
1Blaise Pascal Magazine 113 2023

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 113
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

Photo by Alexx Cooper on Unsplash https://unsplash.com/@hialexxlarioss

MaxBox 64 Version
Help file for the Internet Lib Stick
Counting binary puzzle solutions

Polygon expansion
Castle Game Engine Part 2: the bad way to play chess:

3d physics fun using castle game engine (part 2)
The Lazarus debugger part 4: taking a look – watches

Sending debug logs to the server in PAS2JS
Embedding Webassembly in an FPC Program

it has finally arrived: now we can use it
Thoughts on usability of GUI applications created with the Lazarus IDE

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 113
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

2Blaise Pascal Magazine 113 2023 2

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left
below) in 1968–69 and published in 1970, as a small, efficient language intended to encourage good
programming practices using structured programming and data structuring. A derivative known as Object
Pascal designed for object-oriented programming was developed in 1985. The language name was chosen
to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).Niklaus Wirth

CONTENT

ADVERTISING

Photo by Alexx Cooper on Unsplash
https://unsplash.com/@hialexxlarioss

Barnsten Delphi Products Page 76/98
Components for Developers Page 124
David Dirkse computer math/games in Pascal Page 46
Database Workbench Page 90
Help for Ukraine Page 129
Lazarus Handbook Pocket Page 5
Lazarus Handbook Pocket + Subscription Page 31
Lazarus Handbook PDF + Subscription Page 75
LIBRARY Internet Library Page 38
LIBRARY Lib Stick Page 39
Nexus DB 20 years Page 47
New subscription model Page 22
PDF Viewer 2023 Blaise Pascal Library USB stick Page 89
Subscription 2 year Page 97
Superpack 6 Items Page 122

From your editor Page 4
MaxBox 64 Version Page 6
Help file for the Internet Lib Stick Page 23
Counting binary puzzle solutions Page 32
Polygon expansion Page 40
Castle Game Engine Part 2: the bad way to play chess: Page 48
3d physics fun using castle game engine (part 2)
The Lazarus debugger part 4: taking a look – watches Page 77
Sending debug logs to the server in PAS2JS Page 91
Embedding Webassembly in an FPC Program Page 99
it has finally arrived: now we can use it
Thoughts on usability of GUI applications created with the Lazarus IDE Page 116

ARTICLES

3Blaise Pascal Magazine 113 2023 3

SUBSCRIPTIONS (2023 prices) TOTAL

€ 348Printed Issue (8 per year) ±60 pages :
Electronic Download Issue (8 per year) ±60 pages :

Member and donor of

COPYRIGHT NOTICE

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu
Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to: ABN AMRO Bank Account no. 44 19 60 863 or by credit card or PayPal
Name: Pro Pascal Foundation (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Ondersteuning Programmeertaal Pascal)
Subscription department Edelstenenbaan 21 / 3402 XA Ĳsselstein, Netherlands Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavor to ensure that what is published in the magazine is correct, we cannot
accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a
correction where relevant.

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless
otherwise noted and may not be copied, distributed or republished without written permission. Authors agree that code
associated with their articles will be made available to subscribers after publication by placing it on the website of the
PGG for download, and that articles and code will be placed on distributive data storage media. Use of program listings
by subscribers for research and study purposes is allowed, but not for commercial purposes. Commercial use of
program listings and code is prohibited without the written permission of the author.

Member of the Royal Dutch Library KONINKLĲKE BIBLIOTHEEK

CONTRIBUTORS

WIKIPEDIA
Internat. excl. VAT

€ 200
€ 64,22

Internat. incl. 9% VAT

€ 218
€ 70

Shipment

€ 130

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Stephen Ball
http://delphiaball.co.uk
DelphiABall

Dmitry Boyarintsev
dmitry.living @ gmail.com

Michaël Van Canneyt
,michael @ freepascal.org

Holger Flick
holger @ flixments.com

David Dirkse
www.davdata.nl
mail: David @ davdata.nl

Benno Evers
b.evers @
everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtnernc-
gaertnma@netcologne.de

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Andrea Magni
www.andreamagni.eu andrea.
magni @ gmail.com
www.andreamagni.eu/wp

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta @ cybernautics.nl

Kim Madsen
www.component4developers.com
kbmMW

Boian Mitov
mitov @ mitov.com

Detlef Overbeek
- Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Siegfried Zuhr
siegfried @ zuhr.nl

Anton Vogelaar
ajv @ vogelaar-electronics.com

Danny Wind
dwind @ delphicompany.nl

Jos Wegman
Corrector / Analyst

Jeremy North
jeremy.north @ gmail.com

Hello to all of you,
to begin with: I have changed the layout to a much more workable and readable layout:
make it flatter – less colorful – larger space between the lines and a sharper font.
The coding values have been changed and I hope that all of you are satisfied with this
new layout.
This was the outcome of a number of discussions I had with readers.
Some loved the colorful, but I thought when you want to work with the text it should be
as easy to read as can be – with little contrast, more clearly arranged.
Of course it now is a much duller in appearance.
But that's one or the other.
So now I ask you tell me if you like this new layout or what would be your opinion.
Let me know at: editor@blaisepascal.eu.
I hope you will agree that we always want better and therefore we have to change things.

We were forced to increase the price of the printed version due to the significant increase
in shipping costs. The awful thing is that every issue I ship costs €10. The cost of each
shipment would still exceed 50% of the overall cost even if I could reduce the cost of
printing. So, it will be an extremely expensive endeavor. I have no idea how to overcome
this.

To make our services better we have included the internet version of the “Library of all
issues” of our Magazine – only for reading. If you want the complete library with all
downloads and code you will have to buy the “LIB-stick on USB” – credit card.

Right at this moment we are building the new version of our website and we would like
you to tell us what kind of service you would want to be added. I would like to persuade
you to write an article. There are may of you with brilliant ideas. Let the world know. We
will help you with writing your article.

In this issue “Michalis Kamburelis” wrote about his gaming engine and now how to program
(code) the game. That is wonderful. It will now be possible to do this in an easy way.
Maybe you can even write your own game? Ever thought of combining a user interface
with 3D rendered moving parts?
So that the user will be surprised with easy examples of the use of your application
interface?
Playful learning and teaching? Take a look at the fantastic and very convincing example
of 3D animals.They are stunningly beautiful and available for use.
https://sketchfab.com/features/free-3d-models
have a lot of examples for free and of course you can create your own, or look for
specific designed models:
https://youtu.be/NTaHgf7okwk - a walking cheetah.
I placed a very short video of the bad chess game on our website. Just take look. Its very
convincing and it all can be done in Pascal: in Delphi as well in Lazarus.

There has been a tremendous development: Webassembly for FreePascal.
We now have been able to run FPC inside Webassembly and that means that a whole lot of
new techniques will become available as well for Pas2js.
We will write about this in the next issue 114/115
to explain all the coming techniques and show you samples of what we achieved.
Embarcadero has promised to come up with a new version 12. I think it will be presented
next month, and so I hope to show you a lot of new stuff from Delphi.

Please let me know your ideas about this item, and thank you for reading.

Detlef

4Blaise Pascal Magazine 113 2023

From your editor

5Blaise Pascal Magazine 113 2023 6Blaise Pascal Magazine 110 2023

LAZARUS HANDBOOK PRICE: € 25,00
POCKET PACKAGE (2BOOKS) EXCLUDING VAT AND SHIPPING

https://www.blaisepascalmagazine.eu/product-category/books/

6Blaise Pascal Magazine 113 2023

maXbox

maXbox

CONVERT A 32-BIT APPLICATION TO 64-BIT FROM DELPHI 2007 TO DELPHI 10.4 SYDNEY.
ARTICLE PAGE 1 / 16MIGRATE TO 64-BIT MAX-BOX

Starter Expert

maXbox Starter 113
“Lost in translation –
ghost in application” -
Hardcore code.
Source: firstdemo_
master11_cop21web.
txt and my6
cannonball.txt blog

INTRODUCTION
If you have a code base of 32-bit Windows Delphi applications that you want to convert to 64-bit
Windows, you should first do a reorganisation of the sources to get an overview.
The Source is organised in _C for Components and _R for Runtime (native Units) and _D for Design
Units (script mapping imports) like the following graph of Package Neuralvolume of CAI
NeuralNetwork shows as 4 files:

Blaise Pascal Magazine 113 2023 6

7Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 2 / 17MIGRATE TO 64-BIT MAX-BOX

So its not that easy open your 32-bit application in the IDE, add and activate the
64-bit Windows target platform, and compile your application as a 64-bit
Windows application.
While digging or diving through the source code of maXbox4 it seems to be
impossible to migrate over 3300 units (exactly 3335) in a decent and proper way
to maXbox5 aka 64.bit Version.

Blaise Pascal Magazine 113 2023 7

8Blaise Pascal Magazine 113 2023

maXbox

In Delphi, I can include a folder's source code by adding it to the project Search Path, or adding it
to the Library Path. The Search Path applies only to the current project, while the Library Path
applies to any project opened with the IDE.

But other than that, is there no functional difference between the Search and Library paths?

The reason is I have a folder X with source used by project A. When I include that folder under
Project A's search path, it says it cannot find a specific file in that folder. When I include it under
the Library path, then test project A compiles fine.

ARTICLE PAGE 3 / 16MIGRATE TO 64-BIT MAX-BOX

SOURCE ORGANISATION
First thing I must say is the missing support of any kind of the whole "HiRes/4K or DPI Awareness
Resolution and Delphi forms" revolution;
There's no “Make my form look right on all resolutions" checkbox or a emulator which go through
all forms. But you can drawback to the "don't support hi-DPI" setting.
I know this is not the improvement we want, but this causes the least headaches.
As in mX4 and for the forthcoming mX5 the App is “out of the box” (self containment) and needs
no installation nor registration. It has a independent system architecture (ISA).

So for the reorganisation of the sources I have the latest revision with patches from issue #202
(commit 86a057c) but I am unable to compile the files at first (Core_D26) that are part of the
PascalScript_Core_D27.dpk for that platform for Linux64, Win64 nor MacOS64.

Blaise Pascal Magazine 113 2023 8

9Blaise Pascal Magazine 113 2023

maXbox

[dcc] ./PascalScript_Core_D26.dpk
[dcc] ./uPSUtils.pas (730)
[dcc] Error: E2008 Incompatible types
[dcc] ./uPSCompiler.pas (1374)
[dcc] Fatal: F2063 Could not compile used unit 'uPSUtils.pas'

If I comment out that offending code then I get the following which is starting to look non-trivial...

[dcc] ./PascalScript_Core_D26.dpk
[dcc] ./uPSRuntime.pas (8923)
[dcc] Warning: W1057 Implicit string cast from 'AnsiString' to 'string'
[dcc] ./uPSRuntime.pas (11640)
[dcc] Error: E1025 Unsupported language feature: 'ASM'
[dcc] ./uPSRuntime.pas (11640)
[dcc] Error: E2029 ';' expected but 'ASM' found
[dcc] ./uPSRuntime.pas (11640)
[dcc] Warning: W1011 Text after final 'END.' - ignored by compiler
[dcc] ./uPSRuntime.pas (58)
[dcc] Error: E2065 Unsatisfied forward or external declaration: 'TPSProcRec.Create'

The reason of all problems in OSX64 (and Linux64, i think also) with PS is "
The LongInt and LongWord Data Type are different on 64-bit POSIX* platforms.
To keep interoperability between Delphi and POSIX* API, for 64-bit POSIX* platforms, the size of
LongInt and LongWord types are changed to 64-bit. All 32-bit platforms and 64-bit Windows
platforms keep 32-bit for the LongInt and LongWord types."

So, fixing can be very simple - change ALL LongInt type to Integer. Files:
uPSCompiler, uPSComponent, uPSDebugger, uPSRuntime, uPSUtils.

But don't change it by auto-replace from "Longint" to "Integer", because in this
case declarations like AddTypeCopyN('Integer', 'LongInt');
and others – as the reference as string literal will be broken.

I stubbed out 2 assembler routines which I hope could be translated to pure pascal by someone
who understands their intent. I'm not really sure what the assembler is doing

procedure MyAllMethodsHandler;
procedure PutOnFPUStackExtended(ft: extended);

maXbox

ARTICLE PAGE 4 / 16MIGRATE TO 64-BIT MAX-BOX

Blaise Pascal Magazine 113 2023 9

As far as I know, browsing path is where the debugger should look for files when breaking/
stepping into source files that's not in the library path. Lets say that you have a third-party
component that you use. You point the library path to the directory where the pre-compiled dcu-
files of that component are placed. Your project will use these dcu-files when you compile.
This is obvious, because it wont be recompiled every time you do a build.
The default settings for the VCL show this. In library path they have put $(BSD)\Lib, and in the
browsing path they have put $(BDS)\SOURCE\WIN32...

Here's some compiler output at first to compare using Delphi 10.3.2 Rio and then 10.4 dccosx64 or
dcc64 compiler (similar results exist for dcclinux64):

Perhaps as suggested we can just {$DEFINE empty_methods_handler} to avoid the assembler.
But I don't know what its trying to do, so is a stub acceptable or do we need it to do something?
As you can see the work for the 64bit box has begun but libs, maps, object-files, transpiler and
registering is full of traps. If “Use Debug DCUs” option is not activated, and I debug our application,
I can only single step through my own code. This is what we want in the most cases, because it is
our code that is buggy, not Delphi’s code normally. It will be quite annoying to keep stepping into
Delphi’s code.

10Blaise Pascal Magazine 113 2023

maXbox

REORGANISATION
After restructured the source from Delphi 2007 (see pic 2 article page5) to Github and
configured in Delphi 10.4 I began to review and handle the following issues (mostly related to
pointed operations in WinAPI issues, NativeInt size, and Assembly code):

If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam and
lParam parameters should be type-casted to the WPARAM/LPARAM type
and not to Integer/Longint.

Correct: SendMessage(hWnd, WM_SETTEXT, 0, LPARAM(@MyCharArray));
 Wrong: SendMessage(hWnd, WM_SETTEXT, 0, Integer(@MyCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr

for GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and GWLP_
WNDPROC as they return pointers and handles.
Pointers that are passed to SetWindowLongPtr should be type-casted to LONG_PTR and not to
Integer/Longint.

Correct: SetWindowLongPtr(hWnd, GWLP_WNDPROC,LONG_PTR(@MyWindowProc));
Wrong: SetWindowLong(hWnd, GWL_WNDPROC, Longint(@MyWindowProc));

In the runtime library several issues had to be done:

 <?xml version="1.0" encoding="UTF-8"?>
{$IFNDEF WIN32}

'This components are for 32bitDelphi only!'???›??
{$ENDIF}

Review the IFNDEF WIN32 in the sense: try to convert or leave!
In Delphi, strings as result values are treated like var parameters.
In other words, a function like Foo is in fact compiled as:

function Foo(): String;
begin
Result := 'foo';
RaiseException('...');

end;
procedure Foo(var Result: string);
begin
Result := 'Foo';
RaiseException(...);

end;

maXbox

The Portable Operating System Interface (POSIX; IPA*) is a family of standards specified by the
IEEE Computer Society for maintaining compatibility between operating systems. POSIX
defines both the system and user-level application programming interfaces (APIs), along
with command line shells and utility interfaces, for software compatibility (portability)
with variants of Unix and other operating systems. POSIX is also a trademark of the
IEEE. POSIX is intended to be used by both application and system developers.
The International Phonetic Alphabet (IPA) is an alphabetic system of phonetic notation based
primarily on the Latin script.

WIKIPEDIA

Blaise Pascal Magazine 113 2023 10

MIGRATE TO 64-BIT MAX-BOX ARTICLE PAGE 5 / 16

So the chance to convert lines of WIN32 to WIN64 is possible with references or type-less
references like procedure Foo(var Result;);
Overloads: For functions that took PChar, there are now PAnsiChar and PWideChar versions
so the appropriate function gets called. AnsiXXX functions are a consideration:

● SysUtils.AnsiXXXX functions, such as AnsiCompareStr:
● They remain declared with string and float to UnicodeString.
• Offer better backward compatibility (no need to change code).

11Blaise Pascal Magazine 113 2023

maXbox
Blaise Pascal Magazine 113 2023 11

ARTICLE PAGE 6 / 16MIGRATE TO 64-BIT MAX-BOX

maXbox

The AnsiStrings unit’s AnsiXXXX functions offer the same capabilities as the SysUtils.
AnsiXXXX functions, but work only for AnsiString. Also, the AnsiStrings.AnsiXXXX
functions provide better performance for an AString than SysUtils. AnsiXXXX functions,
which work for both AnsiString and UnicodeString, because no implicit conversions are
performed.String information functions:
● StringElementSize returns the actual data size.
● StringCodePage returns the code page of string data.
● System.StringRefCount returns the reference count.

The RTL provides many helper functions that enable users to do explicit conversions between code
pages and element size conversions. If developers are using the Move function on a character
array, they cannot make assumptions about the element size. Much of this problem can be
mitigated by making sure all RValue references generate the proper calls to RTL to ensure proper
element sizes. In the meantime I got the import and list in D10.4:

12Blaise Pascal Magazine 113 2023

maXbox
Blaise Pascal Magazine 113 2023 12

ARTICLE PAGE 7 / 16MIGRATE TO 64-BIT MAX-BOX
A big mess was or is the Tencoding (not finished yet) because Tencoding makes the real difference
from ANSI to unicode:

● Defaults to users’ active code page.
● Supports UTF-8.
● Supports UTF-16, big and little endian.
● Byte Order Mark (BOM) support.
● You can create descendent classes for user-specific encodings.
You need to perform these steps:

� Review char- and string-related functions.
� Rebuild the application.
❸ Review surrogate pairs.
❺ Review string payloads.
Night after night I got many AV’s (Access Violation) of these type:
Exception code 0xc0000005 is an Access Violation. An AV at fault offset 0x00000000 means that
something in your service's code is accessing a nil pointer. You will just have to debug the service
while it is running to find out what it is accessing. If you cannot run it inside a debugger,
then at least install a third-party exception logger framework, such as EurekaLog or MadExcept, to
find out what your service was doing at the time of the AV. Most of the single time you get an AV in
a unit with a initialisation section of e.g. a Setmem or some memory allocation stuff.maXbox

13Blaise Pascal Magazine 113 2023

maXbox

Function Format(fmt : String; params : array of const) : String;
var
pdw1, pdw2 : PDWORD;
i : integer;
pc : PChar;

begin
pdw1 := nil;
if length(params) > 0 then GetMem(pdw1, length(params) * sizeof(Pointer));
pdw2 := pdw1;
for i := 0 to high(params) do begin

pdw2^ := DWORD(PDWORD(@params[i])^);
inc(pdw2);

end;
GetMem(pc, 1024 - 1);
try

SetString(Result, pc, wvsprintf(pc, PwideCHAR(fmt),
PwideCHAR(pdw1))); // fix from pchar?

except
Result := #0;

end;
if (pdw1 <> nil) then FreeMem(pdw1);
if (pc <> nil) then FreeMem(pc);

end;

Blaise Pascal Magazine 113 2023 13

ARTICLE PAGE 8 / 16MIGRATE TO 64-BIT MAX-BOX

maXbox

This means that an exception was thrown, but there's no catch handler for it anywhere.
This is most likely a programming error, probably on your part. It looks like you called an OpenCV
or API function which failed by throwing a CV::Exception, but you're not catching it.
This would normally lead to a crash, but since you're running inside a debugger, you get the option
to ignore this exception. That's what the Continue button will do on this dialogue. So instead of
throwing an exception, the code will just continue executing as if nothing had happened. This is
likely to fail eventually, as an error condition has now been ignored.
A real horror was to convert the Format() Function not in Delphi but to work in PascalScript64
at runtime in a script, so here's the function in Delphi in system RTL:

maXbox

At the core its a wvsprintf but the question was unicode available or not? The Byte Order Mark
(BOM) should be added to files to indicate their encoding and the function returns a string.
After reimport and rebuild and cast to PwideCHAR it works now.

COMPATIBILITY COMPILATION
When running a 32bit process, on a 64bit version of Windows,- having the large address aware flag
set - pointers in the 2-4GB range are valid. In that case the request of a varInt64 could, if I'm
not mistaken, result in positive values in the 2-4GB range being returned. If NativeInt is a
signed 32bit int, that would then result in a range violation. I'm not sure if that NativeInt /
NativeUInt cast in between here is needed at all. NativeInt and NativeUInt are signed/
unsigned and their size is of the targeted platform, hence 32 or 64 bits.
That's why I believe the cast changes are not needed.

Most of the times you deal with pointers or assembler code like:

function StrToWord(const Value: String): Word;
begin

:= Word(pointer(@Value[1])^);
end;

function WordToStr(const Value: Word): WordStr;
begin
SetLength(Result, SizeOf(Value));
Move(Value, Result[1], SizeOf(Value));

end;

14Blaise Pascal Magazine 113 2023

maXbox
Blaise Pascal Magazine 113 2023 14

ARTICLE PAGE 9 / 16MIGRATE TO 64-BIT MAX-BOX

maXbox

15Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 10 / 16MIGRATE TO 64-BIT MAX-BOX

Progress has been made in that I've compiled the TestApplication sample with CrossVCL 1.27 for
Mac64 and Linux64.

When I choose a second compile in a CrossVCL from the menu I receive the following error.

First chance exception at $0000000100419E9E.

Exception class EAccessViolation with message 'Access violation at
address 0000000100419E9E, accessing address 00000009017241F8'. Process
TestApplication (5741)
Source Breakpoint at : C:\Program Files\Streaming\IBZ2021\Module2_
3\EKON26\maxbox4\pascalscript-master\pascalscript-
master\Source\uPSRuntime.pas line 2060. Process TestApplication (5741)

Upsruntime.TPSExec.Clear()(0x00000002017350d0)
Upsdebugger.TPSCustomDebugExec.Clear()(0x00000002017350d0)
Upscomponent.TPSScript.Compile()(0x0000000201734c20)
Fmain.TForm1.Compile1Click(System.TObject*)(0x00007ffeefbfe038)
Vcl.Menus.TMenuItem.Click()(0x0000000201734960)
Vcl.Menus.TMenu.DispatchCommand(unsigned short)(0x0000000201734340,2)
Vcl.Forms.TCustomForm.WMCommand(Winapi.Messages.
TWMCommand&)(0x0000000205039ff0,0x00007ffeefbfe878)
:000000010001132B System::TObject::Dispatch(void*)

And then maybe by intuition I made a build and the AD has gone away and I got my first screen,
compiled and script executed:

Blaise Pascal Magazine 113 2023 15

maXbox

16Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 11 / 16MIGRATE TO 64-BIT MAX-BOX

One of the unsolved problems is to catch an Access-violation instead of crash the app. Its like the
code in uPSRuntime could not catch cause of halt or exit like the following:

procedure TdynamicDll.Quit;
begin
if not(csDesigning in ComponentState) then begin

{$IFDEF MSWINDOWS}
MessageBox(GetActiveWindow, PChar(GetQuitMessage), 'Error',

MB_TASKMODAL or MB_ICONSTOP);
ExitProcess(1);

{$ELSE}
WriteLn(ErrOutput, GetQuitMessage);
Halt(1);

{$ENDIF}
end;

end;
The weird thing was in one of the previous alpha versions (see below) the catch of the AV was
present but in the meantime the app stuck and exits:

Blaise Pascal Magazine 113 2023 16

maXbox

After debugging I realized it is a first chance exception which works as long the debugger is
running with break or continue but without debugger the app disappears without forwarding the
AV on the output like AV at address xyz read of address 000.
You can tell the debugger to ignore certain kinds of exceptions. Figure 3 shows Delphi’s language-
exception options. Add an exception class to the list, and all exceptions of that type and of any
descendant types will pass through to your program without Delphi interfering. You can use
Delphi’s “advanced breakpoints” to disable exception handling around a region of code.
To begin, set a breakpoint on the line of code where you want the IDE to ignore exceptions.

Now let’s have a last look at a selected test app/script below with individual texts from your own
data to translate. We wrote two useful functions. The first one returns text translated with a target
language. The second one accepts one sentence as an argument with language detection as a
param “auto”. Then it will show text in JSON or as file.

17Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 12 / 16MIGRATE TO 64-BIT MAX-BOX

Or you can switch from assembler to Pascal code:

{$define GEOMETRY_NO_ASM}

procedure DivMod(dividend : Integer; divisor: Word;
var result, remainder : Word);

{$ifndef GEOMETRY_NO_ASM}
asm
push ebx
mov ebx, edx
mov edx, eax

 shr edx, 16
 div bx
mov ebx, remainder
mov [ecx], ax
mov [ebx], dx
pop ebx

{$else}
begin
Result:=Dividend div Divisor;
Remainder:=Dividend mod Divisor;

{$endif}
end;

Blaise Pascal Magazine 113 2023 17

maXbox
The error "unit is compiled with a different version of..." is an annoying one. It occurs in a situation
like below:

 +--------+
 | unit A |
 +--------+
 | |
 | |
 V |
 +--------+ |
 | unit B | |
 +--------+ |
 | |
 | |
 V V
 +--------+
 | unit C |
 +--------+

Both unit A and B use unit C and unit B uses C. Unit B and C are compiled and for
some reason.
The source of unit B is not available.
Now Unit C is changed (any change will do and is recompiled).
The dcu of unit C differs from the unit C used by unit B,
so unit B needs to be recompiled too.
But unfortunately, the source is not available so the compiler gives up.

18Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 13 / 16MIGRATE TO 64-BIT MAX-BOX

UNIT UNICODE TESTING
This app allows you to translate or detect text from many different languages and to test mX5 with
Unicode. That's why I want this endpoint to be seamlessly integrated into googletrans, with it
switching between endpoints if one is facing 4xx/5xx errors.

Const AURLS = 'https://clients5.google.com/translate_a/t?client=dict-chrome-ex&sl=%s&tl=%s&q=%s';

function Text_to_traslate_API5(AURL, aclient,langorig,langtarget,atext:
string):string;

var httpq: THttpConnectionWinInet;
rets: TStringStream;
heads: TStrings; iht: IHttpConnection;
jo: TJSON; jarr: TJsonArray2;

begin
httpq:= THttpConnectionWinInet.Create(true);
rets:= TStringStream.create('');
try
httpq.Get(Format(AURLS,[langorig,langtarget,atext]),rets);
writeln('server: '+Httpq.GetResponseHeader('server'));

jo:= TJSON.Create();
jo.parse(rets.datastring)
jarr:= jo.JsonArray;
if httpq.getresponsecode=200 Then result:=jarr[0].stringify
else result:='Failed:'+

itoa(Httpq.getresponsecode)+Httpq.GetResponseHeader('message');
except
writeln('EWI_HTTP: '+ExceptiontoString(exceptiontype,exceptionparam));

finally
httpq.free;
httpq:= Nil;
rets.Free;
jo.free;

end;
end;

Google's service, offered free of charge, instantly translates words, phrases, text and web pages
between English and over 100 other languages.
That's how we call the function:

atext:= 'bonjour mes amis da la ville';
writeln(utf8ToAnsi(Text_to_traslate_API2(AURL,'dict-chrome-
 ex','auto','es',atext)));

and the result: server: ESF
["Hola mis amigos en la ciudad","fr"]

Google Translate is now a form of augmented reality and is adapted for educational purposes.
This application provides users with tools to translate between languages and
they now include an image option; users
take a photograph of a sign, piece of paper,
or other form of written text and receive a translation in the language of their choice.

Blaise Pascal Magazine 113 2023 18

maXbox

19Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 14 / 16MIGRATE TO 64-BIT MAX-BOX

This visual technique above used to help with the understanding about what individual texts
represent is called semantic analysis. About the topic: https://en.wikipedia.org/wiki/Semantic_
analysis_(linguistics)

I found another endpoint to test with unicode within the source code of one of the google
translate extensions on VSCode too.

"https://translate.googleapis.com/translate_a/single?client=gtx&dt=t + params"
// where the params are:
{
 "sl": source language,
 "tl": destination language,
 "q": the text to translate
}

The results looks something like this:

 ","Hello, how are you today?",null,null,3,null,null,[[]
]
,[[["9588ca5d94759e1e85ee26c1b641b1e3","kgmt_en_ja_2020q3.md"]
]]
]]
,null,"en",null,null,null,null,[]
]

for the query: https://translate.googleapis.com/translate_a/single?client=gtx&dt=t&sl=en&tl=ja&q=Hello,
how are you today?
And something like this:
[[["Bonjour","Hello",null,null,1]]
,null,"en",null,null,null,null,[]
]

Blaise Pascal Magazine 113 2023 19

maXbox

20Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 15 / 16MIGRATE TO 64-BIT MAX-BOX

EXAMPLE:
import requests
word = 'اذه لعفت اذامل'
url = "https://clients5.google.com/translate_a/
t?client=dict-chrome-ex&sl=auto&tl=en&q=" + word
headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36(KHTML, like Gecko) Chrome/88.0.4324.104 Safari/
537.36'}

try:
 request_result = requests.get(url, headers=headers).json()
 print(request_result)
 print('[In English]: ' + request_result['alternative_
translations'][0]['alternative'][0]['word_postproc'])
 print('[Language Dectected]: ' + request_result['src'])
except:
 pass

String unicode (\uxxx) encoding and decoding.

After some testing with request headers and F12 tools – Inspect (see below),
I found the solution for the garbled text it can be.
Simply set the User-Agent header to the one that Google Chrome uses.

Blaise Pascal Magazine 113 2023 20

maXbox

21Blaise Pascal Magazine 113 2023

maXbox

ARTICLE PAGE 16 / 16MIGRATE TO 64-BIT MAX-BOX

CONCLUSION:
Of course the 64-bit-box is not finished yet. The current version 5.0.1.22 is an early beta Version.
As a next step method pointers (func pointers) and TEncoding are on the list.
Also on discovering a function marked with the overload directive, it prompts for a new
function name, and then generates wrapper code that maps the new method name to the
original version, but in a redirection we get an AV.
In general, there is unlikely to be much benefit beyond an 32-bit, possibly, a small speed increase,
more memory and more registers.
Don’t rely on 64-bit to speed up a slow application though:
you will still need to make algorithmic changes for large speed boosts.
64-bit isn’t a magic bullet. Other than that, you only need to change if you’ve already encountered
one of the limits imposed by 32-bit or you want to develop plugins for 64-bit app or just be
compatible with a 64-bit operation system.

REFERENCES:
Compiled Project:
https://github.com/maxkleiner/maXbox4/releases/download/V4.2.4.80/maxbox5.zip

Preparation:
https://stackoverflow.com/questions/4051603/
how-should-i-prepare-my-32-bit-delphi-programs-for-an-eventual-64-bit-compiler

Doc and Tool: https://maxbox4.wordpress.com

maXbox

8 2022 Blaise Pascal Magazine 113 2023

THE NEW SUBSCRIPTION MODEL
BLAISE PASCAL MAGAZINE

USE WHERE EVER THE INTERNET IS

1. SUBSCRIPTION: PER YEAR - no changes: issues starting at the latest issue available
 +1 year / code included + issues downloadable € 70,00 or without Vat 64,22.
 For all countries INCLUDING FREE INTERNET LIBRARY FOR ALL MAGAZINES

2 LIB-STICK USB-CARD: all issues / code included. same interface as the internet library.
€ 120,00 FOR ALL COUNTRIES including 1 year subscription

https://www.blaisepascalmagazine.eu/register/

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 1/8
INTERNET PDF LIBRARY SUBSCRIPTION

Is a free addition to your normal
subscription. You can view and search
over all issues, as well in all issues.
This article treys to help you to see what’s
possible. It is available through the
internet and can open any pdf.
If you have a subscription (download or
printed) you can use it for free for the
period of one year., the same period of
your subscription.

You will automatically receive a login and
a password.

If you have additional request or want to
suggest extra or improvements let me
know.

��To start:
at the right top corner you can login.

��Insert your username. You received
that with the correspondence about the
subscription.

❸ Enter the password. Click on Login

8 2022 Blaise Pascal Magazine 113 2023

❹ To start opening an issue: click on the dropdown list

❺ Choose the number of the issue you want to view

❻ After that click on open.It needs some time and will open the first page of the issue

THE NEW FREE EXTRA PAGE 2/8
INTERNET PDF LIBRARY SUBSCRIPTION

❼ The first page becomes available.

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 3/8
INTERNET PDF LIBRARY SUBSCRIPTION

❼ The list at the left shows the articles of that issue

❽ The article chosen starts up

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 4/8
INTERNET PDF LIBRARY SUBSCRIPTION

❾ You can enlarge the size of the pdf it self

��It is easier to see the details….

11 You can also load any kind of PDF, from your Hard disk, your USB stick or any other source…

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 5/8
INTERNET PDF LIBRARY SUBSCRIPTION

12 You can also load any kind of PDF, from your Hard disk, your USB stick or any other source…

15 Light is of course possible

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 6/8
INTERNET PDF LIBRARY SUBSCRIPTION

13 The opened pdf file

14 Dark mode if you prefer

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 7/8
INTERNET PDF LIBRARY SUBSCRIPTION

15 This list needs to be empty if you want to search for text elements over ALL issues.
This must be done before you can enter the text that you want to look for

16 After that you can enter the word or text

17 Here is an enlargement of the word in the text that was chosen from the list at the left.
The Article comes up directly

8 2022 Blaise Pascal Magazine 113 2023

THE NEW FREE EXTRA PAGE 8/8
INTERNET PDF LIBRARY SUBSCRIPTION

18 If you click on the logo you will go straight to the website of Blaise Pascal Magazine

31Blaise Pascal Magazine 113 2023 6Blaise Pascal Magazine 110 2023

LAZARUS HANDBOOK
POCKET + PDF AND
SUBSCRIPTION
ex Vat and Shipping

Price: € 75,00

https://www.blaisepascalmagazine.eu/product-category/books/

ADVERTISEMENT

32Blaise Pascal Magazine 113 2023

COUNTING BINARY PUZZLE SOLUTIONS
BY DAVID DIRKSE

STARTER EXPERT

INTRODUCTION

A Visitor of my website (davdata.nl/math) wondered about the number of
solutions of a binary puzzle. Below pictured is a binary puzzle as found in
newspapers. Left is the original puzzle, right is the solved state.

The problem is to fill the empty cells with a 0 or a 1 digit under following restrictions:
● A row or column may not have more than two consecutive zeros or ones
● Each row and each column must have an equal amount of ones and zeros
● No two columns and no two rows may be equal

Binary puzzles come in 4x4, 6x6, 8x8 (as above),10x10, 12x12, 14x14 size.
A good puzzle has only one solution.

QUESTIONS ARE:
● How to test a puzzle for uniqueness
● Which digits may be removed in a solved puzzle to preserve a unique solution

● How many puzzles are possible for a nxn size puzzle?

The last question may be restated as
● How many solutions has a puzzle with only empty cells?
 This Delphi project tries to find the answer to the last question.
 As in many cases, this problem may be approached in an analytical or in a numerical way.
 The numerical approach is used. All possible solutions are generated and counted.
 Take a 6x6 puzzle as example. 6 bits represent a number ranging 0 to 63.

Because of the restrictions, only 14 of these numbers are valid, see below:

ARTICLE1 / PAGE 1/6

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

33Blaise Pascal Magazine 113 2023

ARTICLE1 / PAGE 2/6

To avoid superfluous work, these valid numbers are generated once and saved in array
numbers[1..] Instead of using the 6 bit values, we may refer to rows and columns
using the index of the numbers[] array.

When filling rows with valid numbers, columns may result with invalid numbers.
So, it is convenient to register per number [0..63] if it represents a valid number.
Array VNlist[number] of Boolean has value true for a valid number
.
To generate all possible solutions a counter system is needed.
This counter is called Acounter[1..bitcount]
which holds indexes to the numbers array.
Each element of the Acounter may be considered a digit of number Acounter.

procedure makeFixedbits(n : byte);
var N1,N2,X : word;
begin
N1 := numbers[Acounter[n-1]];
N2 := numbers[Acounter[n-2]];
X := N1 xor N2;
Amask [n] := x xor bitcountmask;
AFixed[n] := N1 xor bitcountmask;

end;

For an nxn puzzle, Acounter has n elements.
The VN list has 2^n elements.
 By using the numbers array, all values are valid.
In the selection of a new row, we already may avoid columns with more than two
consecutive zeros or ones . For this purpose there are
Var bitcountmask : word;
// 2^n – 1; 111111 for a 6x6 game, 11111111 for a 8x8 game
 Amask : array[1..14] of word;
 AFixed : array[1..14] of word;
For row n {n > 2}

COUNTING BINARY PUZZLE SOLUTIONS

EXAMPLE (6*6 PUZZLE)

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

34Blaise Pascal Magazine 113 2023

For row n bits 3 , 4 must be 0,1 to avoid 3 consecutive ones or zeros in a column.
When all 6 row numbers are selected these checks must be made

� A number may occur only once in the rows

� Each column must have an equal amount of ones and zeros

❸ A column may not have three (or more) consecutive ones and zeros

❹ A number may occur only once in the columns

� Each new row is compared to the previous rows to avoid reoccurrence.

� For the column checks, the columns have to be written as rows which is done by
 mirroring over the right top to left bottom diagonal.
 This is a time consuming process. So, before writing the columns as rows
 the rows are summed and this sum is checked to be (
 n/2)(2^n – 1) = 189 for 6x6 puzzles.
 A 6x6 puzzle has three 1’s per column so the sum is
 3*(111111)bin = 3*63 = 189.
 Only if this test is passed, the columns are written as rows.

❸ A valid column number is simply indicated by the VNlist[number] being true.

❹ The check for multiple occurrence is done by comparing all numbers.

This row sum check saves 65% of the time for a 8x8 puzzle.

NOTICE that the row numbers and the solutions appear in complements.
So for each solution there is another one with all cells complemented.

Half the time is saved to count only the first 50% of the numbers in row 1 and
counting solutions by increments of 2. For 8x8 puzzles the number of solutions is
counted in 4.3 seconds.

In case of a 10x10 puzzle, about 4 million solutions were counted per minute.
Expected counting time for all solutions is 16 hours.

RESULTS

It looks like the number of solutions for empty puzzles increases by a factor
1000 for each next (even) nxn size.

ARTICLE1 / PAGE 3 / 6COUNTING BINARY PUZZLE SOLUTIONS

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

35Blaise Pascal Magazine 113 2023

THE PROGRAM

Heart of the program is:
function NextAcount : boolean;
Which updates the Acounter and returns true if a new value is set (no
overflow) Wcount (word count) is the number of valid values in array
numbers[]. LInc is a label.

Bitcount = 4 for 4x4 puzzles, 8 for 8x8…..
A false exit (end of search) occurs if Acounter[1] updates to a number
which has it’s MSB set.
This prevents doubling the search time while only counting complements of
earlier detected solutions.
A true exit takes place if Acounter[bitcount] is updated without
conflict.

ARTICLE1 / PAGE 4/6COUNTING BINARY PUZZLE SOLUTIONS

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

36Blaise Pascal Magazine 113 2023

This is the flowchart:

ARTICLE1 / PAGE 5 / 6COUNTING BINARY PUZZLE SOLUTIONS

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

37Blaise Pascal Magazine 113 2023

ARTICLE1 / PAGE 6 / 6COUNTING BINARY PUZZLE SOLUTIONS

Notice that in this case the use of a label and GOTO statements generates
far more readable code than structured programming statements while
or repeat.

Other functions and procedures:

● function testValid(w : word) : boolean;
 Returns true is a number (w) is valid (see restrictions)

● procedure MakeNumbers;
 Generates the numbers[] list and the VNlist[].

● procedure makeFixedbits(ai : byte);
 Sets the AMask[ai] and AFixed[ai] entries to avoid wrong numbers in a column.

● function UsedWord(a : byte; wix : word) : boolean;
 Returns true if index wix not present in Acounter[1..a-1]. Prevents identical rows.
● procedure setGame1;
 Called at t the start to supply the 1st game.

● procedure makeVGame;
 Transfers columns to rows in array VGame[].

● function checkVGame : boolean;
 Returns true if VGame array contains valid numbers.

This concludes the description of the binary puzzle solutions counter.
Please refer to the source code for details.

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

8 2022 Blaise Pascal Magazine 113 2023

THE NEW SUBSCRIPTION
MODEL OF
BLAISE PASCAL MAGAZINE

USE WHERE EVER THE INTERNET IS AVAILABLE

1. SUBSCRIPTION: PER YEAR - NOTHING CHANGES ISSUES STARTING AT THE LATEST
 ISSUE AVAILABLE +1 YEAR / CODE INCLUDED € 70,00 FOR ALL COUNTRIES
 INCLUDED INTERNET (LIBRARY) USE FOR ALL MAGAZINES FROM 1- THE LATEST
 ISSUE FOR ALL COUNTRIES

2. LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
 INTERNET LIBRARY.€ 120,00 FOR ALL COUNTRIES

https://www.blaisepascalmagazine.eu/product-overview/

https://www.blaisepascalmagazine.eu/product-overview/

8 2022 Blaise Pascal Magazine 113 2023

LIB-STICK ON USB CREDIT CARD
BLAISE PASCAL MAGAZINE
LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 120,00

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 112
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

Chat.gpt Bard: Create a Pascal-rabbit?
Delphi 12 Yukon Release

Interview with the new Communication manager Ian
Barker.H-BOT, H shaped robot: a simulated robot

Pythagorean triples
Debugging in FPC-Lazarus part 3

The new Lazarus Version 3.0 RC 2

40Blaise Pascal Magazine 113 2023

POLYGON EXPANSION
BY DAVID DIRKSE

STARTER EXPERT

A visitor of my website davdata.nl/math asked: “how to expand a polygon?”.
Below is pictured polygon ABCDE and the expansion A’B’C’D’E’

All edges are shifted outward over a distance d.
The new vertices A’….E’ are the intersections of the shifted edges AB, BC,……EA.
How to calculate such an expansion?
Edges AB, BC… are vectors, they are defined by their length and direction.
Vector AB (see picture below):
Each value of f1 defines a point on AB. Point A : f1=0, point B : f1=1.
f1 > 1 defines a point on the extension of AB,past B.
f1 < 0 defines a point before A.

The polygon is described as a list of vectors.

Const maxpolypoint = 40; // maximal number of vertices
type Tvector = record

x,y,dx,dy : single;
dir : double; // direction 0..2*pi
modulus : single; // length=sqrt(sqr(dx)+sqr(dy))
end;

TVectorList = array[1..maxpolypoint] of TVector;
var
 vectorlist : TVectorlist;

The direction is measured in radians.
Horizontal right is direction 0.

ARTICLE 2 / PAGE 1 / 6

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

41Blaise Pascal Magazine 113 2023

DIRECTION OF A VECTOR:

Const pi05 = 0.5*pi;
pi15 = 1.5*pi;
pi2 = 2*pi;

function VDir(deltaX,deltaY : double) : double;
// return direction of vector in radians
// (+,0) = 0; (0,+) = 0.5pi ; (-,0) = pi ; (0,-) = 1.5pi
begin
 if deltaX = 0 then

begin
if deltaY > 0 then result := pi05 else result := pi15;
exit;

end;
result := arctan((deltaY)/(deltaX));
if deltaX < 0 then result := result + pi;
if result < 0 then result := result + pi2;

end;

Direction difference (angle) between vectors:
Next picture shows the angle between vectors v1 and v2.

function V12angle(dir1,dir2 : double) : double;
// dir1,dir2 : direction in radians
// return angle between vectors v1,v2 in radians
// -pi…..+pi
begin
result := dir2 - dir1;
if result > pi then result := result-pi2
else if result < -pi then result := result+pi2;

end;

When shifting an edge, say AB, problem is: “left or right”?
Moving around the polygon starting at A route ABCDE or route AEDCB may be taken.
For the first route, edges have to be shifted right for expansion, the second route needs
left shifts for expansion.
polygons may be traversed CW or CCW.
Summing the angles (direction differences) provides the answer.

ARTICLE 2 / PAGE 2 / 6POLYGON EXPANSION

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

42Blaise Pascal Magazine 113 2023

function SumAngles : double;
//add angles between vectors
//vcount is number of vectors
var i : byte;
begin

result := 0;
for i := 1 to vcount-1 do

result := result + V12Angle(vectorlist[i].dir,
vectorlist[i+1].dir);

result := result + V12Angle(vectorlist[vcount].dir,
vectorlist[1].dir);

end;

A sum of pi2 indicates CCW traversion, -pi2 shows CW traversion.
CCW traversion needs “right” expansion. CW traversion needs “left” expansion.

Right expansion by distance d.

The new (expanded) points are the intersections of the shifted (blue) vectors.

Const offset = 0.025; //displacement of 1 pixel,scale 40 pixels/cm.
procedure shiftvector(var v : Tvector; R : boolean);
// R : true for right shift
var dd, m: single;
begin

if R then m := 1 else m := -1;
with v do
begin

dd := offset/modulus;
x := x+dd*dy*m;
y := y-dd*dx*m;

end;
end;

ARTICLE 2 / PAGE 3 / 6POLYGON EXPANSION

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

43Blaise Pascal Magazine 113 2023

INTERSECTIONS
Calculation of the intersection S of vectors AB en CD

Coordinates of S:

POLYGON EXPANSION ARTICLE 2 / PAGE 4 / 6

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

44Blaise Pascal Magazine 113 2023

Const frnd = 1e-6; // floating point rounding

Var fvalid : boolean = false; // false if vectors are parallel
f1,f2 : single;

procedure vrsect(const v1,v2 : TVector);
// calculate intersection of vectors v1,v2
// line1 = (v1.x1,v1.y1) +f1*(v1.dx,v1.dy)
// line2 = (v2.x1,v2.y1) +f2*(v2.dx,v2.dy)
// return f1,f2,fvalid
var d,vx,vy : single;
begin

d := v1.dx*v2.dy - v1.dy*v2.dx; // discriminant
if d = 0 then begin

fvalid := false; exit;
end;

fvalid := true;
vx := v2.x - v1.x;
vy := v2.y - v1.y;
f1 := (vx*v2.dy - vy*v2.dx)/d;
f2 := (vx*v1.dy - vy*v1.dx)/d;

if abs(f1) < frnd then f1 := 0; // round to 1e-6
if abs(f2) < frnd then f2 := 0;
if abs(f1-1) < frnd then f1 := 1;
if abs(f2-1) < frnd then f2 := 1;

end;

PROGRAM

Draw : mouse down and move to draw vector.
Modify : mouse on point, mouse down and move to change vector.
Other buttons are self explanatory.
NOTE : cursor increments at 10 pixel intervals unless SHIFT key is hold down.

POLYGON EXPANSION ARTICLE 2 / PAGE 5 / 6

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

David Dirkse’s website:
davdata.nl/math

45Blaise Pascal Magazine 113 2023

This concludes the polygon expansion description.

POLYGON EXPANSION ARTICLE 2 / PAGE 6 / 6

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

46Blaise Pascal Magazine 113 2023

ADVERTISEMENT

https://www.blaisepascalmagazine.eu/product-category/books/

David Dirkse’s website: davdata.nl/math

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

procedure
var
begin
 for i:= 1 to 9

do
 begin
 …

 end
end

473

48Blaise Pascal Magazine 113 2023

Starter Expert

Overview of this article
� Introduction
� Coding the game
❸ Exercises
❹ Make code aware "what is a chess piece"
 using behaviors

� CODING THE GAME

❺ Selecting 3D object using the mouse
❻ Let user choose the angle and strength to flick the chess piece
❼ Flick that chess piece!
❽ Conclusion and future ideas

ARTICLE PAGE 1 / 27

BY MICHALIS KAMBURELIS

Welcome to the second part of the article about creating a simple 3D physics game using Castle
Game Engine.

Castle Game Engine is a cross-platform (desktop, mobile, consoles) 3D and 2D game engine
using modern Pascal. It’s free and open-source and works with both FPC and Delphi.

In the first part, we learned how to use the visual editor and we have designed a chessboard with
chess pieces. Then we used physics to throw the chess piece, such that it collides and knocks
down other chess pieces. Remember this is a bad way to play chess. But it’s really fun!
If you have missed the first part, you can still "jump in" at this point.
You can search for the last issue 112 at the Blaise Pascal Magazine web site, search on the Internet
Library version of your subscription, or just download Castle Game Engine from
https://castle-engine.io/ and either set up the chessboard and chess pieces yourself,
or use our ready example project from
https://github.com/castle-engine/bad-chess/
in the subdirectory project/version_1_designed_in_editor.
This project version is a good starting point for this article part.

We encourage you to follow this article and perform all the steps yourself,
to create a similar toy. If you ever get stuck, you can look at the finished project. It is available in
the subdirectory project/version_2_with_code in the same repository, https://

github.com/castle-engine/bad-chess/ It’s the final project, with everything described in
this article done and working.
And if you really just want to play the worst version of chess, right now, you can download the
ready compiled game (for Linux or Windows) from
https://castle-engine.itch.io/bad-chess . Enjoy!

� INTRODUCTION

The focus of this part is to learn how to use Pascal code to make things happen in your game.

The core of Castle Game Engine is just a set of Pascal units that can be compiled using FPC and
Delphi. Thus the games we create are also just regular Pascal programs that happen to use a few
Castle Game Engine units. This means that you can use the workflow you already know and like,
with whatever Pascal text editor and compiler you prefer.

In particular we support Delphi, Lazarus, VS Code or any other custom editor (like Emacs).
We have a dedicated documentation with some IDE-specific hints on
https://castle-engine.io/manual_ide.php . Basically just open in Castle Game Engine
editor the panel "Preferences → Code Editor", configure there which Pascal IDE you use, and
everything should work out-of-the-box. If you double-click on a Pascal file from CGE editor, it will
open in the text editor you configured.

Specifically for VS Code users, the page https://castle-engine.io/vscode contains
information how to setup VS Code with Castle Game Engine LSP server to get great code
completion. We are working right now on a dedicated Castle Game Engine extension for VS Code
that will make this integration even easier.

THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

49Blaise Pascal Magazine 113 2023

NOTE that, while the focus of this chapter is to write Pascal code, we do not stop using
the Castle Game Engine Editor. There are a few things you can do in the editor to make the design
"friendly" to the code manipulation and we will explore them in this article.
So writing Pascal code, and editing the design visually, go hand-in-hand.

3.1. HANDLE A KEY PRESS TO CHANGE POSITION OF AN OBJECT
Let’s start simple. First goal: When the user presses a key x,
we want to move the black king chess piece a bit higher. It’s a simple test that we can:

● React to user input (key press).

● In response, do something interesting in 3D world (move a chess piece).

Most of the code you write in Castle Game Engine is placed in a unit associated with a view.
We talked about what is a view in Castle Game Engine in the previous article part, the short recap
is that you use views similar to how you use forms in a typical Delphi FMX / VCL or Lazarus LCL
application: a view is a visual design (in data/gameviewmain.castle-user-interface) and
associated code (in code/gameviewmain.pas).

So let’s open the file code/gameviewmain.pas in your favorite Pascal IDE.
In the Castle Game Engine Editor, you can just use the bottom "Files" panel.
Enter the code subdirectory and double-click on the gameviewmain.pas file.
Alternatively, you can just open your Pascal IDE and from it open the Pascal project.
The basic project files (like my_project.dproj for Delphi or my_project.lpi for Lazarus)
have been already generated for you.
Keep the Castle Game Engine visual editor open too, with our view design
data/gameviewmain.castle-user-interface . We will occasionally adjust or consult our
visual design, to make sure it is useful for our code logic.

For start, we want to know the name of the component representing the black king.
Just as you’ve seen when designing Lazarus and Delphi forms, every component has a name
which corresponds to how this component can be accessed from code.
You can edit the component name in Castle Game Engine by either editing the Name row in the
Object Inspector (on the right) or editing the name in the hierarchy (on the left, next page)

❸ EXERCISES

ARTICLE PAGE 2 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

50Blaise Pascal Magazine 113 2023

NOTE that, for this first code exercise, we assume that the chess piece (SceneBlackKing1) does not
have any physics components.
If you have added TCastleRigidBody or TCastleXxxCollider components as behaviors of
SceneBlackKing1, please remove them for now. We will restore them in the next exercise.

Now we have to declare the variable with the exact same name in the view.
It will be automatically initialized to point to the component when we start the view.
Do this in the published section of the class TViewMain.

3.1. HANDLE A KEY PRESS TO CHANGE POSITION
OF AN OBJECT (CONTINUATION 1)

Simply click on the component name in hierarchy or press F2 to go into name
editing. On the screenshot below, you can see that black king is named
SceneBlackKing1. I can use Ctrl+C to copy this to the clipboard.

ARTICLE PAGE 3 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

51Blaise Pascal Magazine 113 2023

ARTICLE PAGE 4 / 27

uses Classes,
CastleVectors, CastleComponentSerialize,
CastleUIControls, CastleControls, CastleKeysMouse, CastleScene;

type
{ Main view, where most of the application logic takes place. }
TViewMain = class(TCastleView)
published

{ Components designed using CGE editor.
 These fields will be automatically initialized at Start. }

LabelFps: TCastleLabel;
SceneBlackKing1: TCastleScene; //< new line

public
 ... uses Classes,
CastleVectors, CastleComponentSerialize,
CastleUIControls, CastleControls, CastleKeysMouse, CastleScene;

type
{ Main view, where most of the application logic takes place. }
TViewMain = class(TCastleView)
published

{ Components designed using CGE editor.
 These fields will be automatically initialized at Start. }

LabelFps: TCastleLabel;
SceneBlackKing1: TCastleScene; //< new line

public
 ...

3.1. HANDLE A KEY PRESS TO CHANGE POSITION
OF AN OBJECT (CONTINUATION 2)
This is how the end result should look like:

SceneBlackKing1.Translation := SceneBlackKing1.Translation + Vector3(0, 1, 0);

NOTE: Right now, the Castle Game Engine editor doesn’t do this automatically for you.

That is, we don’t automatically update your Pascal sources to declare all the components.
We have a plan to do this soon.

The user experience will have to be a bit different than on Delphi and Lazarus forms,
because the game visual designs can easily have hundredths of components that are not
supposed to be used from code, so synchronizing them all with Pascal code would create
unnecessary noise in your Pascal unit.
We will instead make a button to only expose a subset of designed components for code.

Once you have declared the published field, we can access the SceneBlackKing1 from code,
getting and setting its properties, calling its methods anywhere we like.
For this exercise, let’s modify the Translation property of our chess piece, which changes the
position of the object.

It is a property of type TVector3. TVector3 is an advanced record in Castle Game Engine
that represents 3D vector - in this case a position, but we use it in many other cases too,
e.g. to represent a direction or even RGB color.
There are a number of useful things defined to help you work with TVector3, in particular:

● Vector3(…) function returns a new TVector3 value with given coordinates.

● The arithmetic operators like + work with TVector3 values.

This means that we can easily move object by writing a code like this:

THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

52Blaise Pascal Magazine 113 2023

ARTICLE PAGE 5 / 27

Build and run the game (e.g. by pressing F9 in Castle Game Engine editor, or in Delphi, or in
Lazarus) and press X to see how it works.

3.2. PUSH THE CHESS PIECE USING PHYSICS

Let’s do one more exercise.

Let’s make sure we can use code to push (flick, throw) a chess piece using physics.
The chess piece we push, and the direction in which we push it, will be hardcoded in this exercise.
But we will get confidence that we can use physics from Pascal code.

Let’s use the black king again.
To do this, make sure to add the physics components to the relevant chess piece.
We described how to do this in 1st article part, the quick recap is to right-click on the component
(SceneBlackKing1 in this case) and from the context menu choose
"Add Behavior → Physics → Collider → Box (TCastleBoxCollider)".
Make sure you also have physics (with TCastleMeshCollider) active on the chess board,
otherwise the chess piece would fall down due to gravity as soon as you run the game.

This is how it should look like:

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
begin
Result := inherited;
if Result then Exit; // allow the ancestor to handle keys

if Event.IsKey(keyX) then
begin
SceneBlackKing1.Translation :=

 SceneBlackKing1.Translation + Vector3(0, 1, 0);
Exit(true); // key was handled

end;
end;

3.1. HANDLE A KEY PRESS TO CHANGE POSITION OF AN OBJECT (CONTINUATION 3)

Where to put this statement? In general, you can use this code anywhere in your view
(as long as it executes only after the view has been started).
In this case, we want to react to user pressing a key x. To achieve this, we can edit the
TViewMain.Press method in the view. The empty implementation of this method
is already present, with some helpful comments, so we can just fill it with our code:

THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

53Blaise Pascal Magazine 113 2023

ARTICLE PAGE 6 / 27

To push it using physics, we want to use the ApplyImpulse method of the TCastleRigidBody
component associated with the chess piece.
● You can get the TCastleRigidBody component using the SceneBlackKing1.
 FindBehavior(TCastleRigidBody) method, as shown below.

 Alternatively, you could also declare and access RigidBody1: TCastleRigidBody
 reference in the published section of your view. We don’t show this approach here,
 just because using the FindBehavior seems more educational at this point,
 i.e. you will find the FindBehavior useful in more situations.

● The ApplyImpulse method takes two parameters: the direction of the impulse (as TVector3;
 length of this vector determines the impulse strength) and the position from which
 the impulse comes (it is simplest to just use the chess piece position here).

In the end, this is the modified version of TViewMain. Press that you should use:

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
var
MyBody: TCastleRigidBody;

begin
Result := inherited;
if Result then Exit; // allow the ancestor to handle keys

if Event.IsKey(keyX) then
begin
MyBody := SceneBlackKing1.FindBehavior(TCastleRigidBody) as

TCastleRigidBody;
MyBody.ApplyImpulse(Vector3(0, 10, 0), SceneBlackKing1.

WorldTranslation);
Exit(true); // key was handled

end;
end;

3.2. PUSH THE CHESS PIECE USING PHYSICS (CONTINUATION 1)

THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

54Blaise Pascal Magazine 113 2023

ARTICLE PAGE 7 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

On the last page (See page 6 or page 24 of this article)
we use the direction Vector3(0, 10, 0) which means "up, with strength 10".

You can experiment with different directions and strengths. If we’d like to push
the chess piece horizontally we would use a direction with non-zero X and/or Z values,
and leave Y axis zero.

To the uses clause, add also CastleTransform unit, to have TCastleRigidBody class defined.

As usual, run the game and test.
Pressing X should now bump the chess piece up.

You can press X repeatedly, even when the chess piece is already in the air.
As you can see in the code - we don’t secure from it, so we allow to push an object that is
already flying.
We will not cover it in this exercise, but you could use MyBody.PhysicsRayCast to cast a ray
with direction Vector3(0, -1, 0) and see whether the chess piece is already in the air.

3.2. PUSH THE CHESS PIECE USING PHYSICS (CONTINUATION 1)

55Blaise Pascal Magazine 113 2023

ARTICLE PAGE 8 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

To implement our desired logic, the code has to somehow know "what is a chess piece". So far, our
3D world is a collection of TCastleScene components, but it does not give us enough
information to distinguish between chess pieces and other objects (like a chessboard).
We want to do something crazy, but we don’t want to flip the chessboard! At least not this time

To "mark" that the given TCastleScene component is a chess pieces we will invent a new class
called TChessPieceBehavior descending from the TCastleBehavior class.
We will then attach instances of this class to the TCastleScene components that represent chess
pieces. In the future this class can have more fields (holding information specific to this chess
piece) and methods. For start, the mere existence of TCastleBehavior instance attached to a
scene indicates "this is a chess piece".

To know more about how our behaviors work, see https://castle-engine.io/behaviors
for documentation and examples. You can also create a new project from the "3D FPS Game"
template and see how the TEnemy class (descendant of TCastleBehavior) is defined and
used. The behaviors are a very flexible concept to add information and mechanics to your world
and we advise to use them in many situations.

There’s really nothing difficult about our initial TChessPieceBehavior definition.
It is almost an empty class. I decided to only add there a Boolean field that says whether the chess
piece is white or black:

type
TChessPieceBehavior = class(TCastleBehavior)
public
Black: Boolean;

end;

❹ MAKE CODE AWARE "WHAT IS A CHESS PIECE" USING BEHAVIORS

You can declare it at the beginning of the interface section of unit GameViewMain.
Though larger behavior classes may deserve to be placed in their own units.

How to attach the behavior instances to the scenes?

��You could do this visually, by registering the TChessPieceBehavior class in the Castle Game
Engine editor.

This is a very powerful method as it allows to visually add and configure the behavior properties.
See the https://castle-engine.io/custom_components for description how to use this.

��Or you can do it from code. In this article, I decided to go with this approach.

This is a bit easier if you have to effectively attach the behavior 32 times, to all the chess pieces,
and there’s no need to specifically configure the initial state of the behavior.
Clicking 32 times "Add Behavior" would be a bit tiresome and also unnecessary in our simple case
(for this demo, all chess pieces really work the same), so let’s instead utilize code to easily
initialize the chess pieces.

To attach a behavior to our SceneBlackKing1, we would just create the instance of
TChessPieceBehavior in our view’s Start method, and add using
SceneBlackKing1.AddBehavior. Like this:

procedure TViewMain.Start;
var
ChessPiece: TChessPieceBehavior;

begin
inherited;
ChessPiece := TChessPieceBehavior.Create(FreeAtStop);
ChessPiece.Black := true;
SceneBlackKing1.AddBehavior(ChessPiece);

end;

56Blaise Pascal Magazine 113 2023

But this is not good enough for our application. Above we added TChessPieceBehavior
to only one chess piece. We want to add it to all 32 the chess pieces.
How to do it easily?

We need to somehow iterate over all the chess pieces.
And to set the Black boolean field, we also should somehow know whether this is black or
white piece. There are multiple solutions:

��We could assume that all chess pieces have names like SceneWhiteXxx or
SceneBlackXxx. Then we can iterate over Viewport1.Items children,

 and check if their Name starts with given prefix.

��Or we could look at Tag value of scenes, and have a convention e.g. that Tag = 1
 means black chess piece, Tag = 2 means white chess piece, and other tags (Tag = 0

is default, in particular) means that this is not a chess piece.

❸ We could also introduce additional transformation components that group black chess
 pieces separately from white chess pieces and separately from other stuff
 (like a chessboard).

I decided to go with the latter approach, as introduction of "additional TCastleTransform
components to group existing ones" is a powerful mechanism in many other situations.
E.g. you can then easily hide or show a given group (using TCastleTransform.Exists)
property.

To make this happen, right-click on Viewport1.Items, and choose from the context menu
"Add Transform → Transform (TCastleTransform)".

❹ MAKE CODE AWARE "WHAT IS A CHESS PIECE"
 USING BEHAVIORS (CONTINUATION 1)

ARTICLE PAGE 9 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

57Blaise Pascal Magazine 113 2023

Name this new component BlackPieces.
Then drag-and-drop in the editor hierarchy all the black chess pieces (SceneBlackXxx
components) to be children of BlackPieces. You can easily select all 16 scenes representing
black pieces in the hierarchy by holding the Shift key and then drag-and-drop them all at once
into BlackPieces.
The end result should look like this in the hierarchy:

Don’t worry that only the SceneBlackKing1 has the physics components.
We will set the physics components using code soon too.

Now repeat the process to add a WhitePieces group.

❹ MAKE CODE AWARE "WHAT IS A CHESS PIECE"
 USING BEHAVIORS (CONTINUATION 2)

ARTICLE PAGE 10 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

58Blaise Pascal Magazine 113 2023

This preparation in the editor makes our code task easier. Add to the published
section of TViewMain declaration of BlackPieces and WhitePieces fields, of
type TCastleTransform:

TViewMain = class(TCastleView)
published

 ... // keep other fields too
BlackPieces, WhitePieces: TCastleTransform;

Now iterate over the 2 chess pieces' groups in the Start method:

procedure TViewMain.Start;

procedure ConfigureChessPiece(const Child: TCastleTransform; const Black: Boolean);
var
ChessPiece: TChessPieceBehavior;

begin
ChessPiece := TChessPieceBehavior.Create(FreeAtStop);
ChessPiece.Black := true;
Child.AddBehavior(ChessPiece);

end;

var
Child: TCastleTransform;

begin
inherited;
for Child in BlackPieces do
ConfigureChessPiece(Child, true);

for Child in WhitePieces do
ConfigureChessPiece(Child, false);

end;

It seems prudent to add basic "sanity check" at this point. Let’s log the number of chess pieces
each side has. Add the following code and the end of the Start method:

WritelnLog('Configured %d black and %d white chess pieces', [
BlackPieces.Count,
WhitePieces.Count

]);

To make WritelnLog available, add CastleLog unit to the uses clause.
Now when you run the game, you should see a log

Configured 16 black and 16 white chess pieces

On my first run, I actually saw that I have 17 chess pieces on each side by accident.
I mistakenly added 3 knights instead of 2 (one knight was at exactly the same position as
another, so it wasn’t obvious).
I have removed the excessive knight pieces thanks to this log. Detecting such mistakes is exactly
the reason why we add logs and test - so I encourage you to do it too.

While we’re at it, we can also use this opportunity to make sure all chess pieces have physics
components (TCastleRigidBody and TCastleBoxCollider).
So you don’t need to manually add them all. This is a reasonable approach if the components
don’t need any manual adjustment per-chess-piece.

❹ MAKE CODE AWARE "WHAT IS A CHESS PIECE"
 USING BEHAVIORS (CONTINUATION 3)

ARTICLE PAGE 11 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

59Blaise Pascal Magazine 113 2023

To do this, extend our ConfigureChessPiece method:

As you see above, this approach is quite direct: if you don’t have the necessary component,
just add it. We don’t bother to configure any property on the new TCastleRigidBody and
TCastleBoxCollider instances, as their defaults are good for our purpose.

This was all a good "ground work" for the remaining article part. Nothing functionally new has
actually happened in our game, you should run it and see that… nothing changed. All 32 chess
pieces just stand still, at the beginning.

❺ SELECTING 3D OBJECT USING THE MOUSE
5.1. HIGHLIGHT THE CHESS PIECE UNDER MOUSE AND ALLOW SELECTING IT

To implement the real interaction, we want to allow user to choose which chess piece to flick using
the mouse. Castle Game Engine provides a ready function that tells you what is being indicated by
the current mouse (or last touch, on mobile) position.
This is the TCastleViewport.TransformUnderMouse function.

For start, make sure to declare the viewport instance in the published section of class TViewMain,
like this:

MainViewport: TCastleViewport;

Match the name of your viewport in the design.
Add unit CastleViewport to the uses clause to make type TCastleViewport known.

Let’s utilize it to highlight the current chess piece at the mouse position.
We can just keep checking the MainViewport.TransformUnderMouse value in each Update call.

NOTE: Alternatively, we could check MainViewport.TransformUnderMouse in each Motion
call, that occurs only when mouse (or touch) position changes. But doing it in Update is a bit
better: as we use physics, some chess pieces may still be moving due to physics, so the chess piece
under the mouse may change even if the mouse position doesn’t change.

To actually show the highlight, we will use a ready effect available for every TCastleScene
that can be activated by setting MyScene.RenderOptions.WireframeEffect to something
else than weNormal.
This is the simplest way to show the highlight (we discuss other ways in later section).

Before we jump into code, I encourage to experiment with perfect settings of RenderOptions for
highlight in the editor.
Just edit any chosen chess piece, until it seems to have a pretty highlight, and remember the
chosen options.
The most useful properties to adjust are WireframeEffect, WireframeColor, LineWidth,
SilhouetteBias, SilhouetteScale.
You can see them emphasized on the next page - editor shows properties which have non-default
values using the bold font.

❹ MAKE CODE AWARE "WHAT IS A CHESS PIECE"
 USING BEHAVIORS (CONTINUATION 4)

procedure ConfigureChessPiece(const Child: TCastleTransform; const Black: Boolean);
begin

 ... // keep previous code too
if Child.FindBehavior(TCastleRigidBody) = nil then
Child.AddBehavior(TCastleRigidBody.Create(FreeAtStop));

if Child.FindBehavior(TCastleCollider) = nil then
Child.AddBehavior(TCastleBoxCollider.Create(FreeAtStop));

end;

ARTICLE PAGE 12 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

60Blaise Pascal Magazine 113 2023

I decided to show the currently highlighted (at mouse position) chess piece with a light-blue
wireframe. This chess piece is also set as the value of private field ChessPieceHover.

Moreover, once user clicks with mouse (we can detect it in Press) the chess piece is
considered selected and gets a yellow highlight.
This chess piece is set as ChessPieceSelected value.

Remembering the ChessPieceHover and ChessPieceSelected values is useful for a few things.
For one thing, we can later disable the effect (when the piece is no longer highlighted or
selected). And it will allow to flick the ChessPieceSelected in the next sections.

We could store them as references to TCastleScene or TChessPieceBehavior.
That is, we could declare:

Either ChessPieceHover, ChessPieceSelected: TChessPieceBehavior;…
…or ChessPieceHover, ChessPieceSelected: TCastleScene;

Both declarations would be good for our application.
That is, we have to choose one or the other as it will imply a bit different code,
but the differences are really minor. In the end, we can always get TChessPieceBehavior
instance from a corresponding TCastleScene (if we know it is a chess piece) and we can
get TCastleScene from a TChessPieceBehavior.

To get TChessPieceBehavior from the corresponding TCastleScene you would do:

var
MyBehavior: TChessPieceBehavior;
MyScene: TCastleScene;

begin
 ...
MyBehavior := MyScene.FindBehavior(TChessPieceBehavior) as

TChessPieceBehavior;

To get TCastleScene from corresponding TChessPieceBehavior you would do:

ARTICLE PAGE 13 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

5.1. HIGHLIGHT THE CHESS PIECE UNDER MOUSE
AND ALLOW SELECTING IT (CONTINUATION 1)

61Blaise Pascal Magazine 113 2023

var
MyBehavior: TChessPieceBehavior;
MyScene: TCastleScene;

begin
 ...
MyScene := MyBehavior.Parent as TCastleScene;

I decided to declare them as TChessPieceBehavior. If you want to follow my approach exactly,
add this to the private section of class TViewMain:

ChessPieceHover, ChessPieceSelected: TChessPieceBehavior;
{ Turn on / off the highlight effect, depending on whether
 Behavior equals ChessPieceHover, ChessPieceSelected or none of them.
 This accepts (and ignores) Behavior = nil value. }
procedure ConfigureEffect(const Behavior: TChessPieceBehavior);

Then add CastleColors unit to the uses clause (of interface or implementation of unit
GameViewMain, doesn’t matter in this case) to define HexToColorRGB utility.

Finally this is the code of new Update, Press and helper ConfigureEffect methods:

ARTICLE PAGE 14 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

5.1. HIGHLIGHT THE CHESS PIECE UNDER MOUSE AND ALLOW SELECTING IT (CONTINUATION 2)

PLAY THE GAME:
ALL READY AND PREPARED
https://castle-engine.itch.io/bad-chess

62Blaise Pascal Magazine 113 2023

procedure TViewMain.ConfigureEffect(const Behavior: TChessPieceBehavior);
var Scene: TCastleScene;
begin
if Behavior = nil then Exit;
{ Behavior can be attached to any TCastleTransform.

 But in our case, we know TChessPieceBehavior is attached to TCastleScene. }
Scene := Behavior.Parent as TCastleScene;
if (Behavior = ChessPieceHover) or

 (Behavior = ChessPieceSelected) then
begin
Scene.RenderOptions.WireframeEffect := weSilhouette;
if Behavior = ChessPieceSelected then
Scene.RenderOptions.WireframeColor := HexToColorRGB('FFEB00')

else
Scene.RenderOptions.WireframeColor := HexToColorRGB('5455FF');

Scene.RenderOptions.LineWidth := 10;
Scene.RenderOptions.SilhouetteBias := 20;
Scene.RenderOptions.SilhouetteScale := 20;

end else
begin
Scene.RenderOptions.WireframeEffect := weNormal;

end;
end;

procedure TViewMain.Update(const SecondsPassed: Single; var HandleInput: Boolean);
var OldHover: TChessPieceBehavior;
begin
inherited;

LabelFps.Caption := 'FPS: ' + Container.Fps.ToString;
OldHover := ChessPieceHover;

if MainViewport.TransformUnderMouse <> nil then
begin
ChessPieceHover := MainViewport.TransformUnderMouse. FindBehavior(TChessPieceBehavior)

as TChessPieceBehavior;
end else ChessPieceHover := nil;

if OldHover <> ChessPieceHover then
begin
ConfigureEffect(OldHover);
ConfigureEffect(ChessPieceHover);

end;
end;

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
var MyBody: TCastleRigidBody; OldSelected: TChessPieceBehavior;
begin
Result := inherited;
if Result then Exit; // allow the ancestor to handle keys

// ... if you want, keep here the handling of keyX from previous exercise

if Event.IsMouseButton(buttonLeft) then
begin
OldSelected := ChessPieceSelected;
if (ChessPieceHover <> nil) and

 (ChessPieceHover <> ChessPieceSelected) then
begin
ChessPieceSelected := ChessPieceHover;
ConfigureEffect(OldSelected);
ConfigureEffect(ChessPieceSelected);

end;
Exit(true); // mouse click was handled

end;
end;

ARTICLE PAGE 15 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

5.1. HIGHLIGHT THE CHESS PIECE UNDER MOUSE
AND ALLOW SELECTING IT (CONTINUATION 3)

63Blaise Pascal Magazine 113 2023

As always, remember to compile and run the code to make sure it works OK!

You will notice that MainViewport.TransformUnderMouse detects what is under the mouse, but treating each
chess piece as a box. So the detection is visibly not accurate. To fix this, set PreciseCollisions to true on all the
chess pieces. You can do this easily by selecting all chess pieces in editor using Shift or Ctrl and then toggling
PreciseCollisions in the Object Inspector.

5.1. HIGHLIGHT THE CHESS PIECE UNDER MOUSE
AND ALLOW SELECTING IT (CONTINUATION 4)

ARTICLE PAGE 16 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

I decided to move the camera at this point too (to show both sides, black and white, from a side view).

64Blaise Pascal Magazine 113 2023

5.2. SIDENOTE: OTHER WAYS TO SHOW A HIGHLIGHT

There are other ways to show the highlighted (or selected) chess piece.

Dynamically changing the material color. Do this by accessing an instance of
TPhysicalMaterialNode within the scene’s nodes (TCastleScene.RootNode) and changing
the TPhysicalMaterialNode.BaseColor.
See e.g. engine example examples/viewport_and_scenes/collisions/ that uses this.

Dynamically adding/removing a shader effect. This means adding TEffectNode and
TEffectPartNode nodes to the scene and implementing the effect using GLSL (OpenGL Shading
Language). See e.g. engine example examples/viewport_and_scenes/shader_effects/
that demonstrates this.

Adding a additional box that surrounds chosen object. The CGE editor itself uses this technique to
show highlighted / selected 3D objects. Use TDebugTransformBox class to implement this easily.

If you are curious, hopefully the above information and examples will point you in the right direction.

5.3. SIDENOTE: SHADOWS
I decided to activate shadows at this point. Just set Shadows to true on the main light source.
Moreover, set RenderOptions.WholeSceneManifold to true at the chess pieces.
This should make everything cast nice shadows. The shadows are dynamic which means that they
will properly change when we will move the chess pieces.

See https://castle-engine.io/shadow_volumes for more information about shadows in
Castle Game Engine.

ARTICLE PAGE 17 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

65Blaise Pascal Magazine 113 2023

❻ LET USER CHOOSE THE ANGLE AND STRENGTH TO FLICK THE CHESS PIECE
Once the user has picked a chess piece, we want to allow configuring the direction and strength
with which to flick the chosen object.
We already know that "flicking" the chess piece technically means "applying a physics force to the
rigid body of a chosen chess piece". We have almost everything we need, but we need to allow
user to choose the direction and strength of this force.

6.1. DESIGNING A 3D ARROW

To visualize the desired force we will use a simple 3D arrow model, that will be rotated and scaled
accordingly.
While we could design such model in Blender or other 3D authoring software, in this case it’s
easiest to just do it completely in the Castle Game Engine editor.
The arrow is a composition of two simple shapes: cone (for the arrow tip) and a cylinder.

Moreover let’s design the arrow independently, as a separate design.
The new design will contain a hierarchy of components, with the root being TCastleTransform.
We will save it as a file force_gizmo.castle-transform in the project data subdirectory.
Then we will add it to the main design (gameviewmain.castle-user-interface), and toggle the
existence, rotation and scale of the visualized force.

Using a separate design file for the 3D arrow, while not strictly necessary in this case, is a powerful
technique. When something is saved as a separate design file, you can reuse it freely, and
instantiate it many times (at design-time, or by dynamically spawning during the game run-time).
This is e.g. how to have creatures in your game: 3D objects that share common logic and that can
be spawned whenever needed.

To start designing the arrow, choose editor menu item
 "Design → New Transform (Empty Transform as Root)".

ARTICLE PAGE 18 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

5.3. SIDENOTE: SHADOWS (CONTINUATION)

66Blaise Pascal Magazine 113 2023

Underneath, add two components: TCastleCylinder and TCastleCone.
Adjust their Height, Radius (on cylinder), BottomRadius (on cone) and Translation to
form a nice 3D arrow.
Adjust their Color to something non-default to make things prettier. Remember that the arrow
with later be lit by the lights we have set up in the main design (gameviewmain.castle-user-
interface), so it will probably be brighter than what you observe now.
You can follow the values I have chosen on the screenshots below, but really these are just
examples. Go ahead and create your own 3D arrow as you please.

ARTICLE PAGE 19 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

6.1. DESIGNING A 3D ARROW (CONTINUATION 1)

67Blaise Pascal Magazine 113 2023

Now comes a bit difficult part.
We want to have an arrow that can easily rotate around a dummy box (in the actual game, it will
rotate around a chess piece). Ideally, an arrow should also easily scale to visualize the force
strength. I use the words easily to emphasize that we don’t want to only rotate it in the editor, but
we will also have to allow user to rotate it during the game. So the rotation and scale that are
interesting to us must be very easy to get and set from code.

To do this, first add a dummy box representing a chess piece. I called it DebugBoxToBeHidden and
set Size of the box to 2 3 2 to account for tall (large Y axis) chess pieces. Later we will make the box
hidden by setting its Exists property to false.

Once you have a box, you want to add intermediate TCastleTransform components to

rotate the arrow (cone and cylinder) to be horizontal

move the arrow away from the box

rotate the arrow around the box

scale the arrow.

There are multiple valid ways of achieving this. The key advise is to not hesitate to make a nested
composition, that is place TCastleTransform within another TCastleTransform within another
TCastleTransform and so on. Let each TCastleTransform perform a single function. Take it step by
step and you will get to a valid solution (and there are really a number of possible ways to arrange
this).

See my arrangement on the screenshots below. If you get stuck, just use the design from our
resulting project in https://github.com/castle-engine/bad-chess/ (in project/version_2_with_code
subdirectory).

ARTICLE PAGE 20 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

6.1. DESIGNING A 3D ARROW (CONTINUATION 2)

68Blaise Pascal Magazine 113 2023

ARTICLE PAGE 21 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

6.1. DESIGNING A 3D ARROW (CONTINUATION 3)

69Blaise Pascal Magazine 113 2023

The outcome of my design is that I know that from code, I can:

Adjust Rotation property of the TransformForceAngle component to be a
simple rotation around the X axis. The angle of this rotation can be chosen by user
and effectively the arrow will orbit around the debug box (chess piece).

Adjust Y of the Scale property of the TransformForceStrength component.
The amount of this scale can be chosen by user to visualize the strength.

Remember to set Exists of the DebugBoxToBeHidden component to false once done.

6.2. ADD THE ARROW TO THE MAIN DESIGN
To test that it works, add the arrow design to the main design using the editor.

Save the design force_gizmo.castle-transform, open our main design in
gameviewmain.castle-user-interface, select the Items component inside MainViewport and drag-
and-drop the file force_gizmo.castle-transform (from the "Files" panel below) on the
hierarchy.

The result should be that a new component called DesignForceGizmo1 is created and placed
as a child of Items. The component class is TCastleTransformDesign, which means that it’s
an instance of TCastleTransform loaded from another file with .castle-transform
extension. The URL property of this component should automatically be set to indicate our
force_gizmo.castle-transform file.

Rename this component to just DesignForceGizmo (up to you, but I think it makes things
clearer — we will only ever need one such gizmo).
Moreover, change the Exists property of this component to false because initially,
we don’t want this component to be visible or pickable by the mouse.

The screenshot below shows the state right before I set Exists to false.

6.1 DESIGNINGA3DARROW (CONTINUATION 4)

ARTICLE PAGE 22 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

70Blaise Pascal Magazine 113 2023

6.3. LETTING USER CONTROL THE ARROW
We need to declare and initialize the fields that describe current angle and strength.

Add this to the private section of the TViewMain class:

TransformForceAngle, TransformForceStrength: TCastleTransform;
ForceAngle: Single;
ForceStrength: Single;

Then let’s set some constants. You can declare them at the beginning of unit GameViewMain
implementation:

const
MinStrength = 1;
MaxStrength = 1000;

MinStrengthScale = 1;
MaxStrengthScale = 3;

StrengthChangeSpeed = 30;
AngleAChangeSpeed = 10;

Add to the uses clause new necessary units: Math, CastleUtils.

Finally add to the TViewMain.Start additional piece of code to initialize everything:

TransformForceAngle :=
 DesignForceGizmo.DesignedComponent('TransformForceAngle') as TCastleTransform;
TransformForceStrength :=
 DesignForceGizmo.DesignedComponent('TransformForceStrength') as TCastleTransform;
ForceAngle := 0; // 0 is default value of Single field anyway
TransformForceAngle.Rotation := Vector4(1, 0, 0, ForceAngle);
ForceStrength := 10; // set some sensible initial value
TransformForceStrength.Scale := Vector3(1,

MapRange(ForceStrength, MinStrength, MaxStrength, MinStrengthScale,MaxStrengthScale), 1);

NOTE that we initialize the components within our DesignForceGizmo design using the
DesignForceGizmo.DesignedComponent(…) call.
This is necessary, as in general you can have multiple instances of the design
force_gizmo.castle-transform placed in your view. So the published fields of the view
cannot be automatically associated with components in nested designs.

Moreover we synchronize Single fields ForceStrength and ForceAngle with their counterpart
TCastleTransform instances. Single in Pascal is a simple floating-point number, which is
super-easy to manipulate. We treat two TCastleTransform instances above as just a fancy way
to visualize these numbers as 3D rotation and scale.

You may want to lookup what the MapRange function does in Castle Game Engine API reference.
In short, it’s a comfortable way of doing a linear interpolation, converting from one range to
another.

Now that we have initialized everything, let’s actually show the DesignForceGizmo when user
selects a chess piece. We already have a code to select chess piece on mouse click. Just extend it
to show the DesignForceGizmo and reposition it at the selected chess piece.

ARTICLE PAGE 23 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

71Blaise Pascal Magazine 113 2023

if Event.IsMouseButton(buttonLeft) then
begin
OldSelected := ChessPieceSelected;
if (ChessPieceHover <> nil) and

 (ChessPieceHover <> ChessPieceSelected) then
begin

 ... // keep existing code

// new lines:
DesignForceGizmo.Exists := true;
DesignForceGizmo.Translation := ChessPieceSelected.Parent.

WorldTranslation;
end;
Exit(true); // mouse click was handled

end;

procedure TViewMain.Update(const SecondsPassed: Single; var HandleInput: Boolean);
begin
 ... // keep existing code
if Container.Pressed[keyArrowLeft] then
ForceAngle := ForceAngle - SecondsPassed * AngleAChangeSpeed;

if Container.Pressed[keyArrowRight] then
ForceAngle := ForceAngle + SecondsPassed * AngleAChangeSpeed;

if Container.Pressed[keyArrowUp] then
ForceStrength := Min(MaxStrength, ForceStrength + SecondsPassed * StrengthChangeSpeed);

if Container.Pressed[keyArrowDown] then
ForceStrength := Max(MinStrength, ForceStrength - SecondsPassed * StrengthChangeSpeed);

TransformForceAngle.Rotation := Vector4(1, 0, 0, ForceAngle);
TransformForceStrength.Scale := Vector3(1,
MapRange(ForceStrength, MinStrength, MaxStrength, MinStrengthScale, MaxStrengthScale),1);

end;

6.3. LETTING USER CONTROL THE ARROW (CONTINUATION)

NOTE: You may wonder about an alternative approach, where we don’t reposition
DesignForceGizmo, but instead dynamically change it’s parent, like
DesignForceGizmo.Parent := ChessPieceSelected.Parent.

This would work too, alas with some additional complications: the rotation of the selected object,
once we flick it, would rotate also the gizmo. This would make the calculation of "desired flick
direction" later more complicated.

So I decided to go with the simpler approach of just repositioning the DesignForceGizmo.
If you want to experiment with the alternative complicated approach, go ahead.
One solution would be to design DesignForceGizmo such that you can later do
TransformForceAngle.GetWorldView(WorldPos, WorldDir, WorldUp) and use
resulting WorldDir as a force direction.

But since we keep things simple… we’re almost done.
You can run the game and see that selecting a chess piece shows the arrow gizmo properly.
It remains to allow user to change direction and strength.
We can do this by observing the keys user presses in the Update method.

The code below allows to rotate the arrow (make it orbit around the chess piece) using left
and right arrow keys, and change force strength (scaling the arrow) using up and down arrow
keys. Add this code to your existing Update method:

ARTICLE PAGE 24 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

72Blaise Pascal Magazine 113 2023

function TViewMain.Press(const Event: TInputPressRelease): Boolean;
var
 ... // keep existing variables used by other inputs
ChessPieceSelectedScene: TCastleScene;
ForceDirection: TVector3;

begin
Result := inherited;
if Result then Exit; // allow the ancestor to handle keys

 ... // keep existing code handling other inputs

if Event.IsKey(keyEnter) and (ChessPieceSelected <> nil) then
begin
ChessPieceSelectedScene := ChessPieceSelected.Parent as TCastleScene;
MyBody := ChessPieceSelectedScene.FindBehavior(TCastleRigidBody) as

TCastleRigidBody;
ForceDirection := RotatePointAroundAxis(
Vector4(0, 1, 0, ForceAngle), Vector3(-1, 0, 0));

MyBody.ApplyImpulse(
ForceDirection * ForceStrength,
ChessPieceSelectedScene.WorldTranslation);

// unselect after flicking; not strictly necessary, but looks better
ChessPieceSelected := nil;
DesignForceGizmo.Exists := false;
Exit(true); // input was handled

end;
end;

Depending on how you designed the force_gizmo.castle-transform design,
you may need to adjust the ForceDirection calculation, in particular the 2nd parameter to
RotatePointAroundAxis which is a direction used when angle is zero.

There’s nothing magic about our value Vector3(-1, 0, 0), it just follows our force_gizmo.
castle-transform design.

Run the game and see that you can now flick the chess pieces!

● Select the chess piece by clicking with mouse.

● Rotate the force by left and right arrow keys.

● Change the force strength by up and down arrow keys.

● Flick the chess piece by pressing Enter.

● Repeat

❼ FLICK THAT CHESS PIECE!
Looks like we have all the knowledge we need.

● We know how to flick the chess piece,

● we know which chess piece to flick,

● we know the direction and strength of the flick.

You can consult the code we did a few sections before, in the exercise
"Push the chess piece using physics".
Our new code will be similar.

Add it to the Press method implementation:

ARTICLE PAGE 25 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

73Blaise Pascal Magazine 113 2023

❽ CONCLUSION AND FUTURE IDEAS
Invite a friend to play with you. Just take turns using the mouse to flick your chess pieces and have fun

I am sure you can invent now multiple ways to make this better.

● Maybe each player should be able to flick only its own chess pieces?
 We already know which chess piece is black or white (the Black boolean field in

TChessPieceBehavior), though we didn’t use it for anything above.
 You should track which player flicked the object last (black or white), and only allow to choose
 the opposite side next time.

● Maybe you want to display some user interface, like a label, to indicate whose turn is it?
 Just drop a TCastleLabel component on view, and change the label’s Caption whenever
 you want.

● Maybe you want to show the current force angle and strength - either as numbers,
 or as some colorful bars? Use TCastleRectangleColor for a trivial rectangle with
 optional border and optionally filled with a color.

● Maybe you want to implement a proper chess game? Sure, just track in code all the chess
 pieces and the chessboard tiles — what is where. Then add a logic that allows player to select
 which piece and where should move. Add some validation. Add playing with a computer
 opponent if you wish — there are standardized protocols to communicate with "chess engines"
 so you don’t need to implement your own chess AI from scratch.

● Maybe you want to use networking? You can use a number of networking solutions
 (any Pascal library) together with Castle Game Engine.
 See https://castle-engine.io/manual_network.php .
 We have used the engine with Indy and RNL (Realtime Network Library).
 In the future we plan to integrate the engine with Nakama, an open-source server and
 client framework for multi-player games.

ARTICLE PAGE 26 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

74Blaise Pascal Magazine 113 2023

❽ CONCLUSION AND FUTURE IDEAS (CONTINUATION)

● Maybe you want to use networking?
 You can use a number of networking solutions
 (any Pascal library) together with Castle Game Engine.
 See https://castle-engine.io/manual_network.php .

We have used the engine with Indy and RNL (Realtime Network Library).
In the future we plan to integrate the engine with Nakama, an open-source server and client
framework for multi-player games.
● Maybe you want to deploy this game to other platforms, in particular mobile? Go ahead.
 The code we wrote above is already cross-platform and can be compiled using
 Castle Game Engine to any Android or iOS.
 Our build tool does everything for you, you get a ready APK, AAB or IPA file to install
 on your phone. See the engine documentation on

https://castle-engine.io/manual_cross_platform.php .

 Although keyboard inputs will not work on mobile.
 You need to invent and implement a new user interface to rotate the force,
 change the strength, and actually throw the chess piece.
 It is simplest to just show clickable buttons to perform the relevant actions.
 The TCastleButton class of the engine is a button with a freely customizable look.

If you want to learn more about the engine, read the documentation on
https://castle-engine.io/ and join our community on forum and Discord:
https://castle-engine.io/talk.php
Last but not least, if you like this article and the engine, we will appreciate if you support us on Patreon
https://www.patreon.com/castleengine. We really count on your support.

Finally, above all, have fun! Creating games is a wild process and experimenting with
"what feels good" feeling is the right way to do it. I hope you will enjoy it.

ARTICLE PAGE 27 / 27THE BAD WAY TO PLAY CHESS:
3D PHYSICS FUN USING
CASTLE GAME ENGINE (PART 2)

75Blaise Pascal Magazine 113 2023 Blaise Pascal Magazine 107/108 2022

LAZARUS HANDBOOK (PDF)
+SUBSCRIPTION 1 YEAR

SPECIAL OFFER € 75
Ex Shipping

● Lazarus Handbook
● Printed in black and white
● PDF Index for keywords
● Almost 1000 Pages
● Including 40 Examples
● Blaise Pascal Magazine
● English and German
● Free Lazarus PDF Kit Indexer
● 8 Issues per year
● minimal 60 pages
● Including example
 projects and code

+

ADVERTISEMENT

76Blaise Pascal Magazine 113 2023

BARNSTEN

UNIQUEMENT
CHEZ BARNSTEN
JUSQU'À
30 % DE

RÉDUCTION
JUSQU'AU 10
NOVEMBRE

Tel.: +31 23 542 22 27 Web: www.barnsten.com
Info: info@barnsten.com

sten

MISE À JOUR VERS LA VERSION
SUIVANTE INCLUSE

77Blaise Pascal Magazine 113 2023

BY MARTIN FRIEBE

Starter Expert

THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

IT’S ALL ABOUT PRESENTATION
We already used the Watches and Locals window to look at data while debugging.
However, not all data is equal and there are many ways to look at it.

NOTE: This article is based on the FpDebug debugger in Lazarus 2.2.6 and the project using
DWARF 3. Using any other of the debugger backends or settings may result in a different display
of the values.
Some of the features shown in this article require Lazarus 3.0

OUR SAMPLE CODE FOR THIS ARTICLE:

1. program project1;
2.
3. uses Classes, StrUtils;
4.
5. const
6. FORMAT_HEX = 0;
7. FORMAT_OCT = 1;
8. FORMAT_BIN = 2;
9.
10. type
11.
12. TApiData = LongWord;
13.
14. (* This API expects a LongWord made up from
15. 1 Byte (Bits 24..31): A Digit Count (Size)
16. 1 Byte (Bits 16..23): A Format
17. 1 Word (Bits 0..15): A Number
18. *)
19.
20. { TMyAPIBase }
21.
22. TMyAPIBase = class
23. private
24. FList: TStringList;
25. public
26. constructor Create;
27. destructor Destroy; override;
28. procedure Add(ASize: Byte; AFormat: Byte; ANumber: Word);
29. function GetText: String;
30. end;
31.
32. TMyAPI = class(TMyAPIBase)
33. type
34. TApiDataStruct = packed record
35. Size: Byte;
36. Format: Byte;
37. Number: Word;
38. end;
39. public
40. procedure ApiStore(AData: TApiData);
41. procedure Print;
42. end;

ARTICLE PAGE 1/12

78Blaise Pascal Magazine 113 2023

43.
44. constructor TMyAPIBase.Create;
45. begin
46. inherited Create;
47. FList := TStringList.Create;
48. end;
49.
50. destructor TMyAPIBase.Destroy;
51. begin
52. FList.Destroy;
53. inherited Destroy;
54. end;
55.
56. procedure TMyAPIBase.Add(ASize: Byte; AFormat: Byte; ANumber: Word);
57. begin
58. case AFormat of
59. FORMAT_HEX:
60. FList.Add(Dec2Numb(ANumber, ASize, 16));
61. FORMAT_OCT:
62. FList.Add(Dec2Numb(ANumber, ASize, 8));
63. FORMAT_BIN:
64. FList.Add(Dec2Numb(ANumber, ASize, 2));
65. else
66. FList.Add(Dec2Numb(ANumber, ASize, AFormat));
67. end;
68. end;
69.
70. function TMyAPIBase.GetText: String;
71. begin
72. Result := FList.Text;
73. end;
74.
75. procedure TMyAPI.ApiStore(AData: TApiData);
76. var
77. d: TApiDataStruct;
78. begin
79. d := TApiDataStruct(AData);
80. with d do
81. Add(Size, Format, Number);
82. end;
83.
84. procedure TMyAPI.Print;
85. begin
86. WriteLn(GetText);
87. end;
88.
89. function GetApiValue(S, F, N: Integer): TApiData;
90. begin
91. Result := S << 24 + F << 16 + N;
92. end;
93.
94. var
95. Api: TMyAPI;
96. Val: TApiData;
97.
98. begin
99. Api := TMyAPI.Create;
100.
101. Val := GetApiValue(4, FORMAT_HEX, 42);
102. Api.ApiStore(Val);

ARTICLE PAGE 2/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

79Blaise Pascal Magazine 113 2023

ARTICLE PAGE 3/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

103.
104. Val := GetApiValue(8, FORMAT_OCT, 42);
105. Api.ApiStore(Val);
106.
107. Val := GetApiValue(16, FORMAT_BIN, 42);
108. Api.ApiStore(Val);
109.
110. Val := GetApiValue(3, 10, 42);
111. Api.ApiStore(Val);
112.
113. writeln(Api.GetText);
114. readln;
115. Api.Free;
116. end.

We have an Object with some custom API that requires several values bit-packed into a single
parameter. We call it to format the value 42 as Hex, Oct, Bin and Decimal, and we expect it to print:

002A
00000052
0000000000101010
042

But instead we get:
000000000000000000000000000000000000000400
000000000000000000000000000000000000000801
000000000000000000000000000000000000001002
00000000000000000000000000000000000000030A

To debug it, we run (F9) to a breakpoint that we put on line 102, which is the first call to

Api.ApiStore(Val);

THE DISPLAY FORMAT
When we look at “Val” either in the Locals or Watches window we get:

Unfortunately, that doesn’t tell us anything about the bytes in the value. Luckily, the debugger
offers us some options, which we can find in the watches properties dialog. The quickest way to
open it is to double click the watch. Alternatively, we can choose “properties” from the context
menu of the watch, or press the button.

80Blaise Pascal Magazine 113 2023

ARTICLE PAGE 4/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

For now, we are interested in the “Style” or more commonly referred to as “Display format”.
As “Val” is a number, we are interested in styles that apply to numbers. And we need a format that
allows us to see the boundaries of the contained bytes. A good choice for this is “Hexadecimal”.
The output changes to:

Val was initialized with the values passed to

//function GetApiValue(S, F, N: Integer): TapiData;
Val := GetApiValue(4, FORMAT_HEX, 42);

Looking at the hex value we compare this with the description of “TApiData”
• Byte 1 = 04: This is the Size we wanted
• Byte 2 = 00: This is FORMAT_HEX
• Byte 3 and 4: = $002a = 42: The value we specified
So that looks good.

THE DETAIL PANE
Next, we step in, and go to line 80 to pause after

d := TApiDataStruct(AData);
has been executed. Now, we can have a look at “d”.

81Blaise Pascal Magazine 113 2023

ARTICLE PAGE 5/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

Before we continue to debug a little bit more on the watches window. The above shows all fields in
one line, that may just work for the 3 fields we have, but if there are more fields they would be cut
off. For this there is the “Detail pane”. It can be toggled with the button and shows the
content of the selected watch in a more spacious way.

In Lazarus 3.0 watches can also be expanded in the main view.
Structured value have a + symbol to allow unfolding them.

To continue our debugging, while “Val” still looks correct, the values in “d: TApiDataStruct” do
not match our expectation. This is despite “TApiDataStruct” has the fields Size, Format,
Number in the same order in which the bytes are present in “Val”.

DUMPING MEMORY
Time to have another look at “Val”. Going back to the watch properties dialog, lets pick “Memory
Dump”. Actually, we will add a 2nd watch for “Val” as memory dump, so we can compare it with
the hexadecimal representation of “Val”.
In Lazarus 3.0 we can then drag and drop the new “Val” watch, to be shown right below the existing
“Val”. In 2.2.6 the new “Val” will be at the end of the list.

82Blaise Pascal Magazine 113 2023

ARTICLE PAGE 6/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

Now, we have some interesting information. The bytes in memory start with $2A, the lowest byte
of “Val”. This is a little endian machine. So while looking at the data as a single LongWord number
the Size is upfront, but in memory it is at the very end.
We need to change the order in which the record is defined to match the layout in memory.

33. type
34. TApiDataStruct = packed record
35. Number: Word;
36. Format: Byte;
37. Size: Byte;
38. end;

Running the app again will now show us the correct result.

We are done with the debug session, but lets continue and have a look at some more features the
watch windows has to offer.

VARIABLE OR EXPRESSION
In the previous articles were already some examples of adding expressions instead of variables to
the watches Window. FpDebug can interpret most expression that Fpc can. Accessing fields, array
entries, working with pointers, doing arithmetic, type casts, all of it.
However it can not yet access properties, if the use a getter function.

With Lazarus 3.0 in the above example we would not have needed

d := TApiDataStruct(AData);
While FpDebug already knew about many typecasts (and conversions), now it can also cast
arbitrary data to record, so long as the data has the same size as the record.

With Lazarus 2.2.6 or for data that has a size different from the target type of the cast, its required
to take the address and cast to a pointer. Luckily, it is possible to write “^TApiDataStruct” to
use it as pointer to the type.

NOTE: When using debugger backends without FpDebug, like pure “gdb” or pure “lldb”,
some expressions may not work. Some operators may not exist, or the may have different
precedence leading to a different result.

83Blaise Pascal Magazine 113 2023

ARTICLE PAGE 7/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

CALLING FUNCTIONS
Watch expressions can contain function calls. This feature must be enabled in the global IDE
options under Debugger > General. And it must then be enabled in the properties of each watch
that wants to make use of it.
The reason for this requiring such explicit enabling is that evaluating a function call may have
unwanted side effects.
If the called function modifies a global variable or a field of an object, or any other non local data,
then this change will persist after the evaluation. If you continue debugging, your app will run with
those changes, and may behave different. (Mind that even just temporarily allocating memory
can change the state of your app, as it can change the future memory layout.)

In Lazarus 3.0, the debugger can run the function call, with all other threads suspended.
This is the default, as your app is paused, and those other threads are not meant to run.
Other threads may however need to run, if the called function may wait for an event from one of
the other threads.

For the debugger to call a function, it is mandatory to specify the “()” even if there are no
parameters.

NOTE: Values of some data types can not be used as parameter of a function. Equally functions can
only be called if they return a supported type.

Lets run to the line “writeln(Api.GetText);”, and add the following watch.

In “Project Options” � “Debugger”:

84Blaise Pascal Magazine 113 2023

ARTICLE PAGE 8/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

Note: Functions returning Strings (Long/Ansistring) or have parameters of this type only work with
Lazarus 3.0. They also require DWARF 3 (or up) as debug info.
The function call may otherwise crash, and leave your debug session damaged, i.e. your app will be
unable to continue as expected.

CLASSES: DECLARED OR INSTANTIATED.
procedure ButtonClick(Sender: TObject);

By default, the debugger displays any data according to its declaration. So if you watch “Sender”
you will see only a TObject, which gives you very little information.

You can of course type cast the variable yourself and add a watch like “TButton(Sender).
But if the callback is shared by different controls (or if you just want something more convenient)
the debugger can do that for you.

The debugger can find the actual instantiated class of the object and display the watch according
to that class. This feature is on by default. You can disable it globally in the Options > Debugger >
General: “Automatically set ‘Use instance class type’ for new watches”.
Or you can toggle it in the properties of each watch changing “Use instance class type”.

This feature only works, if the declared type is a class (TObject or descendant). If you have a
variable of different type like “Data: PtrUInt”, then you first need to typecast it to “TObject(Data)”.
And then, the debugger will further cast it to the instance’s class.

ARRAYS AND “REPEAT COUNT”
If an array is declared (or set via “SetLength()”) to have a certain amount of entries,
the debugger will show the declared amount of entries (or the limit set in the global debugger
options).
Sometimes you may expect more data after the end of the array.
In that case you can set the “repeat count” in the watches property, and specify how many
elements to show. The “repeat count” can also limit the amount of shown values to less than the
default.
In order for “repeat count” to work, your watch must be for the entire array.
You can not apply a “repeat count” for an array element “MyArray[11]”.
This means you can’t get a slice of e.g. 10 elements starting at 11.

In Lazarus 3.0 you can get array slices by using the [11..20] syntax.

The “repeat count” can also be applied to memory dumps. By default, they return the memory for
the size of the watched value (e.g. 4 bytes for a LongInt). But with “repeat count” you can get a
bigger amounts of memory.

85Blaise Pascal Magazine 113 2023

ARTICLE PAGE 9/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

ENABLED, DISABLED OR POWER OFF
You can disable all or some of the watches. This will prevent the debugger from evaluating them.
It may be useful, if a watch is calling a function and you don’t want it to be called, except under
certain conditions.

It can also be useful if you have some watches that return tremendously large amount of data
(huge structures with long arrays included). Such data may take a moment to retrieve, and
especially if you have several such watches, they may add up to take noticeable time.
The “power” button can preserve the current state of the window. All watches will keep their
currently displayed value for as long as power is off.

Note: Power was originally introduced when the debugger was using gdb and watches could take
long time to process. Turning watches off (and relying on locals instead) did improve the time
between steps (F7/F8) under gdb.

TO THE CLIPBOARD
In the context menu are several options to copy the selected value to the clipboard.
• “Copy Name” copies the expression (or name of the local variable in the locals window)
• “Copy Value” copies the shown value
• “Copy raw value” (locals windows) is for strings.
 It copies an non-escaped version of the string to the clipboard.

In Lazarus 3.0 this is also available in the watch window.
• “Copy data address” (Lazarus 3.0) copies the data address (see section below).
• “Copy entire entry” (Lazarus 3.0) copies name, value and address.

TAKING A HINT
Variables and expressions can also be evaluated directly from the Source editor by hovering the
mouse, until the IDE displays a hint.
The IDE will try to establish the correct bounds of the expression. Usually the word under the
mouse, but if that is a field the IDE will find the dot and use the full “object.field”. Equally, if the
mouse is at the end of a bracket or parenthesis the IDE will find its begin and even include any
type cast if present.
The IDE will not call functions for hint evaluation. But it can (and does by default) cast any object
to the instance’s class. That can be toggled in the global options (Editor > Completion and Hints).

DATA ADDRESS (Lazarus 3.0)

The watches window has a column “Data Address”.
This column is used for pointer types, including types that have an internal pointer.
(T)Objects, AnsiStrings, dynamic arrays all have an internal pointer. That pointer is
stored in the variable. Using @variable will get the address of the variable, that is the address
where the pointer is stored. The data itself is at a different address, and that address is shown in
the “Data address” column. That address is the value you would get if you evaluated
“Pointer(variable)”

86Blaise Pascal Magazine 113 2023

ARTICLE PAGE 10/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

The variable for the object “Api” is at address $10004C010. The data for the object is at Address
$0000AE290.
The “Data address” of a Pointer is the same as the value of the pointer. A pointer to Address
123 has its data at that address.
So for “@Api” the “Data address” is the same as it’s value. The debugger additionally shows the
dereferenced value. At the Address $10004C010 the memory contains the data $0000AE290,
but that is not shown, because the debugger knows the type and displays the array instead.
“Val” does not have a “Data address” (that is, it is the same as the variables address).
Its data is stored directly in the variable. “Val” does of course have an address, which “@Val” will
show us. And here the “Data address” is the address in which the value
67108906 (= $0400002A) is stored.

The “Data address” can be used to determine if two strings/arrays/objects are the same, or merely
have identical content.

STRUCTURES AND ARRAYS (LAZARUS 3.0)
Earlier in this article we saw how structured types can be expanded in the watches view.
The watch window also has the ability to expand the entries in an Array.
Lets say we had the following code:

var
ApiList: Array [1..25] of TMyAPI;

begin
ApiList[1] := TMyAPI.Create;
ApiList[5] := TMyAPI.Create;
ApiList[15] := TmyAPI.Create;

Then the watches could show us

The content of the array will be paginated. So if the array had 1000 entries, it wouldn’t force us to
scroll through a long list. It allows us to go to the page we need, and see the correct selection of
entries.

If we need more than 10 entries, we can specify a different page size in the 2nd edit field.

Additionally, the window allows us to expand nested values. Since the array contains objects, we
can unfold the structure of those objects. We can explore to any depth that we need.
If we are interested in a particular value in the list, we can drag and drop that value to a position in
the main list of watches (outside the unfolded area). This automatically creates a new watch like
“ApiList[5]”. This also works for nested entries, so after expanding “ApiList[5]”, we could select and
drag/drop “ApiList[5].FList”.

87Blaise Pascal Magazine 113 2023

ARTICLE PAGE 11/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

CONVERTER (LAZARUS 3.0)
There is one more addition in the watches properties: Converter.

By default, it does not offer much. Converters must first be configured, either in the global options,
or in the project options.
We will look at one converter as example, which is a helper to display “variants”. Before we do this,
we will have a look at how the debugger shows us a variable of type variant.
Considering the code:

var
a, b: variant;

begin
a := 1;
b := 'abc';

With DWARF 2 the debugger shows

Using DWARF 3 we get

In both cases the string value for “b” is not shown. This is because a variant is declared as

vtAnsiString : (VAnsiString: Pointer);

And the compiler does only include “Pointer” in the debug info.
To remedy this we use a converter.
This can be set up in either the global options or for a single project in the project options.
In each dialog, there is a page Debugger � Backend Converter.
On this page, we press “Add” and give a name of our choosing (e.g. “Variant”).
This will add an entry to the checklist box on the top. This entry must be checked.

88Blaise Pascal Magazine 113 2023

ARTICLE PAGE 12/12THE LAZARUS DEBUGGER
PART 4:
TAKING A LOOK – WATCHES

In the field “Match types by name” we must enter a line with “variant”. This means that this will
apply to variables of the type named “variant”.

And we need to select what the converter should do. This is the “Action” drop-down, and we
choose “Convert variant to value type”.

 What does the converter do? Well, in general a converter can perform any translation on
 the result value (or even parts of it, like fields in an object). A converter works in the
 debugger backend, so it can also retrieve additional data.

The “Convert variant to value type” specially deals with the FPC type “variant”.
It has additional knowledge on that type, like it knows that “vtAnsiString” is a string.

It only works on the fpc variant type. But since an application could define aliases, it is still
necessary to specify the type name(s) to be matched, as we did above.
There is also a converter “CallSysVarToLStr” which deals with variants, but includes custom
variants and executes code in the debugged app. So specifying type name(s) to match can also be
used to configure different converters.

Now, that we configured a converter it will by default be applied to all watches that return
(or contain as field/entry with) variant data. Individual watches can be excluded by disabling
the converter in their properties.

If we had unchecked the converter in the checklist box, then it would not be used by default. It
would only be used by watches for which it is selected in the drop-down of their properties.
(It will still check the type name).

Now (with either DWARF version) the debugger will show us:

The converter will also apply in an array to each entry. Or in objects to each field of variant type.

8 2022 Blaise Pascal Magazine 113 2023

https://library.blaisepascalmagazine.eu/

THE NEW INTERNET

READ WHERE EVER THE INTERNET IS AVAILABLE

BLAISE PASCAL LIBRARY 2023
JUST OPEN ANY BROWSER (CHROME, SAFARI, EDGE, FIREFOX, OPERA, DUCKDUCKGO)
LOGIN: YOU WILL HAVE ALL ISSUES AVAILABLE - 6500 PAGES.
FOR ALL ISSUES STARTING AT NR1 UP TO THE LATEST ITEM.
YOU NEED A VALID SUBSCRIPTION: FREE - VALID THROUGH ONE YEAR

90Blaise Pascal Magazine 113 2023

maXboxmaXbox

91Blaise Pascal Magazine 113 2023

SENDING DEBUG LOGS
TO THE SERVER IN PAS2JS
BY MICHAEL VAN CANNEYT

ARTICLE PAGE 1 / 6

Starter Expert

��ABSTRACT
In this article we show how to use a ready-to-use mechanism for sending debug logs from a
Pas2js program to a HTTP server application written in Free Pascal

� INTRODUCTION
In an ideal world, the application runs smoothly, and all eventualities during execution of a
program are handled gracefully. If this were so, debug logging and unexpected error handling can
be stripped once the program is ready for shipment.
In reality, programs or their execution environment are not perfect, and users do unexpected and
unforeseen things: for these two reasons, often you must still have debugging logs in shipped applications.
In the browser, the all-time Pascal ’WriteLn()’ statement can be used to write to the browser
console. If so desired, the result can be shown in the HTML. But as soon as the user closes the
browser window, this information is lost. For most users, finding and transmitting the information in
the browser console at the request of a support team is a difficult, not to say impossible task.
Therefor a better solution to gather debug info is to send it directly to the webserver,
where the logs can be examined at once or saved to be examined later on.
In this article, we demonstrate a mechanism for transmitting such debug information.
This mechanism is included by default in Free Pascal and Pas2js: debugcapture.

a better
solution to
gather debug
info is to send
it directly to
the webserver

� ARCHITECTURE
The debug capture functionality - naturally - consists of 2 parts: one part is included in fcl-web, the
other is part of Pas2js, and is used in a Pas2js client program.
The fpDebugCaptureSvc unit is part of Free Pascal’s fpweb package for making HTTP server
applications: You can include it in a HTTP server program and with a single line of code activate it.
It is included by the simpleserver application by default. The compileserver program included in
Pas2js also provides this functionality.
The functionality is disabled by default, the -u command-line switch must be provided to enable
the debug capture: if no extra argument is given the captured info is printed on the console.
If an extra argument is given to the -u option , it is interpreted as a filename in which to save the
output. The URL for the service is /debugcapture/ by default.
The client part is contained in the debugcapture unit, part of Pas2JS.
It contains a simple client component that sends the output to a configurable URL.

We’ll demonstrate the use of both sides in the rest of this article.

❸ THE SERVER PART: TDEBUGCAPTURESERVICE
The fpDebugCaptureSvc unit contains a TDebugCaptureService component. It can be used
to handle one or more HTTP routes. It can log to console or file by default, but additional backends
can be registered. This component has the following declaration:

92Blaise Pascal Magazine 113 2023

SENDING DEBUG LOGS
TO THE SERVER IN PAS2JS
BY MICHAEL VAN CANNEYT

ARTICLE PAGE 2 / 6

TDebugCaptureHandler = Procedure (aSender : TObject; aCapture : TJSONData) of object;
TDebugCaptureLogHandler =Procedure (EventType : TEventType; const Msg : String) of object;

TDebugCaptureService = class(TComponent)
 class Property Instance : TDebugCaptureService;
 class function JSONDataToString(aJSON: TJSONData): TJSONStringType;
 Procedure HandleRequest(ARequest: TRequest; AResponse: TResponse);
 Procedure RegisterHandler(const aName : String;aHandler: TDebugCaptureHandler);
 Procedure UnregisterHandler(const aName : String);
 Property LogFileName : string;
 Property LogToConsole : Boolean;
 Property CaptureToErrorLog : Boolean;
 Property OnLog : TDebugCaptureLogHandler;
 Property CORS : TCORSSupport;
end;

The following methods exist:

● HandleRequest
 This is the entry point of the service: the signature of this method is such that it can be used as
 the handler of a route in the fpWeb server’s HTTP router.

● RegisterHandler
 You can add as many handlers for a debug capture request as you want.
 You register a callback aHandler with a (unique) name aName. The name is used in log
 messages when appropriate, and can be used to unregister the handler.

● UnregisterHandler
 can be used to unregister a handler with given name from the list of debug capture handlers.

● JSONDataToString
 this class method can be used to convert the JSON payload to a string. It will take case of
 special cases such as null or objects.

The following properties can be used:

● Instance
 This is a global instance of the component. This can be used for quickly setting up an instance of
 the debug capture service.

● LogFileName
 When set to a non-empty, logging captured debug output to file is enabled.

● LogToConsole
 When set to True a non-empty, captured debug output is sent to the console.

● CaptureToErrorLog
 When set to True, output is sent to the OnLog log handler together with error messages from
 the component.

● OnLog
 This event is used to log error messages from the component: when an error happens during
 writing of debug output to one of the handlers, it is logged using this event.
 If CaptureToErrorLog is set to true, all captured debug output is also sent to this event.

● CORS
 This can be configured to handle CORS preflight requests, enabling you to run the debug
 capture service on a different URL from where your application is served. Make sure you
 configure CORS correctly if you enable it, it is a bad idea to allow all possible domains to use
 this service.

93Blaise Pascal Magazine 113 2023

SENDING DEBUG LOGS
TO THE SERVER IN PAS2JS

ARTICLE PAGE 3 / 6

The 3 standard logging mechanisms (file, console, errorlog) use the RegisterHandler
and UnregisterHandler calls, so they are called in the same manner as your own handlers.
Any errors when writing to file or console will therefor also be reported using the standard log
mechanism.
The use of this component is very simple. The following little program is a complete
webserver that also has the debugcapture output.
It overrides 2 methods of the standard TCustomHTTPApplication class to provide logging and
to configure the server:

program demosvr;
uses
 custhttpapp, sysutils, Classes, jsonparser, fpjson, httproute,
 httpdefs, fpmimetypes, fpwebfile, fpwebproxy, fpdebugcapturesvc;

Type
 { THTTPApplication }

 THTTPApplication = Class(TCustomHTTPApplication)
 private
 procedure HandleCaptureOutput(aSender: TObject; aCapture: TJSONData);
 published
 procedure DoLog(EventType: TEventType; const Msg: String); override;
 Procedure Initialize; override;
 end;

procedure THTTPApplication.DoLog(EventType: TEventType; const Msg: String);
begin
 Writeln(FormatDateTime(’yyyy-mm-dd hh:nn:ss.zzz’,Now),’ [’,EventType,’] ’,Msg)
end;

Here we have done nothing yet except define our class and implement logging.
The override of the DoRun method is where the magic happens: the standard instance
of the TDebugCaptureService is used to provide the debug capture functionality.
It is configured to send the debug output to the console and to a file called debug.log by setting
the LogToConsole and LogFileName properties:

procedure THTTPApplication.Initialize;
var
 aBaseDir : String;
 Svc : TDebugCaptureService;
begin
 Port:=8080;
 Svc:=TDebugCaptureService.Instance;
 Svc.OnLog:=@DoLog;
 Svc.LogFileName:=’debug.log’;
 Svc.RegisterHandler(’log’,@HandleCaptureOutput);
 HTTPRouter.RegisterRoute(’/debugcapture’,rmPost,@Svc.HandleRequest,False);
 aBaseDir:=IncludeTrailingPathDelimiter(GetCurrentDir);
 TSimpleFileModule.RegisterDefaultRoute;
 TSimpleFileModule.BaseDir:=aBaseDir;
 TSimpleFileModule.OnLog:=@Log;
 TSimpleFileModule.IndexPageName:=’index.html’;
 MimeTypes.LoadKnownTypes;
 inherited;
end;

94Blaise Pascal Magazine 113 2023

SENDING DEBUG LOGS
TO THE SERVER IN PAS2JS

ARTICLE PAGE 4 / 6

After registering the /debugcapture route, the standard TSimpleFileModule component
is used to provide standard HTTP file serving from the current directory.

NOTE that we will not use the standard mechanism to log to console, instead, we implement our
own handler: HandleCaptureOutput, which we register with the name Log.
(the names for the internal logging mechanisms all start with $, do not use this
character in your own handlers)

The HandleCaptureOutput method uses the JSONDataToString class method to create a
string and logs it using the standard DoLog method of the application class.

procedure THTTPApplication.HandleCaptureOutput(aSender: TObject; aCapture: TJSONData);
begin
 DoLog(etDebug,TDebugCaptureService.JSONDataToString(aCapture));
end;

As a result, the debug info and the info about served pages is displayed in the same
uniform manner.
With this, the application class is ready, all that needs to be done is to start it:

Var
 Application : THTTPApplication;
begin
 Application:=THTTPApplication.Create(Nil);
 Application.Initialize;
 Application.Run;
 Application.Free;
end.

And so, with 20 lines of code, we have created a HTTP server that also acts as a receiver of debug
log info.

❹ THE CLIENT PART: TDEBUGCAPTURECLIENT
In Pas2JS, the debugcapture unit provides the TDebugCaptureClient component.

TDebugCaptureClient = class(TComponent)
Public
 Class property Instance : TDebugCaptureClient Read _Instance;
 Procedure Capture(const aLine : String; NewLine : Boolean = True); virtual;
 Procedure Flush;
 Procedure SetConsoleHook;
 Procedure ClearConsoleHook;
 Property URL : String;
 Property BufferTimeout : Integer;
 Property HookConsole : Boolean;
end;

95Blaise Pascal Magazine 113 2023

SENDING DEBUG LOGS
TO THE SERVER IN PAS2JS

ARTICLE PAGE 5 / 6

The following methods exist:

● Capture
 This is the central call: the string aLine is sent to the server. If NewLine is set to True,
 a newline character is added.

● Flush
 if the BufferTimeout is set to a positive number, lines will be buffered till the indicated
 timeout is reached. Flush will empty the buffer and send the contents to the server.

● SetConsoleHook
 When calling this, the console hook will be installed, which means that all Write(Ln)

 statements will be written to the debug capture output as well. if a previous console hook
 was present, it will also be called.

● ClearConsoleHook
 Resets the console hook to the state previous to calling SetConsoleHook

● SetExceptionsHook
 When calling this, the OnShowException hook in SysUtils will be installed,
 which means that all calls to Show-exceptions will write to the debug capture output as well.
 If a previous console hook was present, it will also be called.

● ClearExceptionsHook
 Resets the exceptions hook to the state previous to calling SetExceptionsHook

In addition, the following properties exist:

● Instance
 This class property provides a standard instance, which is ready for you to configure and use.

● URL
 The URL to which all debug output is sent. The default URL is ’/debugcapture’.

● BufferTimeout
 A time (in milliseconds) during which log output is buffered locally before sending it to the server.
 If set to 0, then no buffering takes place, all logging is sent to the server immediately.

● HookConsole
 If set to True, then SetConsoleHook is called. If set to False,
 ClearConsoleHook is called.

● HookExceptins
 If set to True, then SetExceptionsHook is called. If set to False,
 ClearExceptionsHook is called.

96Blaise Pascal Magazine 113 2023

SENDING DEBUG LOGS
TO THE SERVER IN PAS2JS

ARTICLE PAGE 6 / 6

The use of this component is again quite straightforward, as shown by the following example program:

program democapture;
{$mode objfpc}
{$h+}
uses
 sysutils, classes, browserconsole, debugcapture;
Var

I : integer;
begin
 With TDebugCaptureClient.Instance do
 begin
 BufferTimeout:=100;
 HookConsole:=True;
 end;
 For I:=1 to 100 do
 Writeln(’This is output line ’+IntToStr(I))
end.

The result of the 2 programs combined is shown in figure 1 on page 6 of this article, page 75.
In the background, the browser is visible with the output of the WriteLn statements as HTML and
in the browser debug console. In the foreground, the console on which the HTTP server program
was started is visible. It shows the URLs that were loaded, and the debug capture output.

❺ CONCLUSION
Free Pascal and Pas2JS come equipped with simple tools to enable you to to collect
debugging information from applications in production.
As shown here, the code to achieve this is really simple, and the classes used in the
process are easily extended with extra functionalities: you can add a threaded mechanism
on the server for
improved performance, you can store the logs in a database, send them to logstash, all
with a single mechanism which also works out of the box without the need for extra
code.

97Blaise Pascal Magazine 113 2023 Blaise Pascal Magazine 107/108 2022

ADVERTISEMENT

SUBSCRIPTION FOR 2 YEAR
BLAISE PASCAL MAGAZINE
€128,44 ex Vat

98Blaise Pascal Magazine 113 2023

BARNSTEN

ONLY AT
BARNSTEN
UPTO
30 %

DISCOUNT
ENDING 10
NOVEMBER

Tel.: +31 23 542 22 27 Web: www.barnsten.com
Info: info@barnsten.com

sten

UPDATE TO NEXT VERSION INCLUDED

99Blaise Pascal Magazine 113 2023

ARTICLE PAGE 1 / 17
BY MICHAEL VAN CANNEYT

Starter Expert

EMBEDDING WEBASSEMBLY IN AN FPC PROGRAM

ABSTRACT
Webassembly was designed to run in the browser. It’s design is focused on simplicity and safety,
making it ideal for sandboxing. As a result more and more it finds its way in applications that run
outside the browser.
In this article we show how to embed a Webassembly Module in a Free Pascal module.

� INTRODUCTION
WebAssembly is a an open bytecode format similar in purpose to the Java and C# bytecode
formats: it is designed to run in a sandboxed environment.

The initial target of this was the browser, where it allows computationally intensive tasks to be
run in the browser at speeds that are vastly superior to the speed of plain javascript.

Today, you can compile from any programming language (Notably C, C++, Rust and of course
Pascal) to the webassembly format: the LLVM compiler supports WebAssembly as an output format.

The specification of this bytecode format is open and managed by the W3C consortium:
https://www.w3.org/TR/wasm-core-2/

The specification is maintained on github:
https://github.com/WebAssembly/design

Beside the core specification, which describes the basic bytecode format and the supported
assembly instructions, there are also various extensions.

A list of extensions and their various stages of implementation can be found on github as well:
https://github.com/WebAssembly/proposals

Some of the more interesting ones are threading and exception support.
The open character of the format means anyone can implement a runtime that loads and execute
the format. In fact, outside the browser, several wasm execution environments exist:
WasmTime This engine is maintained by the Bytecode Alliance, which actively
supports the development of WebAssembly. It is a conservative implementation,
meaning that it only supports established proposals of the WebAssembly specification.

Webassembly was mentioned in other articles
issue 77 page 43 / issue 83 /17 and issue 101/82

IT HAS FINALLY ARRIVED: NOW WE CAN USE IT

Figure 1: Using a webassembly engine to run a WebAssembly program in a FPC program

100Blaise Pascal Magazine 113 2023

ARTICLE PAGE 2 / 17

https://wasmtime.dev/

WasmEdge
This engine is maintained by an independent community of developers
and was recently brought under the umbrella of the Cloud native computing foundation

https://cncf.io/, itself part of the Linux foundation.

This implementation is more cutting edge,
it supports many of the more experimental WebAssembly extensions.

https://wasmedge.org/

Wasmer is an independent implementation of an webassembly bytecode engine.
Like wasmedge, it is more accepting of new proposals:

https://wasmer.io/

It has adopted an approach similar to npm (the node package manager):
it has a package system with ready-to-run webassembly modules.

WAMR is another bytecode alliance implementation of the webassembly runtime,
focused on small memory footprint and fast execution:
https://github.com/bytecodealliance/-micro-runtime

All these implementations have a library which you can use to embed the engine in your
application: this means you can run a webassembly program (which can consist of multiple
webassembly modules linked together) embedded in your Free Pascal program.

This embedded webassembly program can also be generated by Free Pascal or by some other
programming tool or - most likely - a combination of both:

All engines support linking together various webassembly modules, regardless of the language
they were originally programmed in. The format used by webassembly ensures that
all modules use the same format to exchange data and code.

This is shown diagrammatically in figure 1 on page 1 of this article: a native Free Pascal host
program loads 2 webassembly modules: one written in Free Pascal and one written
in another language, and can execute functions in both modules. The modules
themselves can also call functions in each other.

Of these, the wasmtime and wasmedge engines have at least some comprehensive documentation,
and therefore import units for these libraries have been created for Free Pascal, which we will
demonstrate here.

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

101Blaise Pascal Magazine 113 2023

ARTICLE PAGE 3/ 17

� THE WASI SPECIFICATION
The WebAssembly specification by itself does not specify how to interact with the environment:
The format does not describe how to read and write files, get the time and so on.

It only describes a mechanism how to import functions from the runtime environment.
Obviously, it also specifies how to execute functions in the webassembly.

This allows for modules to be chained together, just as dynamically loadable libraries.

Naturally, a bytecode format that cannot interact with the environment is of little use.
Therefore a separate specification was developed which provides a minimal list of functions needed
to interact with the outside world: WASI:
the WebAssembly System Interface.

https://github.com/WebAssembly/WASI

All engines specified above support this interface.
This means that when a webassembly module is loaded into one of these engines, the functions
listed in WASI are available.
It serves as the basis for a LibC implementation that runs in a webassembly environment.

The WASI current specification has only basic OS interaction support:
only basic file I/O and getting the time and environment variables.
That means no graphical environment, no TCP/IP or HTTP environment etc.
(The latter are however expected to appear in version 2 of the spec)

In essence, the spec provides enough calls to implement the SysUtils unit in Free Pascal,
and that is what has been used to develop the Free Pascal WebAssembly target.

Putting all this together, it means basic Free Pascal programs can be loaded into one of the
engines mentioned above.

Does this mean you cannot run more advanced code (requiring sockets, UI etc.)
in these runtimes?
No, of course not: the engines support providing your own functions to the webassembly.
That means that if you provide functions to execute a HTTP request, then these functions can be
executed from inside the runtime to download HTML pages.
It should be noted that you must be careful with the functionality you provide to the webassembly:
functions open doors to the environment which can potentially be exploited.

❸ USING WASMTIME
Wasmtime is available as a command-line tool with which you can start a webassembly module
from the command-line. This command-line tool itself is simply a shell around the wasmtime
dynamically loadable library.
Instructions for downloading and installing wasmtime can be found here

https://docs.wasmtime.dev/cli-install.html

Binaries of the releases for all major platforms can be found here:

https://github.com/bytecodealliance/wasmtime/releases
Free Pascal contains a unit called wasmtime which can be used to access the functionality of the
wasmtime library. The library is loaded at runtime with the LoadWasmTime call:

Procedure LoadWasmTime(const Lib : string);
The argument is the name of the library file to load. The name of the library as distributed is
available in the libwasmtime) constant. If the loading fails, an exception is raised.

The library exposes well over 100 types and 500 functions, this is clearly more than can be
explained in the context of a single article. Therefore we’ll describe a simple example which
demonstrates how to load a library, make a host-provided function available to the wasm module,
and show how this function is called.

The webassembly program which we will be loading and executing is quite simple:

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

102Blaise Pascal Magazine 113 2023

ARTICLE PAGE 4 / 17

Without going into the details of the webassembly text format, it is apparent from the text that this
module imports a function called hello (with no parameters and no return value) and
exports a function called run which simply calls the imported ”hello” function.
The run function again has no parameters and return value.

Note that no file IO or other external functions are used: just one imported function and one
exported function. There is also no initialization or finalization code. To execute this webassembly
program, we need therefore to load this file, convert it to bytecode, provide it with a hello function
and then call the run function. The expectation is that the hello function is called, and that the run
function returns immediately afterwards. The main program starts by declaring a lot of variables:

(module
 (func $hello (import "" "hello"))
 (func (export "run") (call $hello))
)

Var
 engine : Pwasm_engine_t = Nil;
 store : Pwasmtime_store_t = Nil;
 context : Pwasmtime_context_t = Nil;
 F : TMemoryStream;
 wat : Twasm_byte_vec_t;
 wasm : twasm_byte_vec_t;
 module : Pwasmtime_module_t = Nil;
 error : Pwasmtime_error_t = Nil;
 hello_ty : Pwasm_functype_t = nil;
 hello : Twasmtime_func_t;
 trap : Pwasm_trap_t = Nil;
 instance : Twasmtime_instance_t;
 import : Twasmtime_extern_t;
 run : Twasmtime_extern_t;
 OK : Byte;

The meaning of these variables will be explained as we encounter them in the
program code.
All types used in WasmTime are opaque record types: the exact details of the record
are not exposed. Most of these records are created dynamically with a function
that returns a pointer to such an opaque type, and as a rule the function name
ends in (or contains) new. When you are done with a particular variable, you must
release the memory occupied by the variable using a function whose name ends in
delete.

The program of course starts by loading the wasmtime library. When this has
succeeded, a webassembly engine is created using the wasm engine new function.

begin
 Writeln(’Loading wasm library’);
 Loadwasmtime(’./’+libwasmtime);
 Writeln(’Initializing...’);
 engine := wasm_engine_new();
 store:=wasmtime_store_new(engine, nil,nil);
 context:=wasmtime_store_context(store);

The store is a general purpose memory area for the engine. It can be used to add user data,
but is also used by the engine. The context is is a pointer used by the engine to add/remove data
to the store.
The following piece of code will load a file containing a webassembly module using text
representation (a kind of assembly language). It allocates a memory area (wat) using the
twasm_byte_vec_t_type (which represents a memory block) needed by the engine, and moves
the contents of the file into it:

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

103Blaise Pascal Magazine 113 2023

ARTICLE PAGE 5 / 17

F:=TMemoryStream.Create;
try
 F.LoadFromFile(’hello.wat’);
 wasm_byte_vec_new_uninitialized(@wat, F.Size);
 Move(F.Memory^,wat.data^,F.Size);
finally
 F.Free;
end;

In the following step, the text representation of the webassembly module is converted
to bytecode using wasmtime_wat2wasm and stored in a memory block wasm.
(again of type twasm_byte_vec t). The text representation of the module (wat) is disposed of.

Writeln(’Compiling module...’);
error:=wasmtime_wat2wasm(PAnsiChar(wat.data), wat.size, @wasm);
if (error<>Nil) then
 exit_with_error(’failed to parse wat’, error, Nil);
wasm_byte_vec_delete(@wat);
error:=wasmtime_module_new(engine, Puint8_t(wasm.data), wasm.size, @module);
wasm_byte_vec_delete(@wasm);

if (error <> nil) then
 exit_with_error(’failed to compile module’, error, nil);

After compiling the webassembly, the bytecode is loaded into a module (module, of type
Pwasmtime_module_t), with the wasmtime_module_new function, and the bytecode
representation is discarded.
The module is what will be used when executing the webassembly.

The exit_with_error function is an auxiliary function which will be used in several locations in
the program. We’ll come back to it later.

At this point we have a module, ready to be executed. We did not yet use the context which we
created at the beginning. Now we get to the point where this context will be used: We will provide
a pascal ’hello’ function to the webassembly module.

Functions provided to the webassembly module must have the appropriate function type

Twasmtime_func_callback_t = function (env:pointer;
caller:Pwasmtime_caller_t;
args:Pwasmtime_val_t;
nargs:Tsize_t;
results:Pwasmtime_val_t;
nresults:Tsize_t):Pwasm_trap_t;cdecl;

The env argument can be used to pass information along, for example the Self pointer of an
object. The caller contains information about the calling environment, and the args pointer
points to the arguments passed during the call. The nargs parameter contains the number of
arguments. Similarly, the results and nresults arguments are used to specify return values.
The return value is a trap (of type Pwasm_trap_t): when non-nil, it signals an error condition to
the webassembly engine.

Knowing this, our ’Hello’ function looks like this:

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

function hello_callback(env : Pointer;
caller : Pwasmtime_caller_t;
args : pwasmtime_val_t;
nargs : size_t;
results : pwasmtime_val_t; nresults : size_t) : pwasm_trap

begin
 Writeln(’Calling back...’);
 Writeln(’ Hello World!’);
 Result:=Nil;
end;

104Blaise Pascal Magazine 113 2023

ARTICLE PAGE 6 / 18

The next part of our program is defining this function in the webassembly module, so it can be
called. This starts by creating a function type (hello_ty, of type Pwasm_functype_t), which is
then registered as a function using wasmtime_func_new.
A function type is represented by Pwasm_functype_t. This corresponds to a procedural type in
pascal. The WebAssembly format defines a function type for all functions and procedures: For both
internal and external functions, a function type must be defined.
For external (imported/exported) functions, this is logical: the runtime engine needs to know what
data to provide or what date to extract whenever the boundary between webassembly and the
host environment is crossed:
both when calling a webassembly function in a webassembly module and when an
external function is called by the webassembly module.

To register a callable function, the wasmtime_func_new is used:

procedure wasmtime_func_new (
store: Pwasmtime_context_t;
_type: Pwasm_functype_t;
callback: Twasmtime_func_callback_t;
env: pointer;
finalizer: TFinalizer;
ret: Pwasmtime_func_t)

The env argument can be filled with anything you like, it will be passed as-is when the callback
is called. This can be used for example to store an object pointer.
Finally a finalizer for Env can be specified, this is a function which is called typically to free the
env object when the webassembly module is destroyed. The ret argument points to a location
which will be filled with a function definition.
Since our function accepts no arguments and returns no results, the function type and the
registration of the callback is quite simple:

Writeln(’Creating callback...\n’);
hello_ty:=wasm_functype_new_0_0();
wasmtime_func_new(context, hello_ty, @hello_callback, Nil, Nil, @hello);

NOTE the context argument and the hello variable which will contain the function definition as
created by the wasm runtime.
What we did till now is define webassembly module, and the functions which we will be providing
to it. It is ready to run.
To actually run a webassembly, we must create an instance of the module (it is possible to create
multiple instances of a single module, and execute them in parallel).
From this instance we can then extract the address of the exported function (’run’), and call it.
To create an instance of a webassembly module, the wasmtime instance new function is used

The second argument (_type) is the function type,
and the third (callback) is the actual function to call.

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

function wasmtime_instance_new(
 store : Pwasmtime_context_t;
 module : Pwasmtime_module_t;
 imports : Pwasmtime_extern_t;
 nimports: Tsize_t;
 instance: Pwasmtime_instance_t;
 trap: PPwasm_trap_t):Pwasmtime_error_t

105Blaise Pascal Magazine 113 2023

ARTICLE PAGE 7 / 18

Writeln(’Instantiating module...’);
import.kind:=WASMTIME_EXTERN_FUNC;
import.of_.func:=hello;
error:=wasmtime_instance_new(context, module, @import, 1, @instance, @trap);
if (error<>nil) or (trap <>Nil) then

exit_with_error(’failed to instantiate’, error, trap);

The arguments to the wasmtime_instance_new function are the context, the module,
1 import definition, and 2 variables for return values error and trap, which we examine on return.

The function that is exported from the webassembly module is called ’run’.
We extract the function definition from the instance using the
wasmtime_instance_export_get function:

The store and instance arguments are of course the context we are using and the
instance we just created. The name and name_len functions are used to pass the
name of the function you wish to have (’run’ in our case) and the item is filled with
the function definition on return: when the function exists, the function returns a
nonzero return value.
So, our code to get the ’run’ function definition is:

Writeln(’Extracting export...\n’);
ok:=wasmtime_instance_export_get(context, @instance, PAnsiChar(’run’), 3,
@run) ;
if OK=0 then
 exit_with_error(’failed to get run export’, nil, nil);
if run.kind<>WASMTIME_EXTERN_FUNC then
 exit_with_error(’run is not a function’, nil, nil);

function wasmtime_instance_export_get(
 store : Pwasmtime_context_t;
 instance : Pwasmtime_instance_t;
 name : PAnsiChar;
 name_len : Tsize_t;
 item : Pwasmtime_extern_t):T_Bool;

The run variable holds a reference to the exported function.

Now we are ready to actually run the function. This is done with the wasmtime_func_call:

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

The store is the context we are using, the module is the module we just defined. As can be seen
from the imports argument, we must provide it with all the functions that can be used.
If several instances can be created and run, it makes sense that the functions are provided to the
instance, and not to the module: the env pointer for the callable functions will typically be different
for each instance.
Upon successful return, instance will be filled with a runnable instance. trap will be filled with an
error report if an error occurred.

Errors can happen for example when the module expects to be able to import functions foo and
bar, but only bar is supplied.

In our case, we need to provide the hello function we just created:

106Blaise Pascal Magazine 113 2023

ARTICLE PAGE 8 / 18

function wasmtime_func_call (
 store : Pwasmtime_context_t;
 func : Pwasmtime_func_t;
 args : Pwasmtime_val_t;
 nargs : Tsize_t;
 results : Pwasmtime_val_t;
 nresults : Tsize_t;
 trap : PPwasm_trap_t): Pwasmtime_error_t;
The first 2 arguments are the store context and the function definition we just extracted.
NOTE that the wasm module or instance do not need to be specified:
they are implicit in the function definition. The arguments to be provided to the called function
and results returned by it, are specified in the next 4 arguments.
The last argument (trap) is used to hold an error condition when something goes wrong.
Since the ’run’ function does not take arguments, and provides no results, we do
not need to set up anything to specify them, so we are ready to call our function:

Writeln(’Calling export...’);
error:=wasmtime_func_call(context, @run.of_.func, nil, 0, nil, 0, @trap);
if (error<>nil) or (trap<>nil) then
 exit_with_error(’failed to call function’, error, trap);

The first thing to do is to check if an error was returned.

After all this, the ’run’ function has been called, and the instance and module can be cleaned up.
To clean up, we clean up the module and the store context: everything connected to the store will
also be cleaned up:

 Writeln(’All finished!\n’);
 wasmtime_module_delete(module);
 wasmtime_store_delete(store);
 wasm_engine_delete(engine);
end.
All that remains to be done is to show the exit_with_error procedure: This procedure shows
the error information returned by the wasmtime engine, and demonstrates that you must release
the trap and error runtime error reports when they occur.
Failure to do so will result in memory leaks:

procedure exit_with_error(message : PAnsiChar; error : Pwasmtime_error_t;
 trap: Pwasm_trap_t);
var
 error_message : Twasm_byte_vec_t ;
 S : AnsiString;

begin
 Writeln(stderr, ’error: ’, message);
 S:=’’;
 if (error <> Nil) then
 begin
 wasmtime_error_message(error, @error_message);
 wasmtime_error_delete(error)
 end
 else
 begin
 wasm_trap_message(trap, @error_message);
 wasm_trap_delete(trap);
 end;
 SetLength(S,error_message.size);
 Move(error_message.data^,S[1],error_message.size);
 Writeln(stderr, S);
 wasm_byte_vec_delete(@error_message);
 halt(1);
end;

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

107Blaise Pascal Magazine 113 2023

ARTICLE PAGE 9 / 18

Figure 2: The first wasmtime example program in action

❹ PROVIDING A WASI ENVIRONMENT TO
EXECUTE AN FPC GENERATED PROGRAM
The previous demonstration program only used an imported function (hello) and an exported
function (run) to communicate with the outside world. In particular, it did not use any WASI
functionality. The webassembly RTL of Free Pascal does use the WASI functionality. wasmtime does
not make the WASI interface available to a webassembly module unless you instruct it to.
Since the FPC RTL for webassembly relies on the WASI interface, we’ll execute a FPC-generated
program to demonstrate how to provide the WASI functionality to a webassembly module.
The FPC program is a very simple ’Hello, world’ :

begin
 Writeln(’"Hello, World!" from FPC webassembly’);
end.

When the Free Pascal webassembly compiler and RTL are installed,
then compiling this program can be done so:

ppcrosswasm32 hello.pp
If all went well, it results in a hello.wasm webassembly module.
The following Free Pascal program will load the webassembly module and provide the WASI
environment. The variable declaration block closely resembles the one in the previous example,
we only list the additional variables that were not present in the previous program:

var
 linker : Pwasmtime_linker_t;
 wasi_config : Pwasi_config_t;
begin
 Writeln(’Loading wasm library’);
 Loadwasmtime(’./’+libwasmtime);
 Writeln(’Initializing...’);
 engine := wasm_engine_new();
 store :=wasmtime_store_new(engine, nil,nil);
 context :=wasmtime_store_context(store);
 linker := wasmtime_linker_new(engine);
 error :=wasmtime_linker_define_wasi(linker);
 if (error<>Nil) then
 exit_with_error(’failed to define link wasi’, error, Nil);

With all this in place, we can now run the binary. If all goes well, you can see
output similar to the one shown in figure 2 on page 10.

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

108Blaise Pascal Magazine 113 2023

ARTICLE PAGE 10 / 17

Here we create a webassembly linker, and use it to link the WASI functionality to our webassembly
module: the wasmtime_linker_define_wasi function makes the WASI standard functions
available in the webassembly module.

However, the WASI functions needs to be configured: what file system directories are available,
what are the environment variables, command-line parameters ?
What to do with standard input, output and error output file descriptors ?

All this can be specified by creating aWASI configuration, using the wasi_config_new function:

wasi_config:=wasi_config_new();
if (wasi_config=nil) then
 exit_with_error(’failed to create wasi config’, Nil, nil);

The wasi configuration must be configured with one or more configuration functions:

wasi_config_set_argv
Sets values for the command-line parameters of the wasm module.

wasi_config_inherit_argv
Uses the values of the host program for the commandline parameters of the wasm module.

wasi_config_set_env
Sets the values for the environment variables of the wasm module.

wasi_config_inherit_env
Uses the values of the host program environment variables for the wasm module.

wasi_config_set_stdin_file
Specifies a file to be used as standard input for the webassembly program.

wasi_config_set_stdin bytes
Specifies a memory block to be used as standard input for the webassembly program.

wasi_config_inherit_stdin
Sets the standard input of the host program as standard input for the webassembly program.

wasi_config_set_stdout_file
Specifies a file to be used as standard output for the webassembly program.

wasi_config_inherit_stdout
Sets the standard output of the host program as standard output for the webassembly program.

wasi_config_set_stderr_file
Specifies a file to be used as standard error output for the webassembly program.

wasi_config_inherit_stderr
Sets the standard error output of the host program as standard error output for the webassembly
program.

wasi config preopen dir
Configures a ”preopened directory” as base directory for WASI file APIs.

For our simple demonstration, we’ll just inherit everything from the host environment,
and make the current directory available:

wasi_config_inherit_argv(wasi_config);
wasi_config_inherit_env(wasi_config);
wasi_config_inherit_stdin(wasi_config);
wasi_config_inherit_stdout(wasi_config);
wasi_config_inherit_stderr(wasi_config);
wasi_config_preopen_dir(wasi_config,PAnsiChar(’.’),PAnsiChar(’.’));
error:=wasmtime_context_set_wasi(context, wasi_config);
if (error<>Nil) then
 exit_with_error(’failed to instantiate WASI’, error, nil);

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

109Blaise Pascal Magazine 113 2023

ARTICLE PAGE 11 / 17

The wasmtime context_set_wasi function couples the WASI configuration to the WASI
environment of the webassembly module.

We can now load the module and execute it.

Loading the webassembly module differs somewhat from our previous program:
instead of loading a webassembly text format and compiling it, we’re loading an already compiled
.wasm module:

F:=TMemoryStream.Create;
try
 F.LoadFromFile(’hello.wasm’);
 wasm_byte_vec_new_uninitialized(@wasm, F.Size);
 Move(F.Memory^,wasm.data^,F.Size);
finally
 F.Free;
end;
// Now that we’ve got our binary webassembly we can create our module.
Writeln(’Creating module...’);
error:=wasmtime_module_new(engine, Puint8_t(wasm.data), wasm.size, @module);
wasm_byte_vec_delete(@wasm);
if (error <> nil) then
 exit_with_error(’failed to compile module’, error, nil);

This time we use the webassembly linker to instantiate the module, as the linker
needs to provide the WASI functionality to the webassembly module. The function
to do so is called wasmtime_linker module:

function wasmtime_linker_module(
linker: Pwasmtime_linker_t;
store:Pwasmtime_context_t;
name:PAnsiChar;
name_len:Tsize_t;
module:Pwasmtime_module_t): Pwasmtime_error_t;

The name of the module can be specified in the name and name_len variables.
We don’t use them here: they are only needed when various modules must be linked together,
because the linker will link imports from one module to exports of another module using the
module name.

Since we’re loading only one module, it is not necessary to specify a name:

// Instantiate the module
error:=wasmtime_linker_module(linker, context, Nil, 0, module);
if (error<>nil) then
 exit_with_error(’failed to instantiate module’, Nil, Nil);

A module can have a default exported function: This is the ’_start’ symbol which
starts the Free Pascal program. We extract the value of this function using
wasmtime_linker_get_default, and call it to start the FPC generated program:

error:=wasmtime_linker_get_default(linker, context, nil, 0, @func);
if (error<>nil) then
 exit_with_error(’failed to locate default export for module’, error, nil);
// And call it!
Writeln(’Calling export...’);
error:=wasmtime_func_call(context, @func, nil, 0, nil, 0, @trap);
if wasmtime_error_exit_status(error,@status)<>0 then
 Writeln(’Wasm program exited with status: ’,Status)
else
 exit_with_error(’Error while running default export for module’, error, trap);

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

110Blaise Pascal Magazine 113 2023

ARTICLE PAGE 12 / 17

The exit proc routine in the WASI specification exits the Webassembly program.
The Free Pascal runtime for webassembly calls this when the program is halted. In wasmtime,
the exit_proc routine raises an error to halt the program, thus, oddly enough,
the result of running the start function is an error condition!
Luckily, the wasmtime_error_exit_status function can be used to check for this special case.

When the program has exited, all that is left to do is to clean up, just as in the previous example
program:

// Clean up after ourselves at this point
Writeln(’All finished!\n’);
wasmtime_module_delete(module);
wasmtime_store_delete(store);
wasm_engine_delete(engine);
end.

The result of this can be seen in figure 3 on page 12.

❺ USING WASMEDGE
A second library that can be used to embed WebAssembly programs is wasmedge.
Installation instructions can be found on

https://wasmedge.org/docs/start/install/

The unit that imports this library is called libwasmedge.
The library works largely similar to the wasmtime library, but differs in the details.
In some ways it is simpler than the wasmtime library.

It only exposes 300 functions - still a considerable number, but less than the wasmtime library.
The sample program we will demonstrate loads and runs the following webassembly function
which calculates the fibonacci series:

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

Figure 3: The Free pascal WASI-based RTL in action

111Blaise Pascal Magazine 113 2023

ARTICLE PAGE 13 / 17

(module
 (func $fib (export "fib") (param $n i32) (result i32)
 local.get $n
 i32.const 2
 i32.lt_s
 if
 i32.const 1
 return
 end
 local.get $n
 i32.const 2
 i32.sub
 call $fib
 local.get $n
 i32.const 1
 i32.sub
 call $fib
 i32.addzzz
 return
)
)

Without going into the details of the webassembly format, you can see in the second line that it
defines a function ’fib’ which accepts a 32 bit integer as a parameter and which returns
another 32-bit integer.
The program to call this function is relatively simple:

uses ctypes, libwasmedge;

var
 ConfCxt : PWasmEdge_ConfigureContext;
 VMCxt : PWasmEdge_VMContext;
 Returns, Params : Array[0..0] of TWasmEdge_Value;
 FuncName : TWasmEdge_String;
 Res : TWasmEdge_Result;
 pmodule : pcchar;
begin
 Writeln(’Loading library...’);
 Loadlibwasmedge(’./’+libwasmname);
 ConfCxt:=WasmEdge_ConfigureCreate();
 Writeln(’Adding WASI environment...’);
 WasmEdge_ConfigureAddHostRegistration(ConfCxt, WasmEdge_
 HostRegistration_Wasi);
 Writeln(’Creating engine...’);
 VMCxt:=WasmEdge_VMCreate(ConfCxt,Nil);

After loading the library, a configuration context is created using WasmEdge_ConfigureCreate.
The WASI environment is added to the configuration using the
WasmEdge_configureAddHostRegistration routine.

Within this context, a ’virtual machine’ is created that will execute the webassembly
module.
The WasmEdge_VMCreate function is used to create this virtual machine:

function WasmEdge_VMCreate(
 ConfCxt: PWasmEdge_ConfigureContext;
 StoreCxt: PWasmEdge_StoreContext):PWasmEdge_VMContext;

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

112Blaise Pascal Magazine 113 2023

ARTICLE PAGE 14 / 17

The parameters are the configuration and a store (similar to what is used in wasmtime).
The store is not needed for this example.
To call the fibonacci function, a parameter is needed. This parameter is generated by
the WasmEdge_ValueGenI32 function.
Webassembly knows only a few basic types (integer, float) so the number of functions that you
must use to create values is limited: there are only 8 functions of which you will use 4 in practice.

Params[0] := WasmEdge_ValueGenI32(32);
FuncName:=WasmEdge_StringCreateByCString(Pcchar(Pansichar(’fib’)));

The second line creates a string ’fib’ that can be used by the wasmedge library. This
string is used to call the fibonacci. Calling a function in a webassembly module can be done in a
single call with the WasmEdge_VMRunWasmFromFile convenience function:

function WasmEdge_VMRunWasmFromFile(
Cxt :PWasmEdge_VMContext;
Path :pcchar;
FuncName :TWasmEdge_String;
Params :PWasmEdge_Value;
ParamLen :Tuint32_t;
Returns :PWasmEdge_Value;
ReturnLen:Tuint32_t):TWasmEdge_Result;cdecl;

The arguments to this function are pretty straightforward: path is the filename of
the module to load. FuncName is the function to load, Params and ParamLen specify
the parameters that must be passed to the function and Returns and ReturnLen
indicate the location where the return values of the function must be stored.
In the case of the fibonacci function, the function is used as follows:

pmodule:=pcchar(PAnsiChar(ParamStr(1)));
Writeln(’Running function "fib"’)
Res := WasmEdge_VMRunWasmFromFile(VMCxt, pmodule, FuncName,

@Params, 1,
@Returns, 1);

if (WasmEdge_ResultOK(Res)) then
 Writeln(’Get result: ’, WasmEdge_ValueGetI32(Returns[0]))
else
 Writeln(’Error message: ’, PAnsiChar(WasmEdge_ResultGetMessage(Res)));

Figure 4: The 32th fibonacci number calculated by a webassembly program.

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

113Blaise Pascal Magazine 113 2023

ARTICLE PAGE 15 / 17

After checking the result of the ’run’ function with WasmEdge_ResultOK, the return value is
retrieved from the first element in the Returns array. The WasmEdge_ValueGetI32 is one of the
eight functions which can be used to convert a webassembly return value to a Pascal native value, in
this case a 32-bit integer.
All that is left to do is to clean up the various resources that were allocated:

 Writeln(’Cleaning up...’);
 WasmEdge_VMDelete(VMCxt);
 WasmEdge_ConfigureDelete(ConfCxt);
 WasmEdge_StringDelete(FuncName);
end.
The result of this program can be seen in figure 4 on page 14 of this article.

❻ EMBEDDING A FPC GENERATED PROGRAM WITH WASMEDGE.

To embed a FPC generated webassembly module is not so different from the previous program.
The start of the program is similar, the differences are in the way the webassembly virtual machine
is created.

uses ctypes, libwasmedge;
var
 ConfCxt : PWasmEdge_ConfigureContext;
 VMCxt : PWasmEdge_VMContext;
 Returns, Params : Array[0..0] of TWasmEdge_Value;
 FuncName : TWasmEdge_String;
 Res : TWasmEdge_Result;
 pmodule : pcchar;
 WasiModule : PWasmEdge_ModuleInstanceContext;
 ModName : TWasmEdge_String;
begin
 Writeln(’Loading library...’);
 Loadlibwasmedge(’./’+libwasmname);
 Writeln(’Adding WASI environment...’);
 ConfCxt:=WasmEdge_ConfigureCreate();
 WasmEdge_ConfigureAddHostRegistration(ConfCxt, WasmEdge_HostRegistration_Wasi);
 Writeln(’Creating engine...’);
 VMCxt:=WasmEdge_VMCreate(ConfCxt,Nil);

Until here, there is no difference.
Like in the case of the wasmtime library, the next step is retrieving an instance of the WASI module
and configuring it.
This is done using the WasmEdge_VMGetImportModuleContext and
WasmEdge_ModuleInstanceInitWASI functions.
The first of these two functions returns the module context of the predefined_WASI_module:
this predefined module was enabled using the WasmEdge_ConfigureAddHostRegistration
function, and must be configured with the

procedure WasmEdge_ModuleInstanceInitWASI(
 Cxt: PWasmEdge_ModuleInstanceContext;
 Args: Ppcchar; ArgLen:Tuint32_t;
 Envs: Ppcchar; EnvLen:Tuint32_t;
 Preopens:Ppcchar; PreopenLen:Tuint32_t);

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

114Blaise Pascal Magazine 113 2023

ARTICLE PAGE 16 / 17

As you can see, the list of command-line parameters, environment variables and
allowed directories for file access can be configured. Standard input/output/error
cannot be configured as in wasmtime. For our case, neither command-line parameters
or environment variables are needed, so the configuration is quite simple:

WasiModule:=WasmEdge_VMGetImportModuleContext(VMCxt,WasmEdge_
HostRegistration_Wasi);
WasmEdge_ModuleInstanceInitWASI(WasiModule,Nil,0,Nil,0,Nil,0);

With this we can load our webassembly module and execute the function.
We cannot do this with the WasmEdge_VMRunWasmFromFile function, instead we need
to load the module with the WasmEdge_VMRegisterModuleFromFile function:

function WasmEdge_VMRegisterModuleFromFile(Cxt: PWasmEdge_VMContext;
ModuleName: TWasmEdge_String; Path: pcchar): TWasmEdge_Result;

The module name must be specified and must be unique.
When multiple modules are loaded, the engine will link together the modules by name.
If module ’a’ needs to import function ’b.proc1’ then the name ’b’ must be provided when loading
the webassembly module which contains procedure ’proc1’: modules do not have a name
associated with them, and the filename is not related to the module name.

Since the module name is passed on as a TWasmEdge_String type, we must allocate
it with WasmEdge_StringCreateByCString before loading the module:

ModName:=WasmEdge_StringCreateByCString(Pcchar(’prog’));
pmodule:=pcchar(PAnsiChar(’hello.wasm’));
Res:=WasmEdge_VMRegisterModuleFromFile(VMCxt, modname, pmodule);
if (WasmEdge_ResultOK(Res)) then
 Writeln(’Loaded OK’)
else
 Writeln(’Error message: ’, PAnsiChar(WasmEdge_ResultGetMessage(Res)));

Now that the module is loaded, we can actually run the start function:

Writeln(’Running function "_start"’);
FuncName:=WasmEdge_StringCreateByCString(Pcchar(’_start’));
Res:=WasmEdge_VMExecuteRegistered(VMCxt, ModName, FuncName,@Params, 0,@Returns,0);
if (WasmEdge_ResultOK(Res)) then
 begin
 Writeln(’Run OK’)
 Writeln(’Exit code: ’,WasmEdge_ModuleInstanceWASIGetExitCode(WasiModule));
 end
else
 Writeln(’Error message: ’, PAnsiChar(WasmEdge_ResultGetMessage(Res)));

NOTE that we retrieved the exit code of the FPC program with the
WasmEdge_ModuleInstanceWASIGetExitCode function:
in difference with wasmtime, the wasmedge library does not use a trap to set the exit code.

And with that, all that is left to do is clean up, similar to the previous sample program:

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

115Blaise Pascal Magazine 113 2023

ARTICLE PAGE 17 / 17

 Writeln(’Cleaning up...’);
 WasmEdge_VMDelete(VMCxt);
 WasmEdge_ConfigureDelete(ConfCxt);
 WasmEdge_StringDelete(FuncName);
end.

With this, the program can be tested, and the output should look like in figure 5 on page 17

❼ CONCLUSION
In previous articles we’ve shown that Free Pascal can be used to generate webassembly
modules. And as shown in this article, using some external libraries, native FPC
programs can load webassembly modules, whether they are generated by FPC or
by some other tool.

Figure 5: Using wasmedge to run a FPC-generated webassembly module in a native FPC program.

EMBEDDING WEBASSEMBLY IN A FPC PROGRAM

THOUGHTS ON USABILITY OF GUI APPLICATIONS
CREATED WITH LAZARUS IDE BY HELMUT ELSNER

ABSTRACT
Usability is a property of self-written programs that is not considered enough,
especially by hobby programmers, but unfortunately also often by professionals.
The programmer knows what the program does, which possibilities and
functionality it has, but does also the potential user of the program know that?
What is self-evident for the programmer, may create unsolvable problems for
the user or, in the best case only cause incomprehension. But this can be easily
remedied with the help of the Lazarus IDE. Likewise for Delphi

This article does not deal with scaling and DPI adjustment. That would be a
separate topic.

WHAT MAKES USABILITY HAPPEN?
Without claiming to be exhaustive, here are my thoughts on it:

� Clarity
� Feedback
❸ Structure
❹ Consistency
❺ User support
❻ Help

��CLARITY
After starting the application, the user should immediately see what the main
functions of the application are and how to reach them. Main functions or very
frequently used functions should be placed prominently on the user interface
and be recognizable as such. For this it’s necessary to consider the prioritization
of used functionality of the application before creating the GUI. For example,
main functions can be made more visible with TSpeedButton. But, if you make
a SpeedButton for all functions, this effect is lost.

If possible, the workflow should be visible from left to right or from top to
bottom on the user interface. This could be achieved by arranging and grouping
the controls accordingly (→ Structure). The component properties TabStop
(true/false) and TabOrder are often neglected. The TabOrder order
should follow the workflow. This requires only a little diligence.

Do not display too many controls on the interface. In normal cases set
temporary non-usable controls to Enabled:=false. Use Visible:=false
only if it is really necessary. It is usually better for the user to see that there is
something, which cannot be used at the moment, than to see nothing at all.

116Blaise Pascal Magazine 113 2023

ARTICLE PAGE 1 / 6

��FEEDBACK
The developer should always give the user the feeling that the
program will respond to him immediately. If anything takes longer,
the user must be informed about it and something must be
displayed to show movement in the matter. For example
TProgressBar in CommonControls is available for this purpose.
In any case the cursor should be adapted to the context. For longer
lasting processes at least the cursor should show that there is
something going on.

THOUGHTS ON USABILITY OF GUI APPLICATIONS
CREATED WITH LAZARUS IDE

117Blaise Pascal Magazine 113 2023

ARTICLE PAGE 2 / 6

procedure ThatTakesTime;
begin
 ...
// Set wait-cursor for the application window

Screen.Cursor.=crHourGlass;
try

 ...
DoSomething_ThatTakesTime;

 ...
finally

 ...
// Reset cursor to default also if there was a exception

Screen.Cursor:=crDefault;
end;

end;

For short text output and status messages there is TStatusBar. Those should
always tell the user what is happening in an understandable way.
For more complex programs you can also collect hints, status and error
messages in a text field (for example TMemo) to show or file it.

❸ STRUCTURE
As mentioned above, the workflow should be visible on the application interface
(e.g. Load file → Edit file → Save file: from left to right).
Related controls should be visibly separated. For this purpose there is
TGroupBox at the standard components section.

If you have many controls, you should group them by functionality.
For this you can use multiple windows, but even there you should not
overwhelm the user.

I appreciate it to work with TPageControl and its subordinated TTabSheet.
This allows a clear and structured user interface in spite of many control options.
For example, you can put all settings on one or more TabSheets.
So the settings are easy to reach, but do not overload the normal user interface.
In addition, TabSheets can be used to arrange general and function-specific
control elements separately.

Avoid too colorful and by (background) images confusing user interfaces.

Figure 1: Screenshot from example project with two TabSheets to separate functionality.

THOUGHTS ON USABILITY OF GUI APPLICATIONS
CREATED WITH LAZARUS IDE

118Blaise Pascal Magazine 113 2023

ARTICLE PAGE 3 / 6

❹ CONSISTENCY
The user interface should be consistent, i.e. the same functions should have the
same names or name stems, the same images (glyph’s) and be treated in the
same way.

An essential tool to achieve consistency and
reduce development and maintenance
effort is the TActionList.
The functions are encapsulated in
TActions and then assigned to the control
elements, which then take over the names
(Caption), hints and glyphs.
If changes are made in the actions the
control elements (e.g. menu items and
buttons) automatically take over the GUI-
relevant (Graphical User Interface) properties
from the actions assigned to them.

TImageList also contributes to
consistency and maintainability. All used
glyphs will be collected in an ImageList and
assigned to the actions itself or controls
without associated actions. If you change an
image (glyph) because it fits better to a
consistent user interface, it will be changed
automatically everywhere it was used.
ActionLists and ImageLists from Lazarus are
a great help to get and maintain a
consistent look & feel.

Figure 2: Assign OnClick of the control to the action

❺ USER SUPPORT
The user's work should be made easy
wherever it is possible. In most cases it
makes sense to be able to enlarge or reduce
the application's window size.
Only very rarely is a fixed size useful.

Areas that contain a lot of information
(e.g. log output or require longer input,
e.g. path names) should be sizable too,
usually with the application window size.

It is particularly unfriendly if text output
fields cannot be enlarged, so that the user is
forced to scroll unnecessarily.
For this purpose one can adjust the
component property Anchors
(akTop, akBottom, akLeft, akRight)
accordingly.

Sizable windows are standard in Lazarus.
This should not be changed without a good
reason.
However, you can and should prevent
windows from being pulled too small so that
controls overlap. For this purpose there is
the property Constraints in TForm.

With MinHeight and MinWidth you can
set the minimum size of the application
window to a user-friendly size.

THOUGHTS ON USABILITY OF GUI APPLICATIONS
CREATED WITH LAZARUS IDE

119Blaise Pascal Magazine 113 2023

ARTICLE PAGE 4 / 6

Important settings of the application and behavior of the application window
should be saved for the next call. For this purpose Lazarus provides three
formats in component section Misc:

● INI file TIniPropStorage
● JSON TJSONPropStorage
● XML TXMLPropStorage

One of these components will be placed on the form.
Which format one takes is left to the personal taste of the developer.
In Windows the file to store the values in the respective format will be saved in
the application directory, for UNIX-type OS as a hidden file in the home
directory.

The property SessionProperties of TForm makes it easy to manage the
settings which should be saved.

Figure 3: Dialog to maintain SessionProperties in Lazarus-IDE

THOUGHTS ON USABILITY OF GUI APPLICATIONS
CREATED WITH LAZARUS IDE

120Blaise Pascal Magazine 113 2023

ARTICLE PAGE 5 / 6

❻ HELP
This is not about the infamous help systems that are supposed to replace a
user manual, in the best case maybe it can, but about the help that the GUI
design can provide. This includes the above mentioned preferably visible
workflow, the clarity and structure.
But there is another powerful tool to help the user:
The Hints. Almost every control that the Lazarus component palette offers has a
Hint property. To show the hints, you first have to set the ShowHint property
to true in TForm.

Then you can assign strings with meaningful content to the controls in a
resourcestring section. Hints can also be multiline.
These hints then appear everywhere where it makes sense when the user holds
the mouse pointer over them.

For simple applications, this is actually all that is needed as documentation.
The program is self-explanatory - the ideal case.The property Hint offers
even more advanced possibilities when assigning hint contents depending on
certain conditions.

Here is an example of how to assign a separate hint to each individual cell in a
TStringGrid. This is useful if the text in the cell is larger than the cell and the
hint displays the entire text, or if you want to display more detailed information
about the content of the cell.

function GetCellInfo(grid: TStringGrid; col, row: integer): string;
begin
// Fill with conditions per cell to create a hint
// ...
// Simple example:
result:='Column number '+IntToStr(col)+' - Line number '+IntToStr(row);

end;

procedure TForm1.StringGrid1MouseMove(Sender: TObject; Shift:
TShiftState; X, Y: Integer);

var
colidx, rowidx: integer;

begin
// Find the cell below mouse pointer
StringGrid1.MouseToCell(x, y, colidx, rowidx);

// Default if no condition was given
StringGrid1.Hint:=StringGrid1.Cells[colidx, rowidx];

// Exclude header and call a function with hint conditions per cell
if rowidx > 0 then
StringGrid1.Hint:=GetCellInfo(StringGrid1, colidx, rowidx);

end;

For text output, it should be possible to change the size of the letters to achieve
better readability. Usually this is done with Shift + mouse scroll wheel. To do this,
use the OnMouseWheelDown and OnMouseWheelUp events.
Example for TStringGrid:
procedure TForm1StringGrid1MouseWheelDown(Sender: TObject;
Shift: TShiftState; MousePos: TPoint; var Handled: Boolean);
begin
if ssCtrl in Shift then
StringGrid1.Font.Size:=StringGrid1.Font.Size-1;

end;

procedure TForm1.StringGrid1MouseWheelUp(Sender: TObject;
Shift: TShiftState; MousePos: TPoint; var Handled: Boolean);
begin
if ssCtrl in Shift then
StringGrid1.Font.Size:=StringGrid1.Font.Size+1;

end;

THOUGHTS ON USABILITY OF GUI APPLICATIONS
CREATED WITH LAZARUS IDE

121Blaise Pascal Magazine 113 2023

ARTICLE PAGE 6 / 6

What you should avoid are blocking message windows like MessageDlg()
and other modal dialogs as well as forms that are called with ShowModal.
Always use these only where it is unavoidable to stop further operation to force
a decision.

There is nothing more annoying than getting the message
"Do you really want to quit?" after pressing the Close button.
This only makes sense if an important work hasn't been saved yet,
and that's what the message should be about.

Also an AboutBox does not necessarily have to be blocking (modal).

CONCLUSION
All in all, good usability requires a lot of planning and consideration, a lot of
writing and additional effort, but it pays off in the acceptance of the application.

With rarely used applications, even if I wrote them myself, I am often grateful
when I see a hint and remember easily what I had intended.

Example project: SessionPropertyTool in SessionPropertyTool.zip

RECOMMENDATIONS

Design:
● Use TActionList to maintain application functionality
● Use TImageList
● resourcestring section for Captions or Titles
● TStatusBar and TProgessBar for messages to user
● Set Screen.Cursor context dependent
● TGroupBox, TPageControl with TTabSheet to separate the controls

TForm:
● Constraints for window size
● Use SessionProperties
● ShowHint to true and create useful Hint texts
● Avoid ShowModal

Components, controls:
● Set Anchors for optimal sizes of text and input fields
● Save Assign TabStop, TabOrder
● Use rather Enabled instead of Visible
● Create good Hints
● Use only really necessary modal dialogs
● Font sizable

122Blaise Pascal Magazine 113 2023

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
K

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
KLAZARUS

HANDBOOK
FOR PROGRAMMING WITH F PASCAL AND LAZARUSREE

934 PAGES

LAZARUS
HANDBOOK

 SUPER
 PACK

6 ITEMS
2023

1

3
4

5 6
1. One year Subscription
2. The newest LIB Stick
 - All issues 1-111
 - On Credit Card
3. Lazarus Handbook Pocket
4. LH PDF including Code
5. Book Learn To Program
 - using Lazarus PDF including
 19 lessons and projects
6. Book Computer Graphics
 Math & Games
 - PDF including ±50 projects PRICE € 150

NORMAL PRICE € 275

ADVERTISEMENT

POCKET
Edition
+shipment

2

LAZARUS
HANDBOOK
PDF

123Blaise Pascal Magazine 113 2023
COMPONENTS

DEVELOPERS4

COMPONENTS
DEVELOPERS4

D11

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/

donate-to-ukraine-humanitarian-aid/

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Blaise Pascal

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

If you are from Ukrainian origin you can get a free Subscription for Blaise Pascal
Magazine, we will also give you a free pdf version of the Lazarus Handbook. You need to
send us your Ukrainian Name and Ukrainian email address (that still works for you), so
that it proofs you are real Ukrainian. please send it to editor@blaisepascal.eu and
you will receive your book and subscription

124Blaise Pascal Magazine 113 2023

 RAD Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OS X client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralised and distributed load
 balancing and fail-over
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multi thread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronounceable password generators.
● High performance LZ4 and J peg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, J SON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

5.22.00 is a release with containing new stuff, refinements and bugfixes., O p en SSL v3 sup p o rt,
WebSo cket sup p o rt, further imp ro vements to SmartB ind , new high p erfo rmance hashing algo rithms,
imp ro ved Remo teD esk to p samp le and much mo re.
This release req uires the use o f v. 7. 9 7 .0 0 o r newer.kbmMemTab le

kbmMemTable is the fastest and most feature rich in memory table
 for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping
 range selection features
● Advanced indexing features for extreme performance

COMPONENTS
DEVELOPERS4

kbmMW Professional and Enterprise
Edition v. 5.22.10
kbmMemTable v. 7.98.00
Standard and Professional Edition

● New: full Web-socket support.
 The next release of kbmMW Enterprise Edition will
 include several new things and improvements.
 One of them is full Web-socket support.
● New I18N context sensitive internationalisation framework to
 make your applications multilingual.
● New ORM LINQ support for Delete and Update.
 Comments support in YAML.
● New StreamSec TLS v4 support (by StreamSec)
 Many other feature improvements and fixes.

Please visit http://www.components4developers.com
for more information about kbmMW

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP, XML, RTMP from
 web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

D11
ADVERTISEMENT

	Barnsten:
	Editor:

