preceded by
 an @sign if it is non-empty. (the @sign is how the config file is
 specified on delphi compiler command-line)
DCCARGS
 This expands to the concatenation of the 'additional compiler options'
 specified in the global and project-specific settings.
DELPHICOMPILE
 this macro is in fact equivalent to the three above macros combined:
 $(DCC) $(DCCARGS) $(DCCCONFIG)
 it exists for convenience.
So the simplest compile command is:
$(DELPHICOMPILE) $(PROJFILE)

Exactly as shown in figure 3 on page 4 of this article.
Once this is all done, you can compile your project with Delphi,
and the result can look like what you see in figure 4 on
page 5. Clicking on the warning will take you to the
correct location in the project.

Figure 4: Output when compiling the project

5 DEBUGGING
The lazarus IDE of course offers debugging, and the
debugger has lots of advanced features
(see the recent contributions by Martin Friebe in
Blaise pascal magazine).

Thus the question whether the compiled executable can be debugged in
the lazarus IDE is of course relevant.
The answer to this question is 'Yes, but...':
On Linux it is definitely possible to debug the delphi-generated executable.
In order to do this, GDB (the GNU debugger) must be used.
To get the best results, a specially modified version of GDB is needed.
Delphi ships this gdb version as part of it platform assistant 'PAServer' for
Linux.
Fortunately, Lazarus can use this GDB executable. You can use set it up in
the Lazarus IDE in the tools - Options dialog under 'Debugger - debug
backend'. The IDE can work with multiple debug backends, so what we must
do here is define a new debugger backend. To do so, the following actions
must be performed:

1. click 'Add' at the top of the dialog.
2. Enter a new name in the 'Name' edit.
3. For debugger type, select 'GNU debugger (gdb)'.
4. Select the 'linuxgdb' binary that is part of PAServer.

The result will look like figure 5 on page 6 of this article.
Once this is done, you can run your application in the
debugger: you can set breakpoints, you can watch
variables, as shown in figure 6 on page 7
The debug experience is not yet flawless:
Delphi encodes certain Pascal types differently than FPC does, and the
Lazarus IDE is (not yet) aware of this info. So to see the value some types,
some typecasts may be necessary.
The author has not tested debugging on MacOS and Windows. Based on
available knowledge about the tools on Windows and MacOS, it is most
probable that: � see next page

40Blaise Pascal Magazine 110 2023

PAGE 6/7USING THE DELPHI COMPILER IN
THE LAZARUS IDE

Figure 5: Defining the
delphi debugger

6 CONCLUSION
The delphi tool can be used to compile your free pascal or delphi code
with the Delphi compiler, right from within the Lazarus IDE.
The tool works as it is now, but some improvements are still planned:
the quick fixes that exist for the FPC compiler can also be implemented for
the delphi compiler. Additional ideas for improvement are of course always
welcomed by the lazarus maintainers.
A word of warning:
While coding is not a problem, one should take care when editing visual
forms: When you add a component (say, a TEdit) to a form, there are
properties in the LCL that do not exist in Delphi.
These properties will be written to the .dfm file by the Lazarus IDE. When
you run the program and the form is created at runtime, there will be a
streaming error: the components that are actually instantiated will
be the Delphi components, which may be missing
some properties.
Inversely, when loading a Delphi form in the Lazarus IDE,
there may be VCL properties
(or even complete components) in the form
that have no counterpart in the LCL and the
Lazarus IDE will show an error, asking you
what should be done with these properties.

41Blaise Pascal Magazine 110 2023

PAGE 7/7USING THE DELPHI COMPILER IN
THE LAZARUS IDE

● On MacOS Lazarus can be used for debugging with lldb
 (the debugger used on Mac) using a similar technique as on Linux.
● On Windows the expectation is that debugging will not be possible,
 since Delphi uses a proprietary format for debug info on Windows.

Figure 6: Debugging a Delphi-generated executable

42Blaise Pascal Magazine 110 2023

International Pascal Conference

From 3 to 7 July 2023, the International Pascal Congress (IPC) will
take place in the city of Salamanca, Spain.
This event seeks to bring together diverse actors of the software
development sector and provide various activities for attendees to
update and increase their knowledge on technologies and tools
related to the Pascal family languages.
The IPC will offer plenary conferences on different aspects of software
development, courses to learn new technologies (neural networks,
cloud computing, video games, etc.),
technological and scientific presentations, and round tables on open
projects.
In addition, the Niklaus Wirth Award for the Most Valuable Contributor
will be conferred. Don’t miss one of the most important events ever
held on Pascal in one of the most beautiful cities in Spain:
Salamanca https://pascalcongress.com.

ADVERTISEMENT

43Blaise Pascal Magazine 110 2023

International Pascal Conference

ADVERTISEMENT

44Blaise Pascal Magazine 110 2023

International Pascal Conference

The IPC activities will be held in the Hospedería Fonseca Auditorium, the
Faculty of Sciences Auditorium and in classrooms in the Faculty of
Sciences building.

ADVERTISEMENT

45Blaise Pascal Magazine 110 2023

International Pascal Conference

July 3-7, 2023, Salamanca (Spain)
The International Pascal Congress (IPC) is an international forum
dedicated to bringing together the different players in the software
industry whose technologies are based on the Pascal family of
programming languages. The IPC 2023 will be held from 3 to 7 July
2023, hosted by the University of Salamanca in Spain, and it will be a
stunning and forward-looking reflection on the Pascal family of
languages in the software industry. The official language of the IPC 2023
will be English.

ADVERTISEMENT

46Blaise Pascal Magazine 110 2023

Primož Gabrĳelčič Bruno Fierens Daniele Teti

Johannes W. Dietrich Marco Cantù Michalis Kamburelis

Location
https://www.pascalcongress.com/location.html

REGISTRATION
https://www.pascalcongress.com/registration.html

International Pascal Conference

Keynote speakers
https://www.pascalcongress.com/keynote_speakers.

ADVERTISEMENT

47Blaise Pascal Magazine 110 2023

International Pascal Conference

Niklaus Wirth Award

The International Pascal Congress (IPC) considers it essential to
implement measures that promote the development of Pascal and
technologies based on this language within the computer science field.
Among these actions is the creation of awards to stimulate and
strengthen the Pascal community. The IPC will grant one award in
honour of Niklaus Wirth, a pioneer in the creation of programming
languages and the designer of Pascal. The Niklaus Wirth Award for the
Most Valuable Contributor to Pascal is intended to recognise
individuals who have made decisive contributions to improving,
developing, and strengthening the community of those who use Pascal
programming languages in any variant to develop software.

NWA for the Most Valuable Contributor
This award is intended to recognise individuals who have made a
significant contribution to improving, developing and strengthening
the community of software developers using Pascal in any of its
variants for software creation.

If the candidate wins, he/she agrees to give a plenary lecture in person
after receiving the prize on a topic of his/her choice related to Pascal
programming languages or technologies associated with the Pascal
family.

The award will be presented by the Deputy Rector for Research and
Transfer of the University of Salamanca.

Nomination period: MAY/06/2023 – JUNE/05/2023
Award announcement: May/04/2023
Ceremony: JULY/03/2023

ADVERTISEMENT

48Blaise Pascal Magazine 110 2023 Blaise Pascal Magazine 107/108 2022

ADVERTISEMENT

SUBSCRIPTION FOR 2 YEAR
BLAISE PASCAL MAGAZINE
ONLY €120 ex Vat

ABSTRACT
Blaise Pascal Magazine offers subscribers a library :
a collection of all issues available till now. In this article we show
how the PDF indexer application presented in the previous articles
about indexing PDF files will be used to rewrite and enhance the
Blaise Pascal Magazine library.

��INTRODUCTION
In several earlier contributions, we showed how to show a PDF file in
an offline PAS2JS application, and how to index PDF files and use that
index to search and download PDF files. In this article, we’ll show
how to combine all these techniques to rewrite the Blaise Pascal
Magazine library as a Pas2js application that works both offline
and online. The new edition of the Blaise Pascal Magazine library will
need to have the following features:

● It must work as a local application, distributed on a USB stick.
● It must work as a web application, deployed on the

Blaise Pascal Magazine website.
● When working locally, issues must be loaded from the local disk:
 usually a USB stick.
● The issues must be search-able.
● When working locally, and no internet connection is available,
 then a (limited) search must be performed locally in the list of
 articles. if an internet connection is available, the application
 must be able to search globally and download a PDF if needed.

● PDF Downloads are limited to the downloads purchased
 by the magazine subscriber.
● the issue will be displayed.

All of the techniques needed to satisfy these requirements have
been presented in previous articles.
In this article we bring everything together:
this will require some refactoring of the code presented in the
previous articles. Since we’ll be needing a server part and a
client part, we’ll start by discussing the code changes needed
on the server.

49Blaise Pascal Magazine 110 2023

ARTICLE1 SERVER PAGE 1/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK Written by Michael van Canneyt

Starter Expert

50Blaise Pascal Magazine 110 2023

��ADDING SECURITY TO THE SERVER

In previous articles about indexing PDF files, we implemented a simple
mechanism to download issues from the server in addition to the search
mechanism and word list mechanism.
Any issues could be downloaded from the server.
This needs to be modified so the user can only download what he has
subscribed for.
This means we need to add a login mechanism:
the server needs to know who is attempting to download an issue.
We’ll also need a mechanism to determine what issues a user is allowed to
download. In order to implement this, we need to extend the database
with this information.
First, we’ll need a list of users: a table with at least a username and a
password. The SQL to create such a table (let’s name it users)can for
example look like this in Postgres:

create sequence seq_users;

 create table users (
 u_id bigint not null default nextval(’seq_users’),
 u_firstname varchar(50) NOT NULL,
 u_lastname varchar(50) NOT NULL,
 u_login varchar(127) not null,
 u_password varchar(127) not null,
 constraint pk_users primary key (u_id)
);

create unique index udx_users on users (u_login);

The fieldnames speak for themselves, and the index is there to make sure
every login is unique.
Similarly, we’ll need a table with all available issues. We could take the
articles table presented in the previous articles, but every issue occurs
more than once in that table, so it is difficult to create a foreign key on this
table for referential integrity.
Instead, we create a new table, aptly named issues:

create sequence seq_issues;

create table issues (
 i_id bigint not null default nextval(’seq_issues’),
 i_issue varchar(10) NOT NULL,
 i_filename varchar(127) NOT NULL,
 constraint pk_issues primary key (i_id)
);

The I_issue field is not a number to accommodate for double issues,
so we can support a notation as 81 82 for the combined issues 81 and
82. To know which issues a given user can access, we need a third table
(named userissues):

create sequence seq_userissues;
create table userissues (
 ui_id bigint not null default nextval(’seq_userissues’),
 ui_user_fk bigint NOT NULL,
 ui_issue_fk bigint NOT NULL,
 constraint pk_userissues primary key (ui_id)
);

ARTICLE1 SERVER PAGE 2/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

51Blaise Pascal Magazine 110 2023

For each user and each issue that user can access, a record is inserted in
this table, with a link to the users table and issues table.
For referential integrity, we enforce a foreign key to these tables;

alter table userissues add constraint fk_userissues_users
 foreign key (ui_user_fk) references users(u_id) on delete cascade;
alter table userissues add constraint fk_userissues_issues
 foreign key (ui_issue_fk) references issues(i_id) on delete cascade;

Armed with these tables, we can now implement some security
mechanisms. We will not describe how data gets into these tables:
we’ll assume the tables have been filled through some external
mechanism, through some link with the subscription system.
The first thing is to implement a kind of login routine:
we implement a simple HTTP endpoint which receives a JSON with a
username and password (this is not a JSON-RPC mechanism):

 {
 "username": "michael",
 "password": "verysecret"

}

The server will respond with a token (a simple GUID) :

{
 "token" : "{F5A07A5B-5184-4256-8EE6-20E2DE987AF5}",
 "expires" : "2023-06-03T17:12:09.489Z"
}

create unique index udx_userissue on userissues (ui_user_fk,ui_issue_fk);

ARTICLE1 SERVER PAGE 3/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

Additionally, we make sure there is only one record for each user - issue
combination.

This token can be passed to the server when a PDF is downloaded: the
server will then verify this token and allow the download if it is valid.
The tokens are also stored in the database, in a table called tokens:
CREATE TABLE tokens
(
 tk_id bigint NOT NULL DEFAULT nextval(’seqTokens’::regclass),
 tk_token character varying(38) NOT NULL
 DEFAULT (upper(((’{’::text || uuid_generate_v4()) ||
 ’}’::text)))::character varying(38)
 tk_user_fk bigint NOT NULL,
 tk_expires_on timestamp without time zone NOT NULL
 DEFAULT (now() + ’00:30:00’::interval),
 CONSTRAINT pktokens PRIMARY KEY (tk_id)
);

create index idx_token_expires on tokens(tk_expires_on);
create unique index udx_tokens on tokens(tk_token);

The tk_expires_on is by default filled with a timestamp 30 minutes from
the time of insert of the record. In effect, the token will be valid for 30
minutes.
The uuid_generate_v4 function is part of a Postgres extension and
generates a GUID, which will serve as our unique session token.
The extension needs to be activated with the following SQL statement:

52Blaise Pascal Magazine 110 2023

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

To implement this scheme, we create a new class TSessionManager:

TSessionManager = Class(TComponent)
Public
 constructor Create(aOwner : TComponent); override;
 destructor destroy; override;
 // Public API
 Procedure GetToken(aRequest : TRequest; aResponse : TResponse);
 Function CheckToken(const aToken : string) : int64;
 function CheckFileAllowed(aUserID : int64; const aFileName : string) : Boolean;
 Property DB : TSQLConnection Read FDB Write FDB;
end;

The GetToken call is registered as the handler for the /token login during application startup:

aSession:=TSessionmanager.Create(Nil);
aSession.DB:=aSearch.Connection;
HTTPRouter.RegisterRoute(’/token’,@aSession.GetToken,False);

The GetToken call is registered as the handler for the /token login during
application startup:

aSession:=TSessionmanager.Create(Nil); aSession.DB:=aSearch.Connection;
HTTPRouter.RegisterRoute(’/token’,@aSession.GetToken,False);

The DB property is the SQL connection used by the search class:
it was set up in code of the previous articles and is simply reused here.

The GetToken call is pretty straightforward.
It starts with checking for a CORS request, in a similar manner to the way it
was done in the PDF file download in the previous article.
This is needed, because when the client application is started from a local
disk, the origin differs from the server.

When the CORS request indicates that all is well, the code starts by
decoding the request payload as a JSON structure.

If something goes wrong then the ReportInvalidParam routine is
used to report a HTTP 400 return code. If the JSON is decoded correctly,
the username and password are extracted.
Again a check is done to see if values have been passed for both username
and password.
If not a HTTP 400 error is again reports:

ARTICLE1 SERVER PAGE 4/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

53Blaise Pascal Magazine 110 2023

The username and password are validated using the ValidateUser call:
it will return a token if the username/password pair was valid.
If the token is empty, it means the combination was not valid and an error
is reported. Lastly, if we received a token and expiration date, we send
both back to the client in a JSON structure using SendJSON:
procedure TSessionManager.SendJSON(aResponse : TResponse;aCode : Integer; aText : String; aJS

begin
 if aResponse.ContentSent then
 exit;
 aResponse.Code:=aCode;
 aResponse.CodeText:=aText;
 aResponse.ContentType:=’application/json’;
 aResponse.Content:=aJSON.FormatJSON();
 aResponse.SendContent;
end;

The same SendJSON method is used in e.g. the ReportInvalidParam method:

procedure TSessionManager.ReportInvalidparam(aResponse: TResponse); Var J : TJSONObject;
begin
 J:=TJSONObject.Create([’message’,’need username/password’]);
 try
 SendJSON(aResponse,400,’INVALID PARAM’,J);
 finally
 J.Free;
 end;
end;

ARTICLE1 SERVER PAGE 5/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

procedure TSessionManager.GetToken(aRequest: TRequest; aResponse: TResponse);
Var Req, Resp : TJSONData;
 Obj : TJSONObject absolute Req;
 token,UserName, UserPW : String;
 aExpiresOn : TDatetime;
begin
 if FCors.HandleRequest(aRequest,aResponse,[hcDetect,hcSend]) then exit;
 Req:=Nil;
 Resp:=Nil;
 try Req:=GetJSON(aRequest.Content);
 if not (Req is TJSONObject) then
 ReportInvalidParam(aResponse)
 else
 begin
 userName:=Obj.Get(’username’,’’);
 userPW:=Obj.Get(’password’,’’);
 if (UserName=’’) or (userPW=’’) then
 ReportInvalidParam(aResponse)
 else
 begin token:=ValidateUser(UserName,UserPW,aExpiresOn);
 if Token=’’ then
 ReportForbidden(aResponse)
 else
 begin
 Resp:=TJSONObject.Create([
 ’token’,token,
 ’expires’,DateToISO8601(aExpiresOn)
]);
 SendJSON(aResponse,200,’OK’,Resp);

end;
 end;
 end;
 except
 on E : Exception do
 ReportException(aResponse,E);
 end;
 Resp.Free;
 Req.Free;
end;

54Blaise Pascal Magazine 110 2023

The ValidateUser method is again very straightforward: the only
noteworthy thing is that the password is stored encrypted in the database.
We use the native Postgres database cryptographic mechanisms for this:
the crypt function encrypts a value using a salt, and the same function can
be used to insert the data.
The crypto functionality must be enabled with the following SQL
statement:

CREATE EXTENSION pgcrypto;

Using this function, the SQL statement to verify a user password is as follows:

SELECT
 U_password=crypt(:password,U_password) as PasswordOK, *
from
 Users where
 (U_login=:login);

If the user login is not found, the query will return no records.
If the user is found, then there will be a single record (because the login is
unique), and the PasswordOK field will be True if the password passed in
parameter:password matches the one stored in the database,
and it will be False if not.
Using this SQL statement we can easily create the ValidateUser call.
It starts out by creating a database transaction: every operation is done in
its own transaction.
After the transaction is created, it is used to create a TSQLQuery dataset
and run the SQL statement (The CreateTransaction and
CreateQuery) functions are trivial and will not be presented here:

function TSessionManager.ValidateUser(const aUser, aPassword: String;
out aExpires: TDateTime): String;
Const
 SQLSelectUser =
 ’SELECT U_password=crypt(:password,U_password) as PasswordOK,*’ +
 ’from Users ’+
 ’ where (U_login=:login)’;

Var
 Tr : TSQLTransaction;
 Qry : TSQLQuery; Res,OK : Boolean;
 aID : Int64;

begin
 OK:=False;
 Result:=’’; qry:=Nil;
 Tr:=CreateTransaction;
 try Qry:=CreateQuery(SQLSelectUser,[’LOGIN’,aUser,’PASSWORD’,aPassword],Tr);

Qry.Open;
 // If we have a user and the password matches
 Res:=(Not Qry.IsEmpty) and (Qry.FieldByName(’PasswordOK’).AsBoolean);
 aID:=Qry.FieldByName(’u_id’).AsLargeInt;
 if Res then
 // We get a token
 Result:=CreateToken(aID,aExpires,Qry.SQLTransaction);
 Tr.Commit;
 OK:=True;
 finally
 if not OK then
 Tr.Rollback;
 ReleaseQuery(Qry,Tr);
 end;
end;

ARTICLE1 SERVER PAGE 6/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

55Blaise Pascal Magazine 110 2023

If the user is verified, then the user ID and transaction are passed to
CreateToken, which will create a new token.
NOTE that the token is created in the same transaction:
The CreateToken function is again quite simple, it makes use of the fact
that the ’default’ values in the table column definitions create usable
values, and simply returns the values created by Postgres.

function TSessionManager.CreateToken(aUser: Int64; out Expires: TDateTime;
 aTransaction : TSQLTransaction): String;

Const
SQLInsert =
 ’ insert into tokens (tk_user_fk) values (:USER) ’ +
 ’ returning tk_token, tk_expires_on;’;

Var
 Qry : TSQLQuery; OK : Boolean;

begin OK:=False;
 Qry:=CreateQuery(SQLInsert,[’USER’,aUser],aTransaction);
 try
 Qry.Open;
 if Qry.IsEmpty then
 DatabaseError(SErrFailedToCreateToken, self);
 Result:=Qry.FieldByName(’tk_token’).AsString;
 Expires:=Qry.FieldByName(’tk_expires_on’).AsDateTime; OK:=True;
 finally
 if Not OK then
 Qry.SQLTransaction.RollBack; ReleaseQuery(Qry);
 end;
end

With these routines we have created a HTTP endpoint that can be used
in the application to ask for a token.

❸ SECURING THE DOWNLOAD
When the user wants to downloads a PDF file, the token must be supplied
so the server can verify who is making the download, and whether the
user is allowed to download the requested PDF file. The token can be
specified in one of 2 ways:

● As a URL query parameter, called ’token’:

http://localhost:3010/pdf/BlaisePascalMagazine_61_UK.
pdf?token=%7BF5A07A5B-5184-4256-8EE

● As a HTTP header, called ’X-Access-Token’:

X-Access-Token: {F5A07A5B-5184-4256-8EE6-20E2DE987AF5}

This means we must adopt the download module so it first checks the
token, and then checks if the user that owns the token can download the
file. The change is trivial:

ARTICLE1 SERVER PAGE 7/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

56Blaise Pascal Magazine 110 2023

procedure TCorsFileModule.HandleRequest(ARequest: TRequest;
 AResponse: TResponse);
begin
 Cors.Enabled:=true;
 if Cors.HandleRequest(aRequest,aResponse) then exit;
 if not CheckToken(aRequest,aResponse) then exit;
 inherited HandleRequest(ARequest, AResponse);
end;
The CheckToken function does the actual work. It uses the CheckToken
function from the TSessionManager class to verify the token. If the
token is OK, the user ID is returned, if the token is not OK, -1 is returned.
The returned user ID is then used to check if the user is allowed to
download the requested PDF (the GetRequestFileName function is a
method of the file download datamodule that comes with FPC):
function TCorsFileModule.CheckToken(ARequest: TRequest; AResponse: TResponse): Boolean;
var
 aToken,aFileName : String;
 aID : int64;
begin
 // Check URL parameter and HTTP header for token.

aToken:=aRequest.QueryFields.Values[’token’];
 if aToken=’’ then
 aToken:=aRequest.CustomHeaders.Values[’x-access-token’]; Result:=(aToken<>’’);
 if Result then
 begin
 // Check token in database

aID:=aSession.CheckToken(aToken); Result:=aID<>-1;
 if Result then

 begin
 // Get requested filename.

aFileName:=ExtractFileName(GetRequestFileName(aRequest));
 // Check if user is allowed to download this file.

Result:=aSession.CheckFileAllowed(aID,aFileName)
 end;
 end;
 if not Result then
 begin
 aResponse.Code:=403;
 aResponse.CodeText:=’FORBIDDEN’;
 aResponse.SendContent;
 end;
end;

Note that if the token is invalid, or the user is not allowed to download the PDF, a 403
FORBIDDEN HTTP return code is sent to the browser. The CheckToken function of
the session manager does the actual check of the token. It is again quite simple:

function TSessionManager.CheckToken(const aToken: string): int64;
const
 SQLSelect = ’select tk_user_fk,tk_expires_on from tokens where (tk_token=:token)’;
var
 Tr : TSQLTransaction;
 Qry : TSQLQuery;
 OK : Boolean;
begin
 OK:=False;
 Qry:=nil; Result:=-1;
 TR:=CreateTransaction;

 try Qry:=CreateQuery(SQLSelect,[’token’,aToken],Tr); Qry.Open;
 if Not Qry.IsEmpty and (Qry.FieldByName(’tk_expires_on’).asDateTime>Now) then
 Result:=Qry.FieldByName(’tk_user_fk’).asLargeInt;
 if Result<>-1 then
 UpdateToken(aToken,Tr);
 finally
 if not OK then TR.Rollback; ReleaseQuery(Qry,Tr);
 end;
end;

ARTICLE1 SERVER PAGE 8/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

57Blaise Pascal Magazine 110 2023

If the token has not expired, it is extended with 30 minutes using the
UpdateToken:

function TSessionManager.UpdateToken(const aToken: String;
 aTrans: TSQLTransaction): TDateTime;

Const
 SQLUpdate =
 ’update tokens set ’ +
 ’ tk_expires_on = clock_timestamp() + interval ’’30 minutes’’ ’+
 ’ where (tk_token=:TOKEN) returning tk_vervalt_op;’;

Var
 Qry : TSQLQuery;

begin
 Qry:=CreateQuery(SQLUpdate,[’TOKEN’,aToken],aTrans);
 try
 Qry.Open;
 if not Qry.IsEmpty then
 Result:=Qry.Fields[0].AsDateTime
 else Result:=0;
 finally
 ReleaseQuery(Qry);
 end;
end;

function TSessionManager.UpdateToken(const aToken: String;
 aTrans: TSQLTransaction): TDateTime;

Const
 SQLUpdate =
 ’update tokens set ’ +
 ’ tk_expires_on = clock_timestamp() + interval ’’30 minutes’’ ’+
 ’ where (tk_token=:TOKEN) returning tk_vervalt_op;’;

Var
 Qry : TSQLQuery;

begin
 Qry:=CreateQuery(SQLUpdate,[’TOKEN’,aToken],aTrans);
 try
 Qry.Open;
 if not Qry.IsEmpty then
 Result:=Qry.Fields[0].AsDateTime
 else Result:=0;
 finally
 ReleaseQuery(Qry);
 end;
end;

This is to avoid that the user needs to login every 30 minutes, but after
more than 30 minutes of inactivity, the token does expire.
The above mechanism is a simple one, in practice, more advanced
strategies can be used.
Lastly, the CheckFileAllowed call is used to check whether the user is
entitled to download the requested PDF file.
This is done using the userissues table:
if a record is present for the requested issue and user, the user is allowed
to download the pdf. The check is then very simple:

function TSessionManager.CheckFileAllowed(aUserID: int64;
const aFileName: string): Boolean;

Const
SQLSelect =

 ’select ’+ ’ ui_id ’+ ’from ’+ ’ userissues ’+
 ’ inner join issues on (i_id=ui_issue_fk) ’+ ’where ’+
 ’ (i_filename=:filename) ’+’and (ui_user_fk=:uid)’;

var
 Tr : TSQLTransaction;
 Qry : TSQLQuery;

begin
 Tr:=CreateTransaction;
 try
 Qry:=CreateQuery(SQLSelect,[
 ’uid’,aUserID,
 ’filename’,lowercase(aFileName)],Tr);
 Qry.Open;
 Result:=Not Qry.IsEmpty;
 finally
 ReleaseQuery(Qry,Tr);
 end;
end;

ARTICLE1 SERVER PAGE 9/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

58Blaise Pascal Magazine 110 2023

❹ ALLOWING TO DOWNLOAD AN ISSUE BY NUMBER

One of the requirements was that the user can download and view an
issue by entering the number of the issue. To map this to a PDF filename,
a routine is needed that checks the issues table and returns the
corresponding filename. To implement this, when the application needs to
show an issue, we’ll let it download a PDF with a special URL:

http://localhost:3010/issue/45

In the above URL, the number 45 must be replaced with the actual issue.
To code this on the server, we must implement a handler for the above
URL. We register it with the HTTP router as follows:

HTTPRouter.RegisterRoute(’/issue/:Issue’,@IssueToPDF);

The IssueToPDF is a simple routine. The search mechanism has the list of
articles in an issue in an array in memory. This list can be accessed to
retrieve the filename of the issue.
When a filename is found, instead of sending the file, a redirect response is
sent to the browser with the ’normal’ pdf download location: The redirect
response means a 307 HTTP return code is sent, and the location of the
PDF is returned in the Location HTTP header.
The server response will be something like this:
HTTP/1.1 307 Temporary Redirect
Location: /pdf/BlaisePascalMagazine_45_46_UK.pdf

Upon receiving the 307 return code, the browser will immediately do a
second request to the new location. To the user, this is transparent.
To code this is quite simple:

Procedure IssueToPDF(ARequest: TRequest; AResponse: TResponse);

var Cors : TCORSSupport;
 PDF : String;

begin
 Cors:=TCORSSupport.Create;
 try
 Cors.Enabled:=true;
 if Cors.HandleRequest(aRequest,aResponse) then exit;
 finally
 Cors.Free;
 end;
 PDF:=aSearch.IssueToPDF(aRequest.RouteParams[’Issue’]);
 if (PDF<>’’) then
 aResponse.SendRedirect(’/pdf/’+PDF)
 else
 begin aResponse.Code:=404;
 aResponse.CodeText:=’Not Found’;
 end;
 aResponse.SendContent;
end;

With this, we have completed the extension of the server. We can now turn
to the changes in the client (PAS2JS) application.

ARTICLE1 SERVER PAGE 10/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

server server

❺ SEARCHING IN THE CLIENT - second part

In the previous articles where searching through a PDF in a
browser application was handled, 3 mechanisms have been
treated, where a search was performed in 3 different locations:

� In the displayed PDF, using the mechanisms provided by the
 pdf.js package in the browser.
� In a list of articles, using an in-memory copy of the list of articles.
❸ In a database built with a PDF indexer.

If our application should be able to work online and offline, we must
consider if each of the mechanisms is usable:

Searching in the displayed PDF is of course always possible.
When offline, the search in the database is unavailable, and the best
we can do is replace it transparently by a search in the list of articles.

In order to do so, we need to adapt the search mechanism:
in our last iteration of the PDF application, the search algorithms
(PDF and database) were handled by the TPDFSearchControl.
We now need to add the search in the list of articles
(as demonstrated in the first article about showing a PDF)
to this class.

To keep the code simple, we’ll split out the search mechanisms in
separate classes.
The TPDFSearchControl will then, depending on the user setting
and the on- line/offline status of the browser, select a search
mechanism.

The 3 search classes are responsible for searching and displaying
the results below a given HTML tag.
When the user selects a result, a special event is triggered with
enough information to show the selected result.

The TPDFSearchControl will then do what is necessary to
display the PDF and jump to the page containing the result.
The search class is also responsible for returning a list of
words for auto-completion in the search box:
the mechanism that was built to search the indexed
database has an implementation.

For the list of articles, a list of words can be built on
the fly, and a list of words in the current PDF can
also be constructed.

Since the three mechanisms need to perform
the same functions, we define the
following interface to encapsulate the
requirements:

59Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 11/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

TPageInfo = record
 Issue, Title, FileName : String; Page: Integer;
 useIssue : Boolean;
end;

TShowPDFPageEvent = procedure(aPage : TPageInfo) of object;
TWordListCallBack = reference to procedure(List : TStrings);

{ ISearchEngine }

ISearchEngine = Interface
 // Property getters & setters
 function GetOnShowResultPanel: TNotifyEvent;
 procedure SetOnShowResultPanel(AValue: TNotifyEvent);
 procedure SetResultsElement(aValue : TJSHTMLElement);
 Function GetResultsElement : TJSHTMLElement;
 procedure SetShowPageEvent(aValue : TShowPDFPageEvent);
 function GetShowPageEvent : TShowPDFPageEvent;

 // Actual interface
 procedure Search(const aTerm : string; const aIssue : String);
 procedure GetWordList(aTerm : string; aOnResults : TWordListCallBack);

 // Easy access using properties
 property ResultsElement : TJSHTMLElement
 Read GetResultsElement Write SetResultsElement;
 Property ShowPDFPageEvent : TShowPDFPageEvent
 Read GetShowPageEvent Write SetShowPageEvent
 Property OnShowResultPanel : TNotifyEvent
 Read GetOnShowResultPanel Write SetOnShowResultP
end;

60Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 12/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

The Search call will display the list of found occurrences of the search
term below ResultsElement. The OnShowResultPanel event can be
used to notify the caller that there were results, and that the result
element needs to be shown (the result panel is by default closed, it
needs to be opened when results are available).
When the user clicks a result, the ShowPDFPageEvent event is triggered
with a TPageInfo record: this record contains enough information to
download a PDF if needed, and jump to the correct page.
The GetWordList method is also clear: it needs to show a list of words.
When a word list is available the aOnResults callback is called, passing it
the list of words.
A callback must be used, since the search can be asynchronous:
consulting the database on the server is an asynchonous call.
In the previous iteration of the PDF viewing and indexing application,
the TPDFSearchControl contained 2 search mechanisms.
We’ll factor these out into their own classes, so we’ll have 4 classes that
work together to implement the search functionality.
The first 3 classes are just a refactoring of the existing classes

TPDFSearchControl
This will just handle the search mechanism’s UI:
it man- aged the edit and search buttons, shows the word list for
completion and shows or hides the results panel. The actual search is
handled by the other 3 components. When a PDF must be shown, an
event handler is called.

TServerSearch
Implements the above interface using the server search mechanism
discussed in the previous article.

61Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 13/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

TPDFSearch
Implements the above interface for searching in the displayed PDF. It uses
the PDF search mechanism discussed in the first article in this series.
TArticleSearcher
Implements the above interface using a search mechanism in a list of
articles which is included in the application when it is loaded from disk.
When the TPDFSearchControl class is created, it creates instances of
the 3 search mechanisms:

procedure TPDFSearchControl.BindElements;

begin
 // ... other code...
 PrepareEngines(True);
end;

procedure TPDFSearchControl.PrepareEngines(Full : boolean);
begin
 PrepareEngine(FLocalsearch as ISearchEngine,Full);
PrepareEngine(FServerSearch as ISearchEngine,Full);
PrepareEngine(FSearch as ISearchEngine,Full);

end;

procedure TPDFSearchControl.PrepareEngine(aEngine : ISearchEngine;
 Full : Boolean);
begin
 aEngine.ShowPDFPageEvent:=FOnShowPDFPage;
 if Full then
 begin
 aEngine.OnShowResultPanel:=@HandleShowResultPanel;
 aEngine.ResultsElement:=pnlResults;
 end;
end;

And it initializes them in its BindElements method:

constructor TPDFSearchControl.Create(aOwner: TComponent);
begin
 Inherited;
 FLocalsearch:=TArticleSearcher.Create(Self);
 FServerSearch:=TServerSearch.Create(Self);
 FSearch:=TPDFSearch.Create(Self);
end;

The PrepareEngine is called for all 3 search engines: it will initialize the
relevant properties so the classes can do their work.
The FOnShowPDFPage is an event handler that is set by the main
application class: the main application class is responsible for loading a
PDF file.
The ’click’ event handler of the search button in TPDFSearchControl
now becomes quite simple:

procedure TPDFSearchControl.onSearch(aEvent: TJSEvent);
var
 aterm : string;
begin
 aterm:=SearchTerm;
 if Length(aTerm)<=1 then exit;
 CurrentSearchEngine.Search(aTerm,FIssueFilter);
end;

The CurrentSearchEngine property returns an ISearchEngine interface.
The getter of this property decides which search engine to return based on
the PDFSearch property (basically the value of the ’Search PDF’ checkbox)
and a property OffLine:

procedure TPDFSearchControl.DoShowWordList(List : TStrings);
Var
S : String;
P : TJSHTMLELement;
A : TJSHTMLAnchorElement;

begin mnuAutoComplete.style.setProperty(’display’,’none’);
 mnuAutoComplete.InnerHTML:=’<div class="dropdown-content"></div>’;
P:=TJSHTMLELement(mnuAutoComplete.firstElementChild);

 For S in List do
 begin
 a:=TJSHTMLAnchorElement(Document.createElement(’a’));
 a.href:=’#’;
 a.classlist.Add(’dropdown-item’);
 a.innerText:=s; a.dataset[’value’]:=s;
 a.addEventListener(’click’,@DoWordSelected); P.appendChild(a);
 end;
 mnuAutoComplete.style.setProperty(’display’,’block’);
end;

62Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 14/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

function TPDFSearchControl.GetSearchEngine: ISearchEngine;
begin
 if PDFSearch then
 Result:=FSearch as ISearchEngine
 else
 if OffLine then
 Result:=FLocalsearch as ISearchEngine
 else
 Result:=FServerSearch as ISearchEngine;
end

The OffLine property is determined by the online or offline status of the navigator.
It is determined during startup of the application, and is maintained during the
lifetime of the application. We’ll show how to do this later on.
The application has a feature where the edit box shows a list of words for
completion, based on the returns from the server. This mechanism needs to be
reworked so the list of words is fetched from the current search engine. This
mechanism was implemented in a timer event, which now becomes quite short:

function TPDFSearchControl.DoCompleteWord(Event: TEventListenerEvent): boolean;

 procedure DoServerSearchWord;
 begin

if Length(edtSearch.Value)>1 then
 CurrentSearchEngine.GetWordList(edtSearch.Value,@DoShowWordList);
 end;

begin
 Result:=False;
 if FSearchTimerID<>0 then
 window.clearTimeout(FSearchTimerID);
 FSearchTimerID:=window.SetTimeout(@DoServerSearchWord,200);
end;

The GetWordList will call DoShowWordList as soon as the list of words
has been retrieved. The DoShowWordList routine which will actually show
the list of words now simply needs to iterate over all words in the list:

The implementation of the algorithm to retrieve a word list was moved
to the TServerSearch class. It remains almost the same as it was, with
exception that it fills a TStringlist.
The ISearchEngine interface contains some boilerplate code to define 3
properties (they must be defined through getters and setters).
In order to reduce the code needed in the 3 search classes to implement
this interface, we’ll descend all 3 classes from a common ancestor:
TSearchBase. Here is the definition:

63Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 15/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

TSearchBase = class(TComponent)
Private
 FShowPDFPageEvent : TShowPDFPageEvent;
 FOnShowResultPanel : TNotifyEvent;

FResultsElement: TJSHTMLElement;
Protected
 // Property getters & setters
 Function GetOnShowResultPanel: TNotifyEvent;
 Procedure SetOnShowResultPanel(AValue: TNotifyEvent);
 Procedure SetResultsElement(aValue : TJSHTMLElement);
 Function GetResultsElement : TJSHTMLElement;
 Procedure SetShowPageEvent(aValue : TShowPDFPageEvent);
 Function GetShowPageEvent : TShowPDFPageEvent;
 // Easy access for descendents
 procedure ShowPDFPage(aInfo : TPageInfo);
 // Show results panel.
 procedure ShowResultsPanel;
 // Clear results panel.

procedure ClearResultPanel;
 // Append a HTML node to the results panel.
 procedure AppendToResults(aElement : TJSHTMLElement);
Public
 // Easy access using properties
 Property ResultsElement : TJSHTMLElement Read GetResultsElement

Write SetResultsElement;
 Property ShowPDFPageEvent : TShowPDFPageEvent Read GetShowPageEvent

Write SetShowPageEvent
 Property OnShowResultPanel : TNotifyEvent Read GetOnShowResultPanel

Write SetOnShowResultP
end;

The various Get* and Set* methods do nothing but setting and setting the values of the
private fields for the properties. The easy access methods are there to call the event
handlers, if they have been set. This avoids that descendents must all implement a check.
The TServerSearch class is reworked as a descendent of this class, but contains no new
code compared to the previous iteration of our application, so we won’t repeat it here.
The same is true for the TPDFSearch class: nothing changes for this class, except that
the signature of the method changes somewhat.

6 WORKING OFFLINE

When working offline, we cannot contact the server and perform a search on a
database. We also cannot distribute and access the database from within the
browser.
What we can do is offer limited search: the list of articles and issues is distributed
with the offline version of the application. Basically, we create a javascript file in
containing a ’database’ of articles. The database is then simply a Javascript array
of records, which looks like this (formatting added for display purposes):

var BPMArticles = [
{
"i" : "1", "p" : 6,
"a" : "Representing graphics for math functions",
"u" : "Peter Bĳlsma",
"c" : ""
},
{
"i" : "1", "p" : 8,
"a" : "Client Dataset Toolkit", "u" : "Detlef Overbeek",
"c" : ""
},
//
]

64Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 16/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

<script src="js/articles.js"></script>

Accessing this array from a Pascal program is easy: One record in
this array can be declared in Pascal as an external class:

Type
 TArticle = Class external name ’Object’ (TJSObject)
 Issue : String; external name ’i’;
 Page : Integer; external name ’p’;
 Title : String; external name ’a’;
 Author : String; external name ’u’;
 Code : string; external name ’c’;
end;
 TArticleArray = Array of TArticle;

Note the use of ’external name’ to map the human-readable
fields (Issue, Page etc.) to the actual member names used in
Javascript. The array itself is then defined as follows:

var
 BPMArticles : TArticleArray; external name ’BPMArticles’;

As you can see, the variable is declared external: this means it is
actually defined outside the pascal code.
Armed with this, we can now set about creating a class that
implements a local search mechanism and a mechanism to get a
word list: the TArticleSearcher class in the articlesearch
unit.
This class is defined as a descendent of TSearchBase, and has 2
main methods. The first is to get a list of words:

procedure TArticleSearcher.GetWordList(aTerm: string; aOnResults: TWordListCallBack);
var
 L : TStringList; aArticle : TArticle; S : String;
 R : TJSRegexp;
begin
 if not assigned(aOnResults) then exit;
 aTerm:=UpperCase(aTerm);
 L:=TStringList.Create;
 try
 L.Sorted:=True;
 L.Duplicates:=dupIgnore;
 R:=TJSRegexp.New(’\b(?:\w|-)+\b’,’g’);
 For aArticle in BPMArticles do
 for S in TJSString(aArticle.Title).match(R) do
 if pos(aTerm,Uppercase(S))>0 then L.Add(s);
 aOnResults(L);
 finally
 L.Free;
 end;
end;

This is a very simple loop over the array of article records: For every
article, the Title field is split into words using the Javascript ’match’
method of the String type: If the word contains the search term (we
check this case-insensitively), we add it to the list: the list ignores
duplicates, so we get each word only once. At the end we call the
callback.
The search mechanism works in a completely similar way. It clears any
previous results, loops over the article list, and if an article matches the
search term, it is included in the result.

This javascript file is included in the html page using a script element:

65Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 17/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

procedure TArticleSearcher.Search(const aTerm: string; const aIssue: String);
Var
 aIdx : integer;
 aArticle : TArticle;
V,IssueFilter : string;
I : integer;

begin
 if Not Assigned(ResultsElement) then exit;
 IssueFilter:=’’;
 For I:=1 to Length(aIssue) do
 if Pos(aIssue[I],’0123456789_’)>0 then
 IssueFilter:=IssueFilter+V[i];
 ClearResultPanel;
 For aIdx:=0 to Length(BPMArticles)-1 do
 begin
 aArticle:=BPMArticles[aIdx];
 if aArticle.IsMatch(aTerm,IssueFilter) then
 ResultsElement.AppendChild(CreateArticleRow(aIdx,aArticle));
 end;
 ShowResultsPanel;
end;

At the end, the results panel is shown.
The IsMatch procedure which is used to determine if an article is
matched, is a helper method for TArticle:

TArticleHelper = class helper for TArticle
 Function IsMatch (aTerm : String; aIssue : string) : Boolean;
end;

function TArticleHelper.IsMatch(aTerm: String; aIssue: string): Boolean;
 begin aTerm:=UpperCase(aTerm);
 Result:=(aTerm=’’) or ((Pos(aTerm,UpperCase(Author))>0)
 or (Pos(aTerm,UpperCase(Title))>0));
 if Result and (aIssue<>’’) then
 Result:=(aIssue=Issue);
end;

This must be implemented as a helper method, since the TArticle class
is defined as an external class, and therefore its definition cannot contain
pascal methods.
The CreateArticleRow method uses a string constant DefaultPanel
with a HTML template to construct the actual HTML using a simple
search and replace mechanism:

function TArticleSearcher.CreateArticleRow(aIdx: Integer; aArticle: TArticle):
TJSHTMLElement;

Var
 Panel : String;

begin
 Result:=TJSHTMLElement(Document.createElement(’div’));

 Panel:=StringReplace(DeeaultPanel,’{{issue}}’,aArticle.Issue,[rfReplaceAll]);
 Panel:=StringReplace(Panel,’{{page}}’,IntToStr(aArticle.Page),[rfReplaceAll]);
 Panel:=StringReplace(Panel,’{{title}}’,aArticle.Title,[rfReplaceAll]);
 Panel:=StringReplace(Panel,’{{author}}’,aArticle.Author,[rfReplaceAll]);

 Result.dataset[’issue’]:=aArticle.Issue; Result.dataset[’page’]:=IntToStr(aArticle.Page);
Result.dataset[’articleid’]:=intToStr(aIdx); Result.dataset[’title’]:=aArticle.Title;
Result.AddEventListener(’click’,@OnArticleClick); Result.innerHTML:=Panel;

end;

66Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 18/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

Finally, the OnClick handler for the result element collects some data to set up a
TPageInfo record, which is then used to display the correct PDF page:
procedure TArticleSearcher.OnArticleClick(aEvent : TJSEvent);

var
 aPage : TPageInfo;

begin
 aPage:=Default(TPageInfo);
 With TJSHTMLElement(aEvent.currentTargetElement) do
 begin
 aPage.Issue:=dataset[’issue’];
 aPage.Page:=StrToIntDef(dataset[’page’],-1);
 aPage.Title:=dataset[’title’]; aPage.useIssue:=True;
 end;
 ShowPDFPage(aPage);
end;

The ShowPDFPage uses the ShowPDFPageEvent event handler to
actually show the PDF on the correct page. And with this, our offline
search mechanism is ready.

7 DETECTING OFFLINE STATUS AND SHOWING A PDF

The offline search mechanism has to be activated when the navigator has no
access to internet: We implemented the OffLine property for this in the
TPDFSearchControl. But this property has not yet been set to a correct value.
Luckily, the browser has a property that indicates whether it is currently online or
offline: The window.Navigator.onLine property indicates whether the
browser is currently online or offline. What is more, the Window class
implements 2 events
’online’ and ’offline’ that are triggered when the browser goes online or offline,
respectively. So we can use AddEventListener to install an event handler
and react to changes in online or offline status.
This is done in the DetectOffLine routine in the application class. It does 2
things: it detects whether the application was started by double clicking the
index.html file in the file explorer or whether it was started from a website. The
result is stored in the IsLocal property, and the online status is stored in the
IsOffLine property:

procedure TBPMLibraryApplication.DetectOffline;

 Procedure updateOnlineStatus(event : TJSEvent);
 begin
 IsOffLine:=not window.Navigator.onLine;
 end;

begin
 IsLocal:=Copy(window.location.protocol,1,4)=’file’;
 IsOffLine:=not window.Navigator.onLine;
 window.addEventListener(’online’,@updateOnlineStatus);

window.addEventListener(’offline’,@updateOnlineStatus);
end;

NOTE that the online and offline eventhandler is used to update the
IsOffLine property.
The IsOffLine property of the application object has a setter, and is used
to propagate the value to the searchcontrol:

procedure TBPMLibraryApplication.SetIsOffLine(AValue: Boolean);
begin
 if FIsOffLine=AValue then Exit;
 FIsOffLine:=AValue;
 FSearchPane.OffLine:=FisOffline;
end;

67Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 19/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

Thus, the search mechanism will know whether to search locally or remote.
As we’ve seen, the search mechanism only has an event which it must use
to open a PDF and display a certain page.
The event is set in the main application to the following event handler:

procedure TBPMLibraryApplication.HandleShowPDFPage(aPage: TPageInfo);

 Function IsSameAsLastPDF : Boolean;
 begin
 if aPage.useIssue then
 Result:=(FLastIssue<>’’) and (FLastIssue=aPage.Issue)
 else
 Result:=(FLastPDF<>’’) and (FLastPDF=aPage.FileName)
 end;

begin
 // local search or PDF already loaded
 if IsSameAsLastPDF then
 FViewer.ShowPage(aPage.Page)
 else if Not HaveLocalFile(aPage) then
 LoadRemotePDF(aPage)
 else
 LoadLocalPDF(aPage);
end;

If the PDF is already loaded (checked in IsSameAsLastPDF), then the
viewer panel is simply instructed to show the new page. If the PDF is not
yet loaded, then it must be loaded before the correct page can be shown.
If the page was loaded from local disk (as is the case on the USB-stick
version of the Blaise Pascal magazine), then it is loaded from disk using
LoadLocalPDF, else it is loaded using LoadRemotePDF.
The HaveLocalFile function uses the IsLocal property that was
initialized by the application to decide whether a file can be loaded from
disk or not:
If IsLocal is false, we know the page is loaded from a website, and the
PDF files will not be available locally. But if IsLocal is true, it still can be
that the PDF is not available locally:
When an online search was performed, the search result could have
returned a PDF that is not available locally. To cater for that case we must
check the list of available articles to see if the requested issue is present,
and this is done by checking the issue number in the list of articles:

function TBPMLibraryApplication.HaveLocalFile(aPage : TPageInfo) : Boolean;

Var
 aArticle : TArticle;

begin
 Result:=IsLocal;
 if Result then
 begin
 // Determine if we have the PDF locally
 Result:=False;
 for aArticle in BPMArticles do
 if (aPage.Issue=aArticle.Issue) then
 Exit(True);
 end;
end

When the PDF is available locally, we load it using the trick shown in the
first article in this series: a script tag is inserted which defines contents of
the PDF as a Javascript variable (pdfData):

68Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 20/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

Finally, the LoadRemotePDF routine loads a PDF from the server. It
needs to distinguish between a call where only the issue number is given
(the user requested simply to see an issue) or when the PDF filename
is known. In the former case it uses the /issue/ URL which we showed
in the beginning of the article, in the latter case the /pdf/ URL is used:

procedure TBPMLibraryApplication.LoadRemotePDF(aPage: TPageInfo);

 Procedure DoShowPage;
 begin
 FViewer.ShowPage(aPage.Page);
 end;

var
 Src : TPDFSource;

begin
 Src:=TPDFSource.new;
 if aPage.useIssue then
 Src.url:=ServerURL+’issue/’+aPage.Issue
 else
 Src.url:=ServerURL+’pdf/’+aPage.FileName+’?token=’+ encodeURIComponent(FLogin.Token);

FLastPDF:=aPage.FileName;
 FViewer.StartPDFRender(Src,@DoShowPage);
end;

And with this routine, the application is ready to go. The application with an
issue loaded locally is shown in figure 1 on page 21 on the next page.

var
 pdfData : String; external name 'pdfData';

procedure TBPMLibraryApplication.LoadLocalPDF(aPage: TPageInfo);

 Procedure DoShowPage;
 begin
 FViewer.ShowPage(aPage.Page);
 end;

 function DoLoaded(Event : TEventListenerEvent) : Boolean;
 var
 Src : TPDFSource;

 begin
 Src:=TPDFSource.new;
 Src.Data:=pdfData;
 Fviewer.StartPDFRender(Src,@DoShowPage);
 end;

Var
 Script : TJSHTMLScriptElement;
 FN : String;

begin
 Script:=TJSHTMLScriptElement(document.CreateElement('script'));
 FN:=aPage.FileName;
 if Pos('file://',FN)=1 then
 Delete(FN,1,7);
 else if FN='' then
 FN:='issues/issue'+aPage.Issue+'.js';
 Script.Src:=FN;
 Script.Onload:=@DoLoaded;
end;

69Blaise Pascal Magazine 110 2023

ARTICLE 2 CLIENT PAGE 21/21BLAISE PASCAL MAGAZINE LIBRARY
BY INTERNET AND ON USB STICK

8 CONCLUSION

In this article, we’ve shown how to make a real-world application using
PAS2JS that can work both online and offline and adapts itself:
we refactored techniques introduced in the previous articles in this series.
The application can still be improved: for instance the online/offline status
can be made visual - e.g. changing a background color.
The application times out after 30 minutes, but no warning is given:
this can also be improved. As with all software, the work is never finished...

70Blaise Pascal Magazine 110 2023

BLA ISE PA SCA L M A G A ZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

THE NEXT LEVEL

BLA ISE PA SCA L M A G A ZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

DAVID DIRKSE
including 50 example projects

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
K

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
KLAZARUS

HANDBOOK
FOR PROGRAMMING WITH F PASCAL AND LAZARUSREE

934 PAGES

LAZARUS
HANDBOOK

SUPER
 PACK
2023

1 2

3 4
1. One year Subscription
2. The newest LIB Stick
 - All issues 1-111
 - On Credit Card
3. Lazarus Handbook
 - PDF including Code
4. Book Learn To Program
 - using Lazarus PDF including
 19 lessons and projects
5. Book Computer Graphics
 Math & Games
 - PDF including ±50 projects PRICE € 160

NORMAL PRICE € 275

INCLUDING
THE NEW LAZARUS
PDF KIT INDEXER

ADVERTISEMENT

THE NEW FUTURE
BLAISE PASCAL LIBRARY 2023
ON USB STICK INCLUDING THE INDEXER FOR ALL ITEMS AND PER ITEM ON CREDIT CARD USB STICK

IMMEDIATE SEARCH
OVER ALL FILES AND ISSUES

AVAILABLE ON YOUR OWN USB STICK

71Blaise Pascal Magazine 110 2023

Starter Expert

ABSTRACT

INTRODUCTION

INSTALLING

DropMaster was created by Ray Konopka is a solution for drag and drop
support with applications for Microsoft Windows. This is a very useful and
often necessary tool to make the user interface interactive and logic for the
End-user. It should be in any application because even internally in an
application it can be very convenient or necessary.

DropMaster

This is a collection of components for bringing drag-and-drop capabilities
across applications to Delphi programs running under Microsoft Windows.
Drag and drop of text-based data, images, and customized formats is
supported.
More than 40 sample apps are included with it, representing the findings
of in-depth research into the drag-and-drop functionality of numerous
well-known commercial applications. This is quite helpful, particularly for
beginners.

The most recent Delphi 11 Alexandria 11.3 as well as likely future releases
are supported by the Current Release 2.5.2, which started with RAD Studio
(Delphi) 2009.

It's a great value. Particularly when you are aware of the tactic being used:
extremely complicated: at $99, you'll quickly receive value for your money.

As a favor to potential clients interested in inspecting the product's
components, this component suite provides a trial edition.
The components in this trial edition are the same as the released versions,
as is typical in most trial versions of VCL-based components, with the
exception that they can only be used concurrently with Delphi.
This means that an application using any of the trial edition's components
can only be launched from Delphi.

Make sure you have administrator privileges, and it is preferable to place
the projects on a different disk than C:. The installation process is
incredibly straightforward; you do not need to follow the usual steps.
You can start using DropMaster in RAD Studio, Delphi once
the installation program is finished. The "DropMaster" page
will appear on the component palette after restarting
RAD Studio. See figure 1:

figure 1: Overview of the components group.

PAGE 1/18

72Blaise Pascal Magazine 110 2023

As is typically the case with Rays
products, it is incredibly effective and
helpful. It makes sense given that he
wrote the book on creating
components. He is the real inventor in
addition to being incredibly creative.

The pictures in this post demonstrate
the procedure and will persuade you
of how easy it is to use.

UNINSTALLING

Removing the components from the
RAD Studio component palette:
close all files and projects, and select
Component|Install Packages... to display
the Packages page in the Project
Options dialog.
Select the "DropMaster 2.x" package
from the Design Packages list and click
the Remove button.
A message box will be displayed to
confirm your request-press OK.

Next, depending on the IDE
(Integrated Development
Environment), you may be asked if a
runtime package should be removed
from the Runtime Packages list.
If so, click OK to remove the runtime
package.Close the Project Options dialog
box by clicking the OK button.
Repeat the above steps for each IDE
that is using DropMaster.

And to make it very complete:
Removing all of the component files
from your hard disk
At this point, all IDE’s are no longer
using DropMaster.

To remove the DropMaster files from
your hard disk the Add/Remove Programs
icon from the Control Panel.

Next, select the "DropMaster 2.x"
entry from the list of installed
programs, and then click the Remove
button. (versions of Delphi).

figure 2: Installing the Trial Edition - fully functional

figure 3: It notices if you have tried before

figure 3: License

PAGE 2/18

73Blaise Pascal Magazine 110 2023

figure 5: Do NOT run any RAD STUDIO or Delphi
during the install process

figure 6: The Menu

figure 7: Last warning before installing

PAGE 3/18

figure 8: The progress of the installation

figure 9: Overview of the contents

figure 10: Ready for use

74Blaise Pascal Magazine 110 2023

PAGE 4/18

TDMGraphicTarget
The TDMGraphicTarget component is utilized to accept photos as well
as images that are dragged from another application.
The developer simply needs to provide a placeholder control for the graphic
data that is received because the component interacts with numerous
formats for convenience, including DIBs, bitmap handles, and metafiles.

TDMGraphicSource
Drag and drop commonly uses graphic images as a data type.
The TDMGraphicSource is comparable to the TDMTextSource,
with the exception that it has DonorImage and Picture attributes instead
of the TDMTextSource's DonorComponent and Text properties.
It is simple to serve up a picture in drag data by assigning it to a property,
recognizing the drag, and then invoking Execute.

TDMTextTarget
The main component to accept data dragged into your program from
another is called TDMTextTarget.
To respond to dropped data, just assign the AcceptorControl property
and create an OnDrop event handler.
Text, RTF, HTML, lists of files, and URLs can all be accepted by TDMTextTarget.
In addition to accepting text, this component can also accept other
arbitrary forms.
All dropped formats are accessible through the OnDrop event.
I will show some example projects on the next pages.
Of Course you can alter these examples to your needs.
But make sure you safe the project in a different directory: NOT C: -
Windows protects that disc and will not allow you to do things normally.
You will get bad results!
TDMTextSource
Data that needs to be dragged to another application is served up via the
TDMTextSource component. To use, simply provide a control the
DonorComponent property, call the Execute method when the control's
OnMouseDown event has detected the drag.
To serve up any customized material, use the Text attribute.
The simultaneous serving of several formats is another function of this
component.

75Blaise Pascal Magazine 110 2023

PAGE 5/18

THE COMPONENTS

Run the projects from inside Delphi in debug mode, or else

76Blaise Pascal Magazine 110 2023

EXAMPLE PROJECTS:

OVERVIEW OF ALL PROJECTS

PAGE 6/18

Here you can see the content of the directory of the CLIPBOARD PROJECT.
 you would only buy this component suite for this app it is already worth it. You could create a small
app where you can see how you can make a list of products and names which can enter it into the
subject of your email automatically

figure 11: Overview of available projects

figure 12: the content of that directory.

77Blaise Pascal Magazine 110 2023

EXAMPLE PROJECTS:
all examples are tested
CLIPBOARD (content manipulations)

PAGE 7/18

figure 13: Listing the possible sorts of text

figure 14: Found a PNG file In memory

figure 15: Can be very Handy if you need them

figure 16: Project overview
Clipboard Form inside Delphi

Project Overview Form

78Blaise Pascal Magazine 110 2023

unit fmClipboardTest;

{ Example application for DropMaster.

 Demonstrates using the DMUtil clipboard format helper functions to manipulate
 actual clipboard data rather than drag-and-drop data. In fact, this example
 has nothing to do with drag-and-drop, and contains no DropMaster components!

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, DMComps;

type
TForm1 = class(TForm)
ListBox1: TListBox;
btnEnumClipboard: TButton;
btnCFHDROP: TButton;
btnPutClipboard: TButton;
btnEmptyClipboard: TButton;
Label1: TLabel;
btnCustomFiles: TButton;
DMTextSource1: TDMTextSource;
procedure btnEnumClipboardClick(Sender: TObject);
procedure btnCFHDROPClick(Sender: TObject);
procedure btnPutClipboardClick(Sender: TObject);
procedure btnEmptyClipboardClick(Sender: TObject);
procedure btnCustomFilesClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

uses
ClipBrd, DMUtil, ActiveX;

{$R *.DFM}

procedure TForm1.btnEnumClipboardClick(Sender: TObject);
// Fill the list box with the name of every format currently available
// on the clipboard
var
aFmt: DWORD;
j: Integer;

begin
ListBox1.Clear;

for j := 1 to Clipboard.FormatCount do // Iterate
begin
aFmt := Clipboard.Formats[j-1];
ListBox1.Items.Add(ClipboardFormatDisplayname(aFmt));

end; // for

Label1.Caption := 'Clipboard formats';
end;

PAGE 8/18EXAMPLE PROJECTS:
all examples are tested
CLIPBOARD (content manipulations)

79Blaise Pascal Magazine 110 2023

procedure TForm1.btnCFHDROPClick(Sender: TObject);
// Get the list of files, if any, available on the clipboard
// You'd use this, e.g., to do a paste operation for files.
var
aSL: TStringList;
S: AnsiString;

begin
ClipBoard.Open;
try
s := GetHandleDataToString(Clipboard.GetAsHandle(CF_HDROP));
aSL := FileListFromHDROP(s);
// Now we have the file list. We could paste these, or make shortcuts.
// Here we just put the names into a listbox.
try
ListBox1.Clear;
ListBox1.Items.AddStrings(aSL);

finally
aSL.Free;

end;
finally
Clipboard.Close;

end;

Label1.Caption := 'List of files on clipboard';
end;

procedure TForm1.btnPutClipboardClick(Sender: TObject);
// Put a list of files on the clipboard for pasting or pasting as shortcut
var
aSL: TStringList;
s, t: AnsIString;

begin
aSL := TStringList.create;
try

// Put two file names in the list
aSL.Add('c:\autoexec.bat');
asl.add('c:\config.sys');
// Generate both CF_HDROP and Shell IDList Array formats
s := HDropFromFileList('', aSL);
t := ShellIDListFromFileList('', aSL);

finally
aSL.Free;

end;

// Put the formats on the clipboard
Clipboard.Open;
try

// CF_DROP, so we can paste files
Clipboard.SetAsHandle(CF_HDROP,
SetHandleDataFromString(s));

// Shell IDList Array, so we can paste shortcuts also
Clipboard.SetAsHandle(ClipboardFormatFromString('Shell IDList Array'),
SetHandleDataFromString(t));

finally
Clipboard.Close;

end;
end;

procedure TForm1.btnEmptyClipboardClick(Sender: TObject);
// Clear the clipboard
begin
ClipBoard.Clear;

ListBox1.Clear;
Label1.Caption := 'Clipboard formats';

end;

PAGE 9/18EXAMPLE PROJECTS:
all examples are tested
CLIPBOARD (content manipulations)

80Blaise Pascal Magazine 110 2023

procedure TForm1.btnCustomFilesClick(Sender: TObject);
// Put some custom stuff on the clipboard (to paste files that don't really exist)
// Works just like the FileContentsTest* demos
var
sizes: array of integer;
aSL: TStringList;
bSL: TStringList;
i: Integer;
j: integer;
aDataObject: IDataObject;

begin
aSL := TStringList.Create;
bSL := TStringList.Create;

try
// File names
aSL.Add('first file.txt');
aSL.Add('second file.txt');

// File contents
bSL.Add('contents of first file');
bSL.Add('contents of second file');

// Get sizes of contents
SetLength(Sizes, bSL.Count);
for I := 0 to bSL.Count - 1 do // Iterate
begin
Sizes[i] := length(bSL[i]);

end; // for

// Set up the data object. Use the internal support in TDMTextSource to do this.
With DMTextSource1, CustomFormatData do
begin
Clear; // Empty the data formats

// Pasting nonexistent files needs FileGroupDescriptor and FileContents formats.
Add-format(DMFileGroupDescriptorFormatName,
FileGroupDescriptorFromFileListEx('', aSL, sizes));

// FileContents is an indexed format
for j := 0 to bSL.Count-1 do
begin
AddFormatEx('FileContents', bSL[j], TYMED_HGLOBAL, j);
// Make sure we don't get a trailing null in the content items
// Items[Count-1] is the TCustomFormatData we just added.
Items[Count-1].AllowTrailingNull := false;

end;

end;

// Make a data object and put it on the clipboard.
aDataObject := TTextDataObject.CreateExWithFormats(DMTextSource1.CustomFormatData,

DMTextSource1);
OleSetClipboard(aDataObject);

finally
// Clean up
aSL.Free;
bSL.Free;

end;
end;

end.

PAGE 10/18EXAMPLE PROJECTS:
all examples are tested
CLIPBOARD (content manipulations)

EXAMPLE PROJECTS:
all examples are tested
TEST APPLICATION for various functions

Demonstrates various techniques in the use of TDMTextSource, TDMTextTarget,
TDMGraphicSource, TDMGraphicTarget.

The main point here: see how little code is needed.
Most of the code here was written by Delphi itself!
And the portion that was manually coded is mainly for user-interface purposes.

interface

uses
Windows, Types, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, Buttons, Grids, ExtCtrls, DMComps;

 …

var
Form1: TForm1;

implementation

{$R *.dfm}

uses
TypInfo;

81Blaise Pascal Magazine 110 2023

PAGE 11/18

figure 17: Project overview TEST APPLICATION of various examples. Form inside Delphi

82Blaise Pascal Magazine 110 2023

PAGE 12/18

procedure TForm1.ListBox1MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

// Detect the start of a drag for ListBox1, and begin the drag operation.
begin
if DragDetect(ListBox1.Handle, POINT(X,Y)) then
DMTextSource1.Execute;

end;

procedure TForm1.ListBox2MouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

// Detect the start of a drag for ListBox2, and begin the drag operation.
begin
if DragDetect(ListBox2.Handle, POINT(X,Y)) then
DMTextSource2.Execute;

end;

procedure TForm1.DMTextTarget1Drop(Sender: TObject; Acceptor: TWinControl;
const dropText: String; X, Y: integer);

// Handle drops on memo1. Notify the user whether files or just non-file text
// has been dropped.

begin
label24.caption := Format('%s: (%d,%d)', ['Drop', X, Y]);

if ((Sender as TDMTextTarget).DroppedTextFormat = dtfFiles) then
label24.caption := label24.caption + ' [files]'

else
label24.caption := label24.caption + ' [text]';

// If this is a URL, the actual URL address is in dropText
// (also in droppedLines[0] and Text). The title is in URLTitle.
if ((Sender as TDMTextTarget).DroppedTextFormat = dtfURL) then
label24.caption := label24.caption

 + Format(' [URL, title=%s]', [(Sender as TDMTextTarget).URLTitle]);

// The only REQUIRED part of this handler. Do something with the text
// that was just dropped. If this is missing, the drop won't do anything.
// You have to decide what you want to do with the text you get!
memo1.lines.add(dropText);
// The following line is equivalent to the preceding line.
// memo1.lines.add((Sender as TDMTextTarget).Text);

end;

procedure TForm1.btnCloseClick(Sender: TObject);
// Close down
begin
Application.Terminate;

end;

procedure TForm1.DMTextSource2BeforeDrop(Sender: TObject;
Donor: TComponent; var dropText: String; var cancelDrop: Boolean);

// Called before the drop of text from DMTextSource2. Allow the user to cancel.
// You can modify dropText here if you want. This handler is shared by DMTextSource1
// and DMTextSource2. The particular one in question is identified by looking at Sender.
var
aString: string;
showConfirmation: boolean;

begin
showConfirmation := ((Sender = DMTextSource1) and (CheckBox1.Checked))
or ((Sender = DMTextSource2) and (CheckBox2.Checked));

if showConfirmation then
begin
if (deMove = (Sender as TDMTextSource).ReturnedEffect) then
aString := 'Do you really want to move the string "%s"?'

else
aString := 'Do you really want to copy the string "%s"?';

aString := Format(aString, [dropText]);

cancelDrop := (MessageDlg(aString, mtConfirmation, [mbYes, mbNo], 0) = mrNo);
end;

end;

EXAMPLE PROJECTS:
all examples are tested
TEST APPLICATION for various functions

procedure TForm1.DMTextSource2AfterDrop(Sender: TObject; Donor: TComponent;
droppedOK: Boolean);

var
j: integer;

begin
// A drop has been done from DMTextSource2. If the drop was a move, we
// have to remove the text from ListBox2. You have to make sure that
// droppedOK is true; if you end the drag while the "no drag" cursor is
// showing, this event will still fire, but with droppedOK = false.
//
// In this handler, the expressions (Sender as TDMTextSource).DonorComponent,
// Donor, and ListBox2 all refer to the same thing.

if droppedOK then
begin
if (deMove = (Sender as TDMTextSource).ReturnedEffect) then
begin

// It's a move. Delete from the top down to avoid messing
// up the Selected[] property.
for j := ListBox2.items.count downTo 1 do // Iterate
begin
if ListBox2.Selected[j-1] then
ListBox2.items.delete(j-1);

end; // for
end;

end;
end;

procedure TForm1.DMTextTarget2Drop(Sender: TObject; Acceptor: TWinControl;
const dropText: String; X, Y: integer);

// Handle drops on ListBox3
//var
// j: integer;
/// aSL: TStringList;
begin

// Bring the form to the top, so that the message dialog won't accidentally
// be hidden.
SetForegroundWindow(Handle);

if CheckBox3.Checked and
 (MessageDlg('Do you want to clear the list before dropping?', mtConfirmation,
 [mbYes, mbNo], 0) = mrYes) then

ListBox3.Items.Clear;

// Show a sign that files were dropped (rather than text)
Label7.visible := ((Sender as TDMTextTarget).DroppedTextFormat = dtfFiles);

// Handle the drop. Show the coordinates, just for fun.
ListBox3.Items.Add(Format(' Drop at client pos (%d,%d):', [X, Y]));
ListBox3.Items.AddStrings((Sender as TDMTextTarget).DroppedLines);

// The following is equivalent to the preceding line, i.e., DroppedLines
// and dropText contain the same information.
//aSL := TStringList.create;
//try
// // Get the dropped text into dropText
// aSL.text := dropText;
// for j := 1 to aSL.count do // Iterate
// begin
// ListBox3.Items.Add(aSL[j-1]);
// end; // for
//finally
// aSL.free;
//end;

end;

For continuation
please download the project:

https://raize.com/

83Blaise Pascal Magazine 110 2023

PAGE 13/18EXAMPLE PROJECTS:
all examples are tested
TEST APPLICATION for various functions

84Blaise Pascal Magazine 110 2023

PAGE 14/18

If you have no other drag and drop applications available for testing, run two instances
of this program and drag and drop between them.

EXAMPLE PROJECTS:
all examples are tested
TEST APPLICATION for various functions

figure 18: Tab 1

figure 19: Tab2 Interactions are possible

85Blaise Pascal Magazine 110 2023

PAGE 15/18

If you have no other drag and drop applications available for testing, run two instances
of this program and drag and drop between them.

EXAMPLE PROJECTS:
all examples are tested
TEST APPLICATION for various functions

figure 20: Tab 3

figure 21: Tab 4

If you have no other drag and drop applications available for testing, run two instances
of this program and drag and drop between them.

86Blaise Pascal Magazine 110 2023

PAGE 16/18EXAMPLE PROJECTS:
all examples are tested
TEST APPLICATION for various functions

figure 23: Tab B

figure 22: Tab A

87Blaise Pascal Magazine 110 2023

PAGE 17/18

Drag from anywhere on this form to Excel figure 24: Drag from anywhere

figure 25: Inserted into Te sheet

figure 26: Copied from an Email

figure 27: Into text fields

EXAMPLE PROJECTS:
all examples are tested
More Examples

88Blaise Pascal Magazine 110 2023

PAGE 18/18

figure 27: Into text fields

EXAMPLE PROJECTS:
all examples are tested
More Examples

CONCLUSION:
All in all: this is a very interesting component group which provides especially for the
starter a lot of ease to do things he probably would never had dared to.
Ray is always very original and creative in making things easy and better.

89Blaise Pascal Magazine 110 2023

ADVERTISEMENT

ONLY AT
BARNSTEN
ENDING 30

JUNE

https://www.barnsten.com

Quotation Request Form - Barnsten.com

https://www.barnsten.com/quotation-request-form/

1 INTRODUCTION
It is no secret that the code tools of the Lazarus IDE are excellent,
and even surpass the ones in the Delphi IDE. So for coding in
Object Pascal, the Lazarus IDE is an excellent choice.
But sometimes you need to code more than just Pascal.
You may wish to edit Markdown, HTML, CSS, C or create Makefiles or
shell scripts. This can also be done in the Lazarus editor, but then
the support the editor offers you on top of basic editing is very
limited: in the best case, you have syntax highlighting.
If you want more than that, you need to open another editor to do
the editing.
Many modern editors offer support for many languages:
not only syntax highlighting, but also more advanced features one
expects in an editor:
code completion, identifier completion (Intellisense) finding
references to a symbol, refactorings such as renaming a symbol
and so on. One such editor is Visual Studio Code (an evolution of
the now defunct Atom editor):
https://code.visualstudio.com/

It has become very popular, and has a staggering amount of
extensions - including several for Pascal.
The Visual Studio Code editor is managed by Microsoft,
and Microsoft has introduced a standard for extending its editor
with support for new Languages:
The Language Server Protocol
https://microsoft.github.io/language-server-protocol/

This standard has been adopted by several other editors,
including Emacs, Vim, Delphi, Sublime Text, IntelliJ and the
KDE editor suite (Kate & KDevelop).
A more complete list is available here:
https://microsoft.github.io/
language-server-protocol/implementors/tools/

Unfortunately, the Lazarus IDE is not in
this list, as it does not yet support the
LSP protocol:
it would enable to use any language in
the Lazarus IDE.
If the mountain will not come to
Mohamed, Mohamed must go to the mountain:
Pending support for the LSP protocol in Lazarus,
the lazarus code tools can be used to implement
the LSP protocol and extend other editors
first-class Pascal
support.

You may wish to edit
Markdown, HTML, CSS, C
or create Make files or
shell scripts.

90Blaise Pascal Magazine 110 2023

ARTICLE PAGE 1/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

Starter Expert

ABSTRACT
Lazarus has excellent code tools. VS Code has a framework for
adding support for new languages. In this article we show how
first-class Pascal support can be implemented in Visual Studio
code using the codetools of the Lazarus IDE.

By Michael van Canneyt

VISUAL
STUDIO
CODE

Blaise Pascal Magazine 110 2023

In this case the server replies with a command:

91Blaise Pascal Magazine 110 2023

ARTICLE PAGE 2/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

Several LSP implementations
using the Lazarus codetools are
available on Github,but in this article
we'll concentrate on one:
https://github.com/genericptr/pascal-language-server

2 THE LSP PROTOCOL
The Language Server Protocol is based on a JSON-RPC
communication mechanism.
The editor starts a program that acts as a Language
Server, and sends JSON-RPC
messages to the process over standard input. It reads
the results and possible
commands from the LSP server from standard output.
This exchange looks as follows. The editor sends a
request:

{
 "jsonrpc" : "2.0",
 "method" : "textDocument/didOpen",
 "params" : {
 "textDocument" : {
 "uri" : "file:///home/michael/source/testio/testio.lpr",
 "languageId" : "pascal",
 "version" : 1,
 "text" : "program testio;\n\n ... end.\n"
 }
 }
}

{
 "jsonrpc" : "2.0",
 "method" : "textDocument/publishDiagnostics",
 "params" : {
 "diagnostics" : [],
 "uri" : "file:///home/michael/source/testio/testio.lpr"
 }
}

The full list of commands a server can implement is documented in the
LSP protocol (see the URL above). When the editor starts the server, a
handshake is performed:
the initialize command.
In the initialize command (the first command the editor sends to
the server), the client (the editor) indicates the capabilities it has, and the
language server replies with the capabilities it has:
this is normally a list of 'Providers' of certain functionalities.

This handshake is important, because not all servers support all commands,
and not all clients support all commands.

Blaise Pascal Magazine 110 2023

92Blaise Pascal Magazine 110 2023

ARTICLE PAGE 3/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

A server can also specify custom commands:
these are commands that are not part of the LSP
Protocol, but for which the LSP protocol has a special
command in place, aptly named 'executeCommand'.
The Pascal Language Server mentioned above implements various of the
functionalities expected by the language server protocol:

textDocument/declaration Goto declaration
textDocument/implementation Goto implementation
textDocument/references find references to a symbol
textDocument/signatureHelp Show function or method signature (parameters).
textDocument/documentSymbol List of symbols in a project.
textDocument/documentHighlight Similar to textDocument/references find
 references to a symbol.
textDocument/completion Identifer completion
textDocument/hover Smart hints about your code
window/showMessage allow the LSP server to show a message in the editor.
workspace/symbol List all symbols matching a piece of text.
workspace/executeCommand Execute a custom command.
diagnostics Allows the server to send a list of diagnostics to the client:
 these can be warnings, errors etc.
 They are displayed in the editor (under 'Problems' in VS Code)

Additionally, the Pascal Language Server implements some custom commands:

pasls.completeCode Code completion: will complete the current class, define a
 variable etc. The equivalent of code completion in the IDE.
pasls.formatCode calls the Jedi code formatter on the pascal file.
pasls.invertAssignment a refactoring which inverts the assignment statements
 in the selection.
pasls.removeEmptyMethods a refactoring which removes all empty methods from the current file.

More custom methods are being added to the server: theoretically, all code tools
offered by Lazarus can be implemented.
What does the language server not do ? It does not compile the pascal code, it also
does not offer functionality to edit form files. There are also several commands in the LSP that
it does not implement. It also does not do syntax highlighting. (The 'pascal magic' extension
in the VS extension marketplace does this for you).

Figure 1: The language server project group

Blaise Pascal Magazine 110 2023

Figure 2: The VSIX install menu
in VS Code

93Blaise Pascal Magazine 110 2023

ARTICLE PAGE 4/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

3 USING THE LSP SERVER

To use the LSP server in VS Code, 2 things are needed:
� Compile the LSP server.
� Install an extension in VS Code that registers the LSP server,
 and the extra commands made available by it.
To compile the LSP server, you can clone the official repository from the
URL above.
When you do so, below the Src directory, you'll have a project group file
pascallanguageserver.lpg with 4 projects and a lazarus package (see
figure 1 on page 3 of this article):
lspprotocol.lpk
A package with the units that make up the language server protocol.
It depends on the Lazarus codetools package.
pasls.lpi
The actual LSP server program. This is the program that you must
compile and use. In order to compile it, you must first open and compile
the lspprotocol package.
paslsproxy.lpi
A proxy program that implements the JSON-RPC protocol on
standard input/output and forwards the messages on a TCP/IP socket using
a special high-speed message scheme.
paslssock.lpi
A language server program that listens on a TCP/IP socket and implements
the JSON-RPC protocol using the same message scheme as paslsproxy.
testlsp.lpi A minimal unit test program.

The paslsproxy and paslssock programs are only used for debugging
the language process server: because the editor starts the LSP process,
it is difficult to debug startup and message flow. By running paslssock in
the Lazarus debugger and letting the editor start the paslsproxy
program, you can debug the language server process. But for regular use,
you only need the pasls program, and this is the one you should compile.
It will compile on all platforms that Lazarus supports.

Blaise Pascal Magazine 110 2023

94Blaise Pascal Magazine 110 2023

ARTICLE PAGE 5/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

You can compile it with the released version of Free Pascal (3.2.2) or with
the development version from git. If you do the latter, you'll have better
syntax checking due to improvements in the PAS2JS parser (which is used
to do syntax checking).
To create the pasls binary, open the project in the lazarus IDE and hit the
compile key combination or use the Run-Compile menu item in lazarus.
You can also try to compile the pasls binary without Lazarus installed.
You can checkout the lazarus sources from the git repository at
https://gitlab.com/freepascal.org/lazarus/lazarus
If you do this, you have to specify the paths to the lazarus codetools
package and all other packages on which the latter depends:
● codetools (components/codetools)
● jcfbase (components/jcf2) - the jedi code formatter.
● lazutils (components/lazutils)

Once you have a pasls binary, it can be used in an editor. For VS Code,
there is an extension package available on github:
https://github.com/genericptr/pasls-vscode

You can package and install the extension in VS Code yourself,
but a .vsix package file is available.
This is an extension package for Visual Studio Code,
which can be installed using a menu item:
in the extensions tab on the left of the IDE, the menu at the top contains
an item 'Install from VSIX' (see figure 2 on page 4 of this article).
You can use that to select and install the .vsix file.
Once installed, there are settings in the VS Code IDE that must be
configured (see figure 3 on page 5).
Important settings that are needed to make the codetools work correctly
are the following: (Proceed to Page 7 of this article)

Blaise Pascal Magazine 110 2023

95Blaise Pascal Magazine 110 2023

ARTICLE PAGE 6/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

Figure 3: The Pascal Language server settings

Blaise Pascal Magazine 110 2023

96Blaise Pascal Magazine 110 2023

ARTICLE PAGE 7/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

Env:FPCDIR
 The directory where the FreePascal
 sources are located.
Env:FPCTARGET
 The target operating system.
Env:FPCTARGETCPU
 The target CPU.
Env:LAZARUSDIR
 The directory where the Lazarus sources are located
 (only needed if you work on programs that use some lazarus packages)
Env:PP
The path to the Free Pascal compiler binary: the codetools use this to get some compiler information.
Executable

The path to the pasls binary that you compiled.

format Config
The path to the configuration file for the code formatter. This file can be copied from the settings file of
a Lazarus installation (the file is called jcfsettings.cfg).
Furthermore, there are options that control the behavior of the language server itself, they are part of the
initialization options:
Check syntax
When checked, the language server checks the syntax of the current file whenever you save it.
Document symbols
When checked, querying for document symbols is possible.
FPC options
these are options that you would normally specify when compiling your project: the codetools analyse
these options to determine defines etc.
Include work space folders as include paths
When checked, all sub directories of the VS Code work space directory will be used as include paths
(the -Fu command-line option of the compiler).
Include work space folders as unit paths
When checked, all sub directories of the VS Code work space directory will be used as include paths
(the -Fu command-line option of the compiler).
Insert completion procedure brackets
when checked and you complete a procedure call, the procedure call will have () brackets appended
(even if no parameters are expected).
Insert completions as snippets
when checked and you complete a procedure call, the procedure call is inserted as a snippet:
it will have a cursor placeholder for the parameter (i.e. '($0)').
Maximum completions
the maximum amount of possible completions to be shown.
Minimalistic completions
Provide minimal completion information : only the symbol name is shown, not what kind of symbol it is.
Overload policy
determines how overloads are handled in the symbol list.

A numerical value with the following meanings:
� - Duplicate function names appear in the list
� - Ignore overloads, only the first is used.
❸ - Add a suffix which denotes the overload count

Blaise Pascal Magazine 110 2023

To execute the code formatter, you invoke the usual code formatting
request in VS Code: the extension redirects this request to the language
server. The standard key combination for this is ctrl-shift-i.
The code formatter uses a configuration file, you can set the location of the
configuration file in the settings. The configuration file is an XML file.
A sample file has been included in the github repository of the pascal
language server. Most settings are self-explanatory, so editing the XML is
possible, but at this time, the configuration file is most easily edited in the
Lazarus 'Tools - Options' dialog.
The code completion feature of Lazarus is mapped to the standard key
combination of Lazarus : ctrl-shift-c. But you can simply type 'code completion'
in the command palette and activate it like that.
To execute the other commands (remove empty methods or code
formatter), you invoke the command palette (ctrl-shift-;) and type the
description of the command.
For instance 'remove' will result in a list as shown in figure 6 on page 9 of
this article in a later version of the language server, these will be added to
the refactoring menu.

97Blaise Pascal Magazine 110 2023

ARTICLE PAGE 8/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

Program The main program file:
This is used by the codetools to determine what units
are part of the project, and to find references.
Publish diagnostics
When the codetools return an error in the language server, this error is
reported as diagnostics.
Show syntax errors
In case of syntax errors during a syntax error check, they are shown as
small windows in the editor.
Symbol database
a sqlite database to use for symbols: this database will be
created and filled with symbols. This is then used as a cache: instead of
parsing the files, the contents of the cache is shown instead.

Once you're done with the settings, you're all good to go. When you open
a pascal project in VS Code, you can see that the pascal language server is
correctly started in the output window (Figure 4 on page 8 of this
article), when you select the 'Pascal Language server' tool (see image, the
red rectangle at the top right).
If the pascal language server was initialized correctly, you can start enjoying
enhanced coding editing such as in Figure 5 on page 9, in VS Code.

Figure 4: The Pascal Language server output on startup

4 EXECUTING CUSTOM COMMANDS

Blaise Pascal Magazine 110 2023

Figure 6: Invoking the 'remove empty methods' command.

98Blaise Pascal Magazine 110 2023

ARTICLE PAGE 9/9LAZARUS TO THE AID OF
VISUAL STUDIO CODE

VISUAL
STUDIO
CODE

Figure 5: A helpful hint about the function you're about to call.

EXPLANATION:
Can you get the edition without problems?
If you're an individual, you may use Delphi CE to create apps for your own use and apps that you can
sell until your revenue reaches US$5,000 per year.
If you're a small company or organization with up to US$5,000 per year in revenue, you can also use
the Delphi CE. Once your company's total revenue reaches US$5,000, or your team expands to more
than five developers, you can move up to an unrestricted commercial license with Professional edition.
Delphi CE is also perfect for early stage startups who are bootstrapping their product vision before
securing capital! Develop your professional app with the Community Edition knowing that you can skip
the learning curve your competition faces when building for multiple platforms.
See the Community Edition FAQs for additional details.
Delphi is available in Community, Academic, Professional, Enterprise, and Architect editions.
For details on the differences between the editions, see the Product Editions page and Feature Matrix.
Move up to the Professional edition or above to get additional features including components and
drivers for database connectivity, a full commercial development license, and much more.

Delphi Community Edition (CE) is a full featured IDE for building iOS, Android, Windows and macOS apps from a single
Delphi codebase (limited commercial use license).
Delphi CE is shared free of charge with our community of freelance developers, startups, students and non-profits.
Delphi CE includes a code editor, powerful debugging tools, built-in access to popular local databases with live data at
design time, Bluetooth capabilities, and a visual UI designer with support for pixel perfect, platform-specific styling.

Delphi Alexandria Community version for Delphi 11
Suited for individual developers or early-stage startups with limited revenue

Page 1/2

Features Full-Featured Free Delphi IDE for Creating Native Cross-Platform Apps
https://www.embarcadero.com/products/delphi/starter/free-download

99Blaise Pascal Magazine 110 2023

You can download it through this address
https://www.embarcadero.com/products/delphi/starter/free-download

Page 2/2Delphi Alexandria Community version for Delphi 11
Suited for individual developers or early-stage startups with limited revenue

Build native Windows Applications with High-Performance UI
Framework and Components (VCL)

Visual Component Library (VCL) is a visual component-based object-oriented
framework for developing UIs for Windows applications. It delivers a number of visual
and non-visual components to achieve optimal performance and native platform user
experience on the Windows OS.

Run-Time Library source code

Includes source code for the VCL, FMX and most other libraries, to learn from or
extend with your own code

Full Commercial use license

Consult the EULA for the full license terms for each edition.

InterBase Embedded Database

InterBase is an award winning, high-performance SQL Database with multiple
advanced features, including enterprise security, change views, alerts, generators,
and more. There are 2 embedded versions, IBLite and IBToGo, which adds
encryption support and extra features.

Connect to local databases and build data-aware applications with
support for multiple data sources with FireDAC

FireDAC local/embedded connectivity to certain local databases, including Microsoft
Access database, SQLite database, InterBase ToGo / IBLite, InterBase on localhost,
MySQL Embedded, MySQL Server on localhost, Advantage Database local engine,
PostgreSQL on localhost, Firebird Embedded, and Firebird on localhost.

�

�

�

�

Limited Use

Limited
Commercial

Use

Build Mobile First, Cross-Platform Apps with Native Experience UI
Framework (FMX) and Components (iOS, Android, macOS, Windows)

FireMonkey (FMX) is a visual component framework that uses smart styles and
platform services to design the UI once and adapt it to each platform, so you can to
target multiple platforms, including both application logic and UI, with the same code.

Features
Full-Featured Free Delphi IDE for Creating Native Cross-Platform Apps

100Blaise Pascal Magazine 110 2023

IBLite
Mobile Deployment

https://youtu.be/GYUyWaMw3ws

Below is an online youtube video
address
that helps with the installation of
Delphi Win 11 CE:
:
https://www.youtube.com/
watch?v=kjP680wlj-M

101Blaise Pascal Magazine 110 2023

Jim McKeeth has left Embarcadero

If you have watched any of Embarcadero’s online content, attended a RAD Studio webinar,
or been to one of the in-person events you will most likely know the wonderful Jim McKeeth.
Jim has been the Chief Developer Advocate and Engineer for Embarcadero since July 13th, 2013,
just short of ten years.
Today, however, the big news is that Jim has left Embarcadero and is moving on to a new role as a
developer advocate at EOS Network Foundation.
Of course, we’re devastated that Jim’s particular brand of jovial code geekery will no longer be at the
helm of the Developer Relations program, but we’re also thrilled for him to be moving on to new
horizons and will get to stretch that burgeoning tech brain of his with the delights of such things as
block-chain.

Along with that news comes, of course, an announcement that Ian Barker has taken over as
Embarcadero Developer Advocate. He’ll be dealing with most of the things Jim did, those that are
public, along with those which he did so capably behind the scenes too, of which there are many.
Eli Mapstead will be expanding his role too and taking over some of the Python projects that Jim oversaw
and championed. Yes, Jim can legitimately make the claim “it took two people to replace me“.

Ian Barker is going to do a more comprehensive retrospective blog post of some of the many great
things Jim has been responsible for as well as highlight a few of his crazy professor moments.

Jim was loved by many people because of his humour and energy.

Jim McKeeth left and his successor Ian Barker Right

Blaise Pascal Magazine 110 2023 Blaise Pascal Magazine 110 2023

ADVERTISEMENT

103Blaise Pascal Magazine 110 2023

Starter Expert

Installing FastReport in Lazarus for Linux

FASTREPORT FOR LAZARUS - LINUX
BY SERGEY PLASTUN

Each item in this list consists of 4 files
(3 installer packages and a text file).

- Lazarus(project) installation package;
- fpc-src installation package;
- fpc(laz) installation package;
- README.txt.

It is important to install them in the right order.
First fpc(laz), then fpc-src
and finally Lazarus(project).

Let's fix the problem with fonts in advance.
All operating systems have default fonts.
For example, the Arial font is the default font
in both Windows and Ubuntu.
But in fact, default Arial n Ubuntu is not the
same as default Arial in Windows, so text reports created in
Windows Lazarus will look terrible in Linux Lazarus (and vice
versa).To avoid this, we will immediately install fonts in Linux
as in Windows.

For Ubuntu, you can use the following command:

sudo apt-get install msttcorefonts

But the command may be different for other Linux distributions.

Further, for proper functioning of SqLite, you need to install the
following packages: sqlite3, libsqlite3-dev.
For more details go to:
https://wiki.freepascal.org/SQLite

We launch Lazarus, it will prompt you to configure it.
Click "OK" to accept the default settings.

ARTICLE PAGE 1/5

There is a new FastReport Edition for Lazarus-Linux
in a Trial version as well Professional.

The Trial has a page limit with a note in the corner that the edition is a Trial.
This version misses the Rich View,
but the Professional edition has it and client/server components.
This article is about how to install FastReport in Lazarus for Linux

104Blaise Pascal Magazine 110 2023

INSTALLING FASTREPORT PACKAGES IN LAZARUS FOR LINUX/WINDOWS

So, we have already installed Lazarus, now let's move on to installing the
FastReport VCL report generator packages in Lazarus.

To do this, we must first download and unpack the licensed version of the
product from the official website, Professional and higher versions come
as an .exe installer, Trial and Academic — as zip archives. Unlike
Embarcadero Delphi, RAD Studio, and C++ Builder, where it is enough to
“simply install the compiled packages of components”,
in Lazarus they must be compiled, with the exception of Trial and
Academic, which are pre-compiled with closed (cut) source code.
To install packages, click Package -> Open Package File *.lpk, select the
package in the file manager and you will see the following window:

FASTREPORT FOR LAZARUS - LINUX
BY SERGEY PLASTUN

ARTICLE PAGE 2/5

105Blaise Pascal Magazine 110 2023

As mentioned in the edition comparison, the frxRich package is only
available for Professional and above, and the client-server components are
only available in Enterprise and Ultimate.

Prior to version 2.0.0, there was a very common compilation and/or
installation error, at the time of writing this document, the latest version is
2.2.6 and this error has maybe not yet been completely removed
in Lazarus, but its probability has been significantly
reduced in Windows.

If one of the packages does not compile/install,
you will have to go down and recompile/reinstall
the package dependencies.

For Professional and above, click Compile,
wait for the compilation to finish and click Use.
For Academic and Trial, click Use right away.
After installing each package, Lazarus will reboot.

Let's move on to the order of installing FastReport packages:

��fast-script\Source\fs_lazarus.lpk – library for executing scripts;
� fast-report\Source\frN_lazarus.lpk – package with all main components;
❸ In any order:

fast-report\Source\ExportPack\frxeN_lazarus.lpk
package with exports;
fast-report\Source\\frxchartlazarus.lpk

 package for charts (diagrams);
fast-report\Source\lazdbf\frxlazdbf.lpk

 a package for working with a BDF format database;
fast-report\Source\sqlite\frxlazsqlite.lpk
a package for working with SqLite DBMS;
fast-report\Source\PDFView\frxPDFlazarus.lpk
a package for displaying PDF documents (Windows only);
fast-report\Source\lazrich\frxrichlazarus.lpk
a package for displaying Rich documents

 (recommended only for Windows due to basic package restrictions);
❹ fast-report\Source\ClientServer\frCS_lazarus.lpk

a package with client-server components, you can reаd more аbout them here;

FASTREPORT FOR LAZARUS - LINUX
BY SERGEY PLASTUN

ARTICLE PAGE 3/5

To do this, double-click on it and recompile, and then reinstall.

After successful installation of all the packages, click Project -> Open Project
and open the fast-report\LDemo\FRDemo.lpi project and try to run it,
then click the Design button.

If you get this negative height error on Linux:

106Blaise Pascal Magazine 110 2023

FASTREPORT FOR LAZARUS - LINUX
BY SERGEY PLASTUN

ARTICLE PAGE 4/5

107Blaise Pascal Magazine 110 2023

FASTREPORT FOR LAZARUS - LINUX
BY SERGEY PLASTUN

ARTICLE PAGE 5/5

Don't worry. We support both GTK and QT interfaces
(but keep in mind that development is mainly
done on GTK). So, you can find this bug in some
(rather rare) GTK interfaces.
Just run the application without debugging, or check
"Ignore this type of exceptions".

*Or change the graphical shell. For example, in our
team, many people work under the KDE Plasma GTK
shell, where this error does NOT exist.

The last nuance that you need to know when creating your
projects is that our designer uses multithreading, which is
disabled by default in Linux Lazarus.
To enable it, open the file with the “.lpr” extension in the
project inspector (Project -> Project inspector) and add the
cthreads unit in the first paragraph in the uses
section.

108Blaise Pascal Magazine 110 2023
COMPONENTS

DEVELOPERS4

COMPONENTS
DEVELOPERS4

D11

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/

donate-to-ukraine-humanitarian-aid/

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Blaise Pascal

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

If you are from Ukrainian origin you can get a free Subscription for Blaise Pascal
Magazine, we will also give you a free pdf version of the Lazarus Handbook. You need to
send us your Ukrainian Name and Ukrainian email address (that still works for you), so
that it proofs you are real Ukrainian. please send it to editor@blaisepascal.eu and
you will receive your book and subscription

109Blaise Pascal Magazine 110 2023
COMPONENTS

DEVELOPERS4

COMPONENTS
DEVELOPERS4

D11

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/

donate-to-ukraine-humanitarian-aid/

June 21 2023
 Kim Madsen will do a live presentation

for a
DAPUG erfa meeting

in Fredericia Denmark
DAPUG is the Danish Delphi user group which started out in 1989, in the days
where Turbo Pascal, Turbo C and Paradox were hugely popular products from
Borland.

So at the time, the acronym DAPUG meant “DAnish Paradox User Group”, but
today their focus is primarily on Delphi and Pascal and the acronym changed
meaning to “Database Application Programmers Users Group”.

Through the times, they have hosted prominent meetings with many of the
known faces from Borland and the Delphi world.

Kim will do a 2 – 2.5 hour presentation of some of kbmMW,
including
���kbmMW? What is it?
���ORM
���SmartServices (REST and more)
���SmartBinding

Kim will during the presentation get to slightly touch logging,
transport layers, object notation frameworks, configuration,
authorization and more.

As far as known the session is open for any to join (physical attention only),
but if you are not a DAPUG member you will need to pay a fee for lunch.

Find contact information here:

https://www.dapug.dk/p/test-af-pages.html

110Blaise Pascal Magazine 110 2023

 RAD Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OS X client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralised and distributed load
 balancing and fail-over
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multi thread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronounceable password generators.
● High performance LZ4 and J peg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, J SON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

5.22.00 is a release with containing new stuff, refinements and bugfixes., O p en SSL v3 sup p o rt,
WebSo cket sup p o rt, further imp ro vements to SmartB ind , new high p erfo rmance hashing algo rithms,
imp ro ved Remo teD esk to p samp le and much mo re.
This release req uires the use o f v. 7. 9 7 .0 0 o r newer.kbmMemTab le

kbmMemTable is the fastest and most feature rich in memory table
 for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping
 range selection features
● Advanced indexing features for extreme performance

COMPONENTS
DEVELOPERS4

kbmMW Professional and Enterprise
Edition v. 5.22.00
kbmMemTable v. 7.98.00 Standard
and Professional Edition

● New: full Web-socket support.
 The next release of kbmMW Enterprise Edition will
 include several new things and improvements.
 One of them is full Web-socket support.
● New I18N context sensitive internationalisation framework to
 make your applications multilingual.
● New ORM LINQ support for Delete and Update.
 Comments support in YAML.
● New StreamSec TLS v4 support (by StreamSec)
 Many other feature improvements and fixes.

Please visit http://www.components4developers.com
for more information about kbmMW

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP, XML, RTMP from
 web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

D11
ADVERTISEMENT

NEW RELEASE

NEW RELEASE

https://components4developers.blog/

	Editor:
	PDF:
	fr:
	Image Classifier:
	David:
	Debug:
	Brain:
	Laz Comp Delphi:
	Raize:
	Visual:
	Delphi CE:
	Jim:
	debug:

