
F O R D E L P H I, L A Z A R U S, A N D P A S C A L

R E L A T E D L A N G U A G E S / A N D R O I D,

I O S, M A C , W I N D O W S & L I N U X

P R I N T E D, P D F, & O N L I N E V I E W

BLAISE PASCAL MAGAZINE 65
DX

Blaise Pascal

Book reviews
Cross platform Development with Delphi 10.2 & FireMonkey

by Harry Stahl
Delphi in depth: FireDAC with Delphi Tokyo 10.2

by Cary Jensen

PASCAL COIN - BLOKCHAIN
maxbox: how to get a SHA256 or SHA256D for Blockchains

by Max Kleiner
Installing components in a Package

Free Colour Buttons of high quality for Delphi and Lazarus
by Detlef Overbeek

Video Effects and Animations
creating video effect without hardly any coding

by Boian Mitov
Futoshiki puzzle

by David Dirkse
REST easy with kbmMW Part 3 / 4 / 5

by Kim Madsen
FPREPORT - A new Reporting Engine

by Michael van Canneyt
Installing Lazarus on Linux operating system and Virtual Box

How to install Lazarus on Linux Mint in VirtualBox
by Detlef Overbeek

Custom Dialogs in Lazarus
by Howard page Clark

GET FREE PROGRAMS AND COMPONENTS IF YOU GO TO THE CONFERENCE
1. FreePascalReport Generator
2. kbmMW Memtable Components
3. Newest Stabel Version of Lazarus 1.8 Windows
4. Lazarus/Mint/VitualBox as VDI transportable File
5. For non subscribers: get a free subscription for Blaise Pascal Magazine for one year. (Download)
6. Free Book: "Learn to program using Lazarus (PDF)
7. Introduction New book for Lazarus "HANDBOOK LAZARUS" discount for early bird pre-orders. --> NEW

10.00 REGISTRATION AND RECEPTION...
Coffee

10.30 INTRODUCTION TO OF LAZARUS (1.8)THE LATEST STABLE VERSION
 Mattias will show the most important new items. We will discuss the method to create your own
 Components and integrate in Lazarus. (The so-called open and closed source versions and what it really
 means for the end user).
 will show the most important change and changes of IDE features to you, we willMattias Gärtner
 discuss the roadmap of Lazarus, FPC and Blaise Pascal Magazine. Mattias is the main developer
 of Lazarus, Michael van Canneyt for FPC. Michael will be available on the conference, you will be
 able to put questions to the team.
 Because we will show the newest version of Lazarus we also will show the consequences for
 viewing live on a 4k Screen, 48 inch this new version in a so called High DPI Mode. <-- NEW
 On Windows 10 as well Windows 7!

12.00 RANDOM? WHAT DOES THAT REALLY MEAN? THADDY DE KONING <-- NEW
 about the importance of random, real random, pseudo random and what the consequences are
 for your code.
 - speed / secure randoms / statistics
 - issues like Delphi of Lazarus compatible random routines
 - issues like using a Raspberry Pi (or modern Intel) as hwrng. (secure).
 Random is still a comprehended issue...

12.45 - 14.00 Lunch
14.00 . KBM MEMTABLE IN CONJUNCTION WITH SQL
 kbmMW mentions a very important fact that you can use SQL in this memory table,
 - not only a very specific SQL statement but ANY kind of statement from ANY supplier:
 whether its MySQL, Oracle, Microsoft, Firebird etc.
 Something that NO OTHER MemTables offers.
 This means you could create any kind of program without the use of a Database and still can use S QL.
 You can even prepare your SQL in an SQL generator and use it outcomes.
 We found Components4Developers-owner Kim Madsen to have the latest version available for
 this experiment so that we built a component group which will be available for free with closed
 source and if you want the source code you can of course order that.

15.00 NEW: PASCAL RIEKENBERG WILL SHOW THE NEW FP REPORT
 The first FreePascal-Report generator, a tool you will of course receive for free.
 NOT Fastreport but a by Michael van Canneyt.totaly new developed report generator
 Imagine: create your own Report Generator and make it available for your customers...!
 The specialist that will explain it all is: Pascal Riekenberg

16.00 ANTHONY VOGELAAR LET'S THE TIME TICK:
Coffee break running a T-timer for lazarus and then do that job a bit more advanced running on almost
 nanoscale for the use of a timer on the basis of the CPU. This of course without having a
 graphical environment but a very precise clock.... Incredible!

INDUSTRIEWEG 31, 3401 MA IJSSELSTEIN, NEDERLAND

REGISTRATION FORM
http://www.blaisepascal.eu/contacts/RegistrationPasconOctober2107.php

 l REGISTRATION BY PAYPA http://www.blaisepascal.eu/agenda/lazarus_conference.phpl

2 Issue Nr7 2017 BLAISE PASCAL MAGAZINE

PASCON FOR LAZARUS

TH

14 OCTOBER 2017

DX
DX

DX

DXLAST REMINDER
YOU NEED TO REGISTER

DX

CONTENTS

D E L P H I , L A Z A R U S , S M A R T M O B I L E S T U D I O ,
A N D P A S C A L R E L A T E D L A N G U A G E S
F O R A N D R O I D, I O S, M A C, W I N D O W S & L I N U X

Publisher: Foundation for Supporting the Pascal Programming Language
in collaboration with the Dutch Pascal User Group (Pascal Gebruikers Groep)
© Stichting Ondersteuning Programmeertaal Pascal

BLAISE PASCAL MAGAZINE 65

BARNSTEN PAGE 46
COMPONENTS4DEVELOPERS PAGE 80

FASTREPORT PAGE 19
PASCON FOR LAZARUS 2017 PAGE 2
VISUINO PAGE 40/41

ADVERTISERS

3Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Book reviews
Cross platform Development with Delphi 10.2 & FireMonkey Page 5
by Harry Stahl
Delphi in depth: FireDAC with Delphi Tokyo 10.2 Page 9
by Cary Jensen

PASCAL COIN - BLOKCHAIN Page 13
maxbox: how to get a SHA256 or SHA256D for Blockchains
by Max Kleiner
Installing components in a Package Page 20
Free Colour Buttons of high quality for Delphi and Lazarus
by Detlef Overbeek
Video Effects and Animations Page 23
creating video effect without hardly any coding
by Boian Mitov
Futoshiki puzzle Page 42
by David Dirkse
REST easy with kbmMW Part 3 / 4 / 5 Page 47/49/52
by Kim Madsen
FPREPORT - A new Reporting Engine Page 56
by Michael van Canneyt
Installing Lazarus on Linux operating system and Virtual Box Page 61
How to install Lazarus on Linux Mint in VirtualBox
by Detlef Overbeek
Custom Dialogs in Lazarus Page 72
by Howard page Clark

Sometimes quantum particles can go through walls, as if an
invisible tunnel opened up before them!

 Imagine throwing an electron against a wall. If the wall is thick,
the electron bounces back, which seems normal.
But the electron is a quantum particle and also behaves
like a wave. If the wall is very thin, the electron may
be found on both sides of the wall, which means it
can sometimes go through the wall.

This is called the tunnel effect, one of the main
effects at the base of nanosciences.
The Image was helpfully supplied by :
http://toutestquantique.fr/en/tunnel-effect/
We alterd the picture for deisgn -purposes.

Important: In issue 64 there was a peace of code that was erroneous
double placed in the list. Jou Now can find the right Code: HSButton.zip

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may
not be copied, distributed or republished without written permission. Authors agree that code associated with their articles will be made
available to subscribers after publication by placing it on the website of the PGG for download, and that articles and code will be placed on
distributable data storage media. Use of program listings by subscribers for research and study purposes is allowed, but not for commercial
purposes. Commercial use of program listings and code is prohibited without the written permission of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2017 prices)

Printed magazine edition
10 issues per annum, 44-page Delphi-only section: € 90.-- This includes postage, VAT at 6 % and all code and programs accompanying the articles.
Excluding postage the 44-page edition is € 60.-- per annum.
10 issues per annum 80-page Delphi + Lazarus sections: € 150 plus € 80 for postage.
Digital magazine edition (PDF format)
10 issues per annum 80-page Delphi + Lazarus sections: € 50.-- (excluding VAt at 21%).
For the months to the end of 2017 we are trialling a fuller 80-page edition of the magazine, with two sections, the first with a Delphi focus, and the
second with a Lazarus/FPC focus.
We will decide, based on reader feedback, at the end of 2017 whether to continue with this larger format magazine, or revert to the 44-page format
you know from recent issues.
Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card: Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands / Tel.: + 31 (0) 30 890.66.44 / Mobile: + 31 (0) 6 21.23.62.68
office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: +31 (0)30 890.66.44 / Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Peter Bijlsma -Editor
peter @ blaisepascal.eu

Michaël Van Canneyt,
michael @ freepascal.org

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Primož Gabrijelčič
www.primoz @ gabrijelcic.org

Kim Madsen
www.component4developers

Benno Evers
b.evers
@ everscustomtechnology.nl

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta@cybernautics.nl

Peter Johnson
http://delphidabbler.com
delphidabbler@gmail.com

Peter van der Sman
sman @ prisman.nl

John Kuiper
john_kuiper @ kpnmail.nl

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Anton Vogelaar
ajv @ vogelaar-electronics.com

Dmitry Boyarintsev
dmitry.living @ gmail.com

Siegfried Zuhr
siegfried @ zuhr.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

Rik Smit
rik @ blaisepascal.eu
www.romplesoft.de

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact@intricad.com

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni
www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Heiko Rompel
info@rompelsoft.de

Kim Madsen
kbm @ components4developers.com

4 Issue Nr7 2017 BLAISE PASCAL MAGAZINE

Printed Normal Issue
44 pages

Printed Extended Issue
80 pages

Electronic Extended Issue
80 pages

Dutch

€ 90 € 90

€ 150 € 159

€ 60,50 € 60,50 € 50

€ 25

€ 95,40 € 60

€ 80

No Extra

€ 150

Shipment
in Netherl

Internat.
excl. VAT

Internat.
incl. VAT Shipment

WIKIPEDIA

Member and
donator of

Title:
CROSS-PLATFORM-DEVELOPMENT
WITH DELPHI TOKYO 10.2
Author:
Harry Stahl
Publisher:
Harry Stahl
City: Bonn, Germany
Copyright (2017),
All rights reserved
ISBN: 9781549545764
Imprint:
Independently published

The book is sold in two versions:
https://www.amazon.de/dp/1521136661

Price of the English Version: € 49.90
Price of the Ebook version € 29,90

Selling an Ebook does make sense but a
PDFversion would also be a wonderful option.
A printed book however is in practice much more
useful for obvious reasons.
I personally like to have them both:
the electronic version for rapid topic location using
the index, while during development a printed
book is like an extra screen
and adds to the fun of programming and problem
solving

BOOK REVIEW: CROSS PLATFORM DEVELOPMENT
WITH DELPHI 10.2 & FIREMONKEY PAGE1/4
BY HARRY STAHL

WHY BUY THIS BOOK:

This book is written for experienced
 so will be rather laborious for VCL-developers,

beginners who would like an easy start with
FireMonkey, or for those already working with
FireMonkey and searching for solutions.
 Experienced users who previously
developed for Windows have usually – if
migrating to FireMonkey - questions that seem
to be hard to find answers for.
First of all they need to find the solution for
common problems like connecting with
Windows PC, MAC or Linux and their various
setting dialogs.
 Often there are only small differences
between and components, FireMonkey- VCL

differences which sometimes lead to failure
during development.
Finding the differences is often costly.
This book explains the minor and major
differences between the well-known VCL
components.
The use of components makes more FireMonkey

sense if they are used for cross platform
development.
Having noticed this, Windows and e.g. MAC
handle a lot of functions completely
differently. For example: passing parameters at
the start of the program.

This book provides a great many answers you
might need and therefore saves a lot of time.
If the MAC or Linux environment is new to you
or you have no basic information about
handling of files, available storage locations or
required developer tools, you will find at least
the most important information in this book.
A new chapter in this book is 3D-
programming. Here you will find the basic
principles needed to understand them and
some easy to do sample-applications.

Please note: this book does not handle the topic
"databases".
This is due to the fact that the author does not
use Delphi database components,
but instead uses his own solution for working
with "databases".

Conclusion:
its good to have a book like this and it was
worth waiting for the English version, which
most people find easier to understand.
If so asked, I would advise you to buy it.
It’s worth it....

5Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

CROSS PLATFORM DEVELOPMENT WITH
DELPHI 10.2 & FIREMONKEY PAGE 2/4

TABLE OF CONTENTS
Foreword 8
Introduction 9
About the book 9
About the author 9
Contact information 9

Chapter 1: What is FireMonkey? 10
Chapter 2: How to
 use the FireMonkey components 11
Section 1: Getting Started 11
Section 2: New FireMonkey project 13
FireMonkey desktop application (Multi Device Application) 13
Using the Multi Device Designer (Fire UI) 15
Form inheritance with the Multi Device Designer 18
Reverting to inherited settings 19
Creating a platform-specific event handler
 with the Multi-Device Designer 20
Section 3: A first FMX-program (analog clock) 21
Section 4: Selected FireMonkey components 27
TButton (with Trimming) 27
TEdit (without PasswordChar) 27
Texpander 28
TForm (furthermore with caption) 28
TFrame 28
TPanel 28
TRectangle 29
TCheckbox, TRadioButton (IsChecked) 29
TGroupBox with TRadioButtons
Tswitch 29
TImage 30
TImageControl 31
TImageViewer 31
TImageViewer (to use with Livebindings Designer) 31
TLabel (new property FontColor) 35
TPathLabel 35
TPath 35
TImageList (not available - but compensation possible) 36
TListBox (no TCheckListbox, but ShowCheckboxes) 39
All Components (except the form) 49
Several Components (Properties with additional type-qualifying) 49
TMenuItem (without ImageIndex) 49
TMainMenu (Handling MAC Menus) 50
TMemo (CaretPosition, no Modified, FindNext-replacement) 51
TDropTarget (how drag & drop works in FireMonkey) 58
TRichEdit (not available - but possible for replacement via 3rd-party) 60
TPageControl (Not available - but replacement available) 60
TStringGrid (works different) 60
TGrid (Image and other elements in the Grid) 65
TStringGrid-alternative (TMSFMXGrid) 66
THeader (not sections, but items) 66
THeaderControl (is not available under FireMonkey) 66
TProgressBar (not "position" but value) 66
TTabControl (no Ownerdraw) 67
TTrackbar (helpful property "tracking") 67
TSpeedButton (without Bitmap) 67
TStatusbar (a way to compensate the missing "Panels") 67
MessageDlg (e.g. not directly usable with mtWarning) 67
Section 5: The FireMonkey Style-Designer 68
a) Using the Styles Editor 68
b) Styles in FireMonkey - an overview 71
c) How to convert VCL Styles to FireMonkey Styles 74
d) Using FireMonkey Styles 75
e) Understanding FireMonkey-Styles 76

Chapter 3: Tips and tricks
 for Cross-Platform Development 79
Section 1: Starting other programs 79
Section 2: Get the program directory and program data directory 80
Section 3: Catch to the program passed start-up parameters 83
Section 4: "Hello World" - Multilingual programs and new markets 87
Section 5: Apply sandboxing and Entitlements properly 91
Section 6: Using MAC APIs (POSIX, CORE and Cocoa) in Delphi 95

Chapter 4: Requirements for
 Cross-Platform Development 100
Section 1: Setting up Windows PC and MAC PC 100
Section 2: Enabling MAC OSX Platform 103
Section 3: Provisioning and deployment (MAC) 107
1. Submission to the APPLE App Store 108
2. How to create a .dmg file for distribution outside the Apple App Store 111
3. How to create your own setup package with the Application Developer ID /
Installer 113
a) Hot to request a Developer ID certificate and an Application Developer
Installer ID 114
b) Working with the code-signing tool and Package Maker 116

Chapter 4: Requirements for
 Cross-Platform Development 100
Section 1: Setting up Windows PC and MAC PC 100
Section 2: Enabling MAC OSX Platform 103
Section 3: Provisioning and deployment (MAC) 107
1. Submission to the APPLE App Store 108
2. How to create a .dmg file for distribution outside the Apple App Store 111
3. How to create your own setup package with the Application Developer ID /
Installer 113
a) Hot to request a Developer ID certificate and an Application Developer
Installer ID 114
b) Working with the code-signing tool and Package Maker 116

Chapter 5: Cross-Platform
development with Linux 120
Section 1: Setting up Windows and Linux-PC 121
Section 2: Enabling the Linux-Platform 125
Section 3: Provisioning and deployment (Linux) 127
Section 4: A first Linux-Console-Application 128
Section 5: Linux-Server-Console-Application and Client-Application 130
Section 6: Create an Application as Service (Daemon) 137
Section 7: Delphi units for Linux 139

Chapter 6: Working with
Graphics in FireMonkey 142
1. FireMonkey TBitmap versus Windows TBitmap 142
2. TBitmapData instead of ScanLine for bitmap manipulation 142
3. How to change the alpha channel of a TBitmap 143
4. How to draw on the canvas of a bitmap 144
5. How to turn graphics, flip, invert or color to gray 145
6. How to draw a bitmap scaled 148

Chapter 7: 3D-Programming 149
Section 1: Overview 149
1. 3D-Objects 149
2. Cameras 149
3. Screen Projections 149
4. Rotations 150
5. Light 150
6. Materials 152
Section 2: The 3D Coordinate System 154
Section 3: 3D-Application "Atomic Model" 158
Section 4: 3D-Application "Solar Model" 163

Chapter 8: Animations,
 Transitions and Effects 166
Chapter 9: Sending and receiving
 messages with the TMessageManager 170
Section 1: Simple Messaging-Demo 171
Section 2: Enhanced Messaging-Demo 173

Chapter 10: Useful third-party
components for FireMonkey 177
1. TMS-Components 177
2. Report-generator: FastReport FMX 178
3. RemObjects-Application Framework (Hydra) 179
4. Other components 179

Chapter 11 How to - tips & tricks for FMX 180
R1 ... Get the display resolution? 180
R2 ... Check whether the Escape, Ctrl or Alt key is pressed 180
R3 ... Use folder names under Windows and MAC properly 182
R4 ... Use search-mask for "all files" in Windows and MAC OS X properly 184
R5 ... Avoid looping symlink folders (Alias) 184
R6 ... In which situations file symlinks functions play a role otherwise 185
R7 ... Determine the control under the mouse position 186
R8 ... Find out on which MAC OS X
 operating system the program is running 186
R9 … Get the current user name in Mac OS X / Linux / Windows 188
R10 … Send files as an attachment
 of an e-mail with the system mail program 188
R11 … Provide the user with help-files under Win & MAC 190
R12 ... Drag and drop text from external source
 (eg browser) to a TEdit box 192
R13 ... Store additional information in standard objects 193
R14 … Using ActiveControl 193
R15 … Replace OnDrawItem event of the ListBox from VCL
 with the OnPainting event of the TListBoxItems 194
R16 … Load Bitmap from resource file (for retina display) 195
R17 … Swap items in a listbox 197
R18 … Swap items in a Listbox via Drag & Drop 198
R19 … Using FMX functions in a VCL application via DLL 198
R20 … Draw text in TGrid right or centered 204
R21 … Draw text in TStringGrid right or centered 206
R22 … Working with the "visible" property of controls 207
R23 … Prevent unintended shortening of TLabel text 207
R24 ... How to show a pop-up menu at a special position 208
R25 … Determine the document directory 209
R26 … Improve the font quality (especially on Windows) 209
R27 … Select a folder with a dialog 209
R28 ... Let a column in a string grid occupy the remaining space 210
R29 ... Create missing components with Frames 211
R30... Moving controls at runtime in the form 215

Chapter 12: Outlook 218
Index 219

6 Issue Nr7 2017 BLAISE PASCAL MAGAZINE

CHAPTER 1: WHAT IS FIREMONKEY?
FireMonkey, usually abbreviated as "FMX", is a
software component library or vector-based
framework, which allows cross-platform application
development for Windows, MAC OS X (or "macOS"),
Linux, iOS and Android, often with the same source
code. The first FMX version was released with XE2,
with XE3 followed a extended FMX version, which
was often called "FireMonkey 2".
Since then FMX has been heavily reworked with
every Delphi version, so the developer often had to
make a number of adjustments when switching to
the latest FMX version.
Fortunately the functionality of FMX increased with
every new Delphi-version, so that today we have a
very powerful framework, with which you can do not
only everything that is possible with the VCL, but
also much more. All components are freely rotatable
and individually scalable. There are also a number of
3D components that can be used to write 3D
programs. Finally, the effects and animations are to
be mentioned, which give FMX another unique
feature The representation of the components is
supported by the GPU (Graphic Processing Unit),
which makes the output
faster and more fluid.
Under Windows, the GPU is
addressed with DirectX,
under Mac with OpenGL and
under iOS / Android with
OpenGL / ES.

History
FireMonkey was originally
developed by Eugene Kryukov
(company KSDEV, Uland-UDE
in Russia). The product was
known as VGScene. In 2011
the framework was purchased
by Embarcadero and
integrated in Delphi XE2 as a
new framework, in addition to
VCL. From XE3 it is only from
the enterprise version on an
integral part of Delphi, for the
professional version you have
to purchase it separately as a
so-called mobile pack.
Since Delphi 10 Berlin you can
create 64-bit applications for
Windows and also for IOS, for
Mac and Android it remains so
far with the 32-bit version.
Starting with
Delphi 10.2 Tokyo,
the Linux platform (64-bit) is
also supported, but only for
the creation of
console applications.

Outlook
In relation to the VCL platform, the main innovations
and enhancements are found now at
FMX. There are always new components and
features added to the components. In this
respect I see here the future of software
development with Delphi.
Since May 2017, with the "FMXLinux" Add-on, we
have also a possibility to develop Linux
applications for the desktop with Delphi (more info
on fmxlinux: http://www.fmxlinux.com).
So, do not be surprised if you already see some
screenshots of Linux desktop programs
here in the book. These were created with Delphi
and the FMXLinux Add-on and look just
better, as result displays in console windows.

CROSS PLATFORM DEVELOPMENT WITH
DELPHI 10.2 & FIREMONKEY PAGE 3/4

7Issue Nr7 2017 BLAISE PASCAL MAGAZINE

CROSS PLATFORM DEVELOPMENT WITH
DELPHI 10.2 & FIREMONKEY PAGE 4/4

8 Issue Nr7 2017 BLAISE PASCAL MAGAZINE

Title:

DELPHI IN DEPTH: FireDAC
WITH DELPHI TOKYO 10.2
Author: Cary Jensen
Project Editor: Loy Anderson
Contributing Technical Editors:
Dmitry Arefiev, Holger Flick,
Jens Fudge, and Bruce McGee
Cover Designer: Loy Anderson
Indexer: Cary Jensen
ISBN-10: 1546391274
ISBN-13: 978-1546391272
ISBN-10: (e-book edition)
Published by

Jensen Data Systems, Inc., USA.
http://www.JensenDataSystems.com/
firedacbook
Publish date: May 11, 2017.
Paperback: 558 pages
Language: English
LINKS FOR PURCHASING THIS BOOK:
Ebook version from FastSpring:
Retail price for ebook: $44.99 USD
Buy printed book at CreateSpace
(CreateSpace is Amazon's publishing company)
Amazon US: Buy Book USA
Amazon Canada: Buy Book Canada
Amazon.co.uk:Buy Book Amazon.co.uk (UK)
Amazon.de Germany, Switzerland, Austria:
Buy Book Amazon.de Amazon.fr France:
Buy Book Amazon.fr (France) Amazon.es Spain:
Buy Book Amazon.es (Spain and other counties)
Amazon.it Italy:
Buy Book Amazon.it (Italy) Amazon.jp Japan: Available
soon

DELPHI IN DEPTH: FIREDAC WITH DELPHI TOKYO 10.2 PAGE 1/4

Issue Nr7 2017 BLAISE PASCAL MAGAZINE

CHAPTER TITLES
Chapter Titles v
Table of Contents vii
About the Author xvii
About the Technical Reviewers xix
Acknowledgements xxi
Introduction 1
Chapter 1 Overview of FireDAC 5
Chapter 2 Connecting to Data 15
Chapter 3 Configuring FireDAC 47
Chapter 4 Basic Data Access 81
Chapter 5 More Data Access 109
Chapter 6 Navigating and Editing Data 145
Chapter 7 Creating Indexes 165
Chapter 8 Searching Data 197
Chapter 9 Filtering Data 217
Chapter 10 Creating and Using Virtual Fields 259
Chapter 11 Persisting Data 297
Chapter 12 Understanding FDMemTables 329
Chapter 13 More FDMemTables:
Cloned Cursors and Nested DataSets 369
Chapter 14 The SQL Command Preprocessor 397
Chapter 15 Array DML 425
Chapter 16 Using Cached Updates 439
Chapter 17 Understanding Local SQL 487
Appendix A Code Download,
Database Preparation, and Errata 507
Index 519

If the book is not yet available from Amazon in your
country, you can buy this book directly from
CreateSpace (Amazon's publishing company), and
have it shipped to your address.

Retail price for printed book:
$49.99 USD
€49.00 EURO
£40.00 GBP

This book covers the current version of Delphi,
Delphi 10.2 Tokyo as well as previous versions of
Delphi. There will also be an accompanying download
with source code which you can download from this
page.

Conclusion about the book:
The book is as always a very detailed and in-depth
look at FireDAC as you would expect from Cary
Jensen.
I must say it was absolutely necessary someone would
help us understand FireDAc and its possibilities.
It is very useful because there are lots and lots of
subjects very hard to come by if not explained.
It will help to make it much easier to work with
Databases and even make you work faster.
I consider it to be a very helpful book and if you have
a look at all the items it covers and shows: you will
learn a lot of new details about the subjects.
Great.
It was about time we would get such a helpful book.
It’s a must have.

9

If you are an advanced database developer,
you too will find valuable information.
For example, how to define dynamic
master-detail relationships, the convenience
of nested datasets, and the power of cached updates.
In order to use the examples found in this book you
will need to be using Delphi XE6 or later, and ideally
Delphi 10 Seattle or later. At a minimum, you will
need the profession version of these products, and
will also need to install either the InterBase server
or the InterBase developer edition. There are a few
more requirements, and you will find out more about
these in Appendix A, which you should read before
continuing to Chapter 1:

Overview of FireDAC. Conventions
Most of the examples in this book make use of
FDQuery components, which are used to execute
SQL (Structured Query Language) statements. In
this book, I am pronouncing SQL as “es”-“que”-“el,”
and not “sequel.” What this means is that I will say
“an SQL statement,” instead of “a SQL statement.”
Another convention that I use is to drop the T in
most references to a class. For example, while I will
occasionally speak strictly about a class, say
TFDQuery, I will most often refer to instances of this
class as FDQueries, and then more conversationally
as “queries.” My main goal is readability. To me, the
constant use of the T in a class name makes the text
harder to read.
Another convention relates to the sample projects
that accompany this book. In almost every case,
when I show a code segment, it is code that can be
found in a sample project from the code download.
The first time I refer to a given project in a chapter,
I include a note indicating the name of the project as
it appears in the code download. I do not repeat this
note in subsequent references to that project in the
same chapter.

Another convention concerns how screenshots are
referenced. This book includes both figures and
illustrations. All figures are numbered, and include a
caption. Illustrations are not numbered, and do not
include captions. Illustrations are used for small
screenshots that are discussed in the text that
immediately precedes the screenshot.

By comparison, figures may not appear on the same
page from which they are referenced, and may be
referred to again later in the chapter. It’s a minor
point, but one that I want to make in case you start
wondering why some screenshots lack a caption.
There is one last thing. This book is about
techniques involving FireDAC. And while FireDAC
itself is cross-platform, almost every one of the
sample projects is a VCL (Visual Component Library)
example that runs only on Windows. Since Delphi is
a Windows-based IDE, it is guaranteed that every
reader of this book will be running Windows. Writing
FireMonkey applications for iOS, Android, or OSX
(Mac) involves additional technologies, and I didn’t
want to get bogged down with discussions of
LiveBindings (which I do cover), the platform
assistant, and FireMonkey component configuration.
I know that some readers will be unhappy about this
decision, but I wanted you to know that I had
my reasons.

DELPHI IN DEPTH: FIREDAC WITH
DELPHI TOKYO 10.2 PAGE 2/4

10 Issue Nr7 2017 BLAISE PASCAL MAGAZINE

ABOUT THE TECHNICAL REVIEWERS
Dmitry Arefiev
Dmitry Arefiev is the creator of AnyDAC, the product
that eventually became FireDAC. He is currently the
FireDAC architect for Embarcadero Technologies,
the makers of RAD Studio and Delphi.
Email: darefiev@gmail.com

HOLGER FLICK
Dr. Holger Flick is a well-known member of the Delphi
Community, and has worked with Delphi and Borland
Pascal before Delphi. While achieving a
Degree in Computer Science and a Doctorate of
Engineering, he was part of several developer teams
at Borland and later CodeGear. This gave him the
means to gain first-hand knowledge of the tools and
frameworks. He wrote several articles and spoke at
many Delphi Road Shows, seminars, and
conferences. When developing software with Delphi,
his focus is on database-driven applications for both
desktop and mobile platforms. Since 2016, Holger
heads his new brand “Flix Engineering” and is
available for training, development, and consulting
services.
URL:
https://flixengineering.com/
blogTwitter:
https://twitter.com/hflickster
LinkedIn:
https://de.linkedin.com/in/hflick
Email:info@flixengineering.com

Jens Fudge
Jens Fudge has been working with Delphi since 1995,
when it first came out. He has built mainly database
systems for a lot of various customers in different
areas like railroad companies, airports, cement
factories and even a government
application. Jens is an Embarcadero Delphi MVP, and
works as a trainer and consultant for many different
companies, and is also a frequent speaker at
international and national conferences. Apart from
being a Delphi developer and consultant, Jens also
brews beer, wine and mead, and shoots archery. The
latter has inspired Jens to the name of his company,
which is Archersoft. Jens won the Gold medal in
archery at the Paralympic Games in Barcelona, Spain
in 1992.
Email: Jens.fudge@archersoft.dk

Bruce McGee
Bruce McGee operates a software consulting
company named Glooscap Software in Toronto,
Ontario, Canada. He has been a user of and advocate
for Delphi for many years, and continues to work with
it daily. He is also a big fan
of continuous learning, especially in the software
development field, and the
need to constantly hone our craft.
Blog: http://www.glooscap.com/

WHO IS THIS BOOK FOR
This book is intended for the Delphi database
developer. In it you will find information at nearly
every level of application development. If you are
new to database development in Delphi, you will find
basic information about how the TDataSet interface
works. For example, how to navigate records, the
concept of the current record, accessing fields, and
how to edit data.

DELPHI IN DEPTH: FIREDAC WITH
DELPHI TOKYO 10.2 PAGE 3/4

11Issue Nr7 2017 BLAISE PASCAL MAGAZINE

DELPHI IN DEPTH: FIREDAC WITH
DELPHI TOKYO 10.2 PAGE 4/4

12 Issue Nr7 2017 BLAISE PASCAL MAGAZINE

maXbox
maXbox Starter 54

13maXbox

In the following I want to show 2 solutions,
one with the and a second one advapi32.dll

with a library from PascalCoin

(www.pascalcoin.org) precompiled in

maXbox! Small functions to build a micro-service.
Such a hash you can find for example in anti-virus
services to recognize a file already uploaded:

https://www.virustotal.com/en/file/3a5
8a62b4a4959d1bc75c7ad698f3cb47ee85c52c
4c3799d78b9bc862defda5a/analysis/15034
83667/

VirusTotal stores all the analyses it performs, this
allows users to search for reports given an MD5,
SHA1, SHA256 or URL. Search responses return
the latest scan performed on the resource of
interest. You see in the url above the SHA256 of
the exe:

3a58a62b4a4959d1bc75c7ad698f3cb47ee85c
52c4c3799d78b9bc862defda5a

Already scanned files can be identified by their
known (e.g. by default) SHA256 hash without
uploading complete files. O.K. lets build the script
to get those hashes.

3a58a62b4a4959d1bc75c7ad698f3cb47ee85c
52c4c3799d78b9bc862defda5a

Already scanned files can be identified by their
known (e.g. by default) SHA256 hash without
uploading complete files. O.K. lets build the script
to get those hashes.

The script can be found at:
http://www.softwareschule.ch/examples
/sha256.txt

pic:
http://www.softwareschule.ch/image
s/sierpinski4realhash.png

The DLL solution is not the easiest one but it
shows explicitly steps behind. Also you do have
the flexibility to use larger values like SHA512.
Our goal is to calculate SHA256 of maXbox4.exe.
First we need some types and structures:

BLOKCHAIN
 HOW TO GET A SHA256 OR

SHA256D FOR BLOCKCHAINS

MS CRYPTOGRAPHIC SERVICE PROVIDER
As you may know a SHA (Secure Hash
Algorithm) is one of a number of cryptographic
hash functions. A cryptographic hash is like a
signature for a text or a binary data file. SHA2
algorithm generates an almost-unique,
fixed size 256-bit (32-byte) hash result.
Hash is a one way function – it cannot be
decrypted or reversed back. This makes it
suitable for password validation, challenge hash
authentication, securisation, anti-tamper, digital
signatures and of course blockchains.

type
 = ;TCryptProv Thandle
 = ;TAlgID integer
 = ;TCryptKey Pchar

 = ; TCryptHash THandle //or PChar;
 = ;TCryptData Pchar
 = [] ;TSHA_RES3 ByteArray of1..32

 : ;var hprov TCryptProv
 : ;hhash TCryptHash
 : ;hkey TCryptKey

 : ; cbHashDataLen dword //byte;
 : ;shares3 TSHA_RES3
 : ;shaStr string

 BLOKCHAIN
 HOW TO GET A SHA256 OR
SHA256D FOR BLOCKCHAINS PAGE 1/6

Issue Nr7 2017 BLAISE PASCAL MAGAZINE

maXbox
 The type TSHA_RES3 is kind of
 buffer for the 32-byte result in shaStr. I must admit that I managed to avoid
 pointers to pass so all the types are referenced and well managed. This seems very
 redundant but there is a very good default setting for all these
 parameter which makes sense for expressiveness, clarity and testing. On the other side
 PascalScript or Python cant handle pointers with one exception: PChar. And that was my
 helper. Next we define the const block:

 BLOKCHAIN
 HOW TO GET A SHA256 OR
SHA256D FOR BLOCKCHAINS PAGE 2/6

Const
 = ;PROV_RSA_FULL 1
 = ;PROV_RSA_AES 24
 = ;CRYPT_VERIFYCONTEXT $F0000000
 = ;CRYPT_NEWKEYSET $00000008

 // use with PROV_RSA_AES To get SHA-2 values.
 //http://www.tek-tips.com/faqs.cfm?fid=7423
 = ;CALG_SHA256 $0000800C
 = ;CALG_SHA384 $0000800D
 = ;CALG_SHA512 $0000800E
 = ;HP_HASHVAL $0002
 = ;CRYPT32 'crypt32.dll'
 = ;MS_ENHANCED_PROV 'Microsoft Enhanced Cryptographic Provider v1.0'
 = ;HASH256TEST 'The quick brown fox jumps over the lazy dog'

By the way with OpenSSL and the well known libeay32.dll a further solution exists
(just a type extract below) but in this article we focus on Win DLL.

type
 = SHA_CTX2 Record
 : [] ;Unknown LongWordArray of0.. 5
 : [] ;State LongWordArray of0.. 4
 : ;Count Uint64
 : [] ;Buffer ByteArray of0..63
 ;End

function array of (: ; : ;SHA256_CTX nameform DWord namebuffer char
 :): ;var nsize Dword boolean
 ;external 'SHA256@libeay32.dll stdcall'

function : ;libeay32version pchar
 ;external 'SSLeay_version@libeay32.dll stdcall'

procedure var (:);SHA256Init Context SHA_CTX2
 ; external 'SHA256_Init@libeay32.dll stdcall'

14 Issue Nr7 2017 BLAISE PASCAL MAGAZINEmaXbox

maXbox
 Probably the best way to
 get started with this sort of thing is to create a small test DLL,
 create a few functions with known parameters and call it. In our case we need 6 functions
 to declare:

function out (: ; :CryptAcquireContext phProv TCryptProv szContainer
 ; : ; : ; :): ; PChar szProvider PChar dwProvType Dword dwFlags Dword boolean //stdcall;
 ;External 'CryptAcquireContextA@advapi32.dll stdcall'

 (: ; : ; :function CryptCreateHash phProv TCryptProv Algid TAlgID hKey
 ; : ; :): ;TCryptKey dwFlags DWord phHash Tcrypthash booleanout
 ;External 'CryptCreateHash@advapi32.dll stdcall'

 (: ; : ; :function CryptHashData phHash TCryptHash aRes PChar dwDataLen
 ; :): ; DWord dwFlags Dword boolean //stdcall;
 ;External 'CryptHashData@advapi32.dll stdcall'

 (: ; : ; : ;function outCryptGetHashParam phHash TCryptHash dwParam Dword pbdata TSHA_RES3
 : ; :): ; var dwDataLen DWord dwFlags Dword Boolean //stdcall;
 ;External 'CryptGetHashParam@advapi32.dll stdcall'

 (:): ; function CryptDestroyHash phHash TCryptHash Boolean //stdcall;
 ;External 'CryptDestroyHash@advapi32.dll stdcall'

 (: ; :): ;function CryptReleaseContext phProv TCryptProv dwFlags DWord boolean
 ; External 'CryptReleaseContext@advapi32.dll stdcall'

The quality of a DLL function is the parameter documentation. So much the better you find a well
based documentation concerning view the parameter and return types of a function!

https://technet.microsoft.com/en-us/library/cc962093.aspx

The Win module file format only provides a single text string to identify each function.
There is no structured way to list the number of parameters, the parameter types,
or the return type. However, some languages do something called function "decoration" or
"mangling", which is the process of encoding information into the text string.
Our first and important call is CryptAcquireContext():

The function is used to acquire a handle to a particular key container CryptAcquireContext

within a particular cryptographic service provider A is an independent module that (CSP). CSP

performs all cryptographic operations.
At least one is required with each application that uses cryptographic functions. A single CSP

application can occasionally use more than one CSP. This returned handle is used in calls to
CryptoAPI functions that use the selected CSP, so the first 2 calls are:

writeln botostr CryptAcquireContext hProv PROV_RSA_AES CRYPT_VERIFYCONTEXT(+ ((, , , ,)));'context: ' '' ''

The following code assumes that the handle of a cryptographic context has been acquired and
that a hash object has been created and its handle is available. So we don’t need any (hHash)

pointers and I can script it in maXbox, Python or Powershell with call by references and a
strict with the PChar ByteArray

TSHA_RES3 Byte = [] ;Array of1..32

 (+ ((, , , ,)));writeln botostr CryptCreateHash hProv CALG_SHA256 hkey hHash'create: ' 0

The CryptCreateHash() function initiates the hashing of a stream of data.
This handle is used in subsequent calls to CryptHashData and CryptHashSessionKey to hash
session keys and other streams of data that we get we a filetoString():

sr filetoString exepath:= (+);'maXbox4.exe'
 (+ ((, , (),)));writeln botostr CryptHashData hhash sr length sr'cryptdata: ' 0

 BLOKCHAIN
 HOW TO GET A SHA256 OR
SHA256D FOR BLOCKCHAINS PAGE 3/6

15maXboxIssue Nr7 2017 BLAISE PASCAL MAGAZINE

16 maXbox Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

maXbox
 And the last step is to
 get the hash with
CryptGetHashParam:

I do always evaluate on each function the boolean
return value to make sure. When was the last time
you saw the return value for a function checked?
The CryptGetHashParam function retrieves data
that governs the operations of a hash object. The
actual hash value can be retrieved by using this
function. Dont forget to free handles and structure:

println botostr CryptDestroyHash hhash(+ (()));'Destroy hash-hnd: '
 (+ ((,)));println botostr CryptReleaseContext hProv'Crypt_ReleaseContext: ' 0

A second way to test the resulting hash is
writeln binToHEX_Str shares3(+(()))'SHA256: '

I did also test this on a Ubuntu 16 Mate with Wine and IT works too!
pic: 675_virtualbox_ubuntu_sha256_advapi32dll.png
http://www.softwareschule.ch/images/virtualbox_ubuntu_advapi32dll.png

maXbox Output:
context: TRUE
create: TRUE
cryptdata: TRUE
SHA256: 3A58A62B4A4959D1BC75C7AD698F3CB47EE85C52C4C3799D78B9BC862DEFDA5A
test length: 32
SHA256: 3A58A62B4A4959D1BC75C7AD698F3CB47EE85C52C4C3799D78B9BC862DEFDA5A
destroy hash-hnd: TRUE
Crypt_ReleaseContext: TRUE

The binToHEX_Str function is an effective way to get a HEX result test:

Const = ;HexSymbols '0123456789ABCDEF'

function const array of string (:): ;binToHEX_Str bin byte
var : ;i integer
begin
 (, * ());SetLength Result Length bin2
 (+ (()))writeln itoa length bin'test length: '
 := ()- for to do begini Length bin0 1
 [+ * +]:= [+ [] shr];Result i HexSymbols bin i1 2 0 1 4
 [+ * +]:= [+ []];Result i HexSymbols bin i1 2 1 1 $0Fand
 ;end
end;

Let’s make an overview of the 6 functions used:

1. CryptAcquireContext Get handle to current key container of particular CSP.

2. CryptCreateHash Creates an empty hash object.

3. CryptHashData Hashes a block of data, adding it to spec. hash object.

4. CryptGetHashParam Retrieves a hash object parameter.

5. CryptDestroyHash Destroys a defined hash object.

6. CryptReleaseContext CryptAcquireContext(). Releases handle acquired by the

cbHashDataLen:= ;32
 ((, , , ,))if CryptGetHashParam hHash HP_HASHVAL shares3 cbHashDataLen 0
 then begin
 := for to doit cbHashDataLen1
 := + ((([]),));shastr shastr UpperCase IntToHex shares3 it 2
 (+)writeln shastr'SHA256: '
 ;end

 BLOKCHAIN
 HOW TO GET A SHA256 OR
SHA256D FOR BLOCKCHAINS PAGE 4/6

maXbox

Next we step to the double SHA256 called
SHA256D and block generation. Its important to
realize that block generation is not a long, set
problem (like doing a million hashes), but more
like a lottery. Each hash basically gives you a
random number between 0 and the maximum
value of a 256-bit number (which is huge). If
your hash is below the target, then you win. If
not, you increment the nonce (completely
changing hash) and try again to mine. With the
SHA256 lib of PascalCoin the function is simpler
to use in comparison to the DLL:

function string (:): ; GetSHA256 Msg AnsiString //overload;
var : ;Stream TMemoryStream
begin
 := . ;Stream TMemoryStream Create
 try
 . (()^, ());Stream WriteBuffer PAnsiChar Msg Length Msg
 . := ;Stream Position 0
 := (());Result SHA256ToStr CalcSHA256 Stream
 finally
 . ;Stream Free
 ;end
end;

Imagine now the
double hash. It is also a crypto hash function,
mainly used to ensure integrity of the encrypted
message of the block, i.e. if you manipulate the
message it will be visible, because the hash will
also change. It also guarantees the uniqueness of
a message or block of data.

In terms of Bitcoin or PascalCoin, it guarantees
the uniqueness of each coin. So you cannot just
copy the same set of data over and over again.
The function is

Function (CalcDoubleSHA256
 Msg AnsiString TSHA256HASH :) : ;

 (:) : ;Function StringSHA256ToStr Hash TSHA256HASH

 := (+)sr filetoString Exepath 'maXbox4.exe'
 ((()))writeln SHA256ToStr CalcDoubleSHA256 sr

 >>> 7DECBAE2 2C539395 8C3707E9 080281CE 06F4
5779 BFBBB81F 9954E031 982A505E

It appears to be double SHA256. In other words:
SHA256D x SHA256 SHA256 x() = (()).

SHA256 (and thus SHA256D) is a cryptographic
hash function (it performs a 1-way transformation
on an input value) that forms the proof-of-work
algorithm used when adding blocks to the
blockchain in bitcoin. You are hashing the
hexadecimal representation of the first hash.
You need to hash the actual hash, the binary data
that the hex represents.
Just semantics, but to avoid a common
misunderstanding: and others does SHA256

hashing, not encoding. Encoding is something
entirely different. For one it implies it can be
decoded, whereas hashing is strictly a one-way
(and destructive) operation!

 By the way Indy retrieves SHA1
and with Indy 10:

function const string (:): SHA1ADirect3 fileName
string;

 : ;var fs TFileStream
 begin
 . with do beginTIdHashSHA1 Create
 := . (,);fs TFileStream Create fileName fmOpenRead
 try
 := (());result AsHex HashValue fs
 finally
 . ;fs Free
 Free
 ;end
 ;end
 ;end

Example:

sr filetoString Exepath:= (+)'maXbox4.exe'
writeln SHA256ToStr CalcSHA256 sr((()))

or more simpler with an alias in maXbox:
writeln GetSHA256 sr(())

 BLOKCHAIN
 HOW TO GET A SHA256 OR
SHA256D FOR BLOCKCHAINS PAGE 5/6

There’s no guarantee that every single
value in a hash function is reachable,
depending on the hash algorithm. For
some cryptographic algorithms, it is
likely that less than half of the output
keyspace is reachable for any given
input. However, this may not hold
true for every single cryptographic
hash algorithm, and it is
computationally unfeasible to verify.
There is also no proof that every
output of common hash functions is
reachable for some input, but it is
expected to be true. No method better
than brute force is known to check
this, and brute force is entirely
impractical.

17maXboxIssue Nr7 2017 BLAISE PASCAL MAGAZINE

Ref:
 http://www.pascalcoin.org/
 https://en.bitcoin.it/wiki/Target
 https://bitcoinwisdom.com/
 https://maxbox4.wordpress.com
 http://www.xorbin.com/tools/sha256-hash-calculator
 http://www.softwareschule.ch/examples/sha256.txt

https://sourceforge.net/projects/maxbox/files/Examples/13_General/
 778_advapi32_dll_SHA256.txt/download

https://sourceforge.net/projects/maxbox/files/Examples/13_General/
 675_bitcoin_doublehash2.txt/download

https://maxbox4.wordpress.com/2017/08/23/five-steps-to-get-sha256-or-other-ciphers/

 BLOKCHAIN
 HOW TO GET A SHA256 OR
SHA256D FOR BLOCKCHAINS PAGE 6/6 maXbox

DOC: SHA256 LIB INTERFACE:
procedure (:);SIRegister_USha256 CL TPSPascalCompiler
begin
 [] type array ofTSHA256HASH Cardinal', ' '0..7 ;
 type array of [] TSHAChunk Cardinal', ' ' // TSHA256HASH = array[0..7] of Cardinal;0..7 ;
 (:) : ;Function CalcDoubleSHA256 Msg AnsiString TSHA256HASH
 (:) : ;Function CalcSHA256 Msg AnsiString TSHA256HASH
 (:) : ;Function CalcSHA2561 Stream TStream TSHA256HASH
 (:) : ;Function StringSHA256ToStr Hash TSHA256HASH
 ((: ; :) : Function varCanBeModifiedOnLastChunk MessageTotalLength Int64 startBytePos integer Boolean' ;)
 Procedure const (: ; PascalCoinPrepareLastChunk messageToHash AnsiString
 var var : ; :);stateForLastChunk TSHA256HASH bufferForLastChunk TSHAChunk
 (: ; Function constExecuteLastChunk stateForLastChunk TSHA256HASH
 const : ; : ; , :) : ;bufferForLastChunk TSHAChunk nPos Integer nOnce Timestamp Cardinal TSHA256HASH
 (: ; Function constExecuteLastChunkAndDoSha256 stateForLastChunk TSHA256HASH
 const : ; : ; , :) : ;bufferForLastChunk TSHAChunk nPos Integer nOnce Timestamp Cardinal TSHA256HASH
 (: ; Procedure constPascalCoinExecuteLastChunkAndDoSha256 stateForLastChunk TSHA256HASH
 const : ; : ; , : ; bufferForLastChunk TSHAChunk nPos Integer nOnce Timestamp Cardinal
 var :);ResultSha256 AnsiString
 (:) : ;Function constSha256HashToRaw hash TSHA256HASH AnsiString
 (:) : ;;Function stringGetSHA256 Msg AnsiString
 (:): ;function const stringGetDriveNumber Drive Integer
 (:): ;function const stringHardDiskSerial Drive DWORD
 (:): ;function const stringIsDriveReady2 Drive Boolean
 (:): ;function const stringTouchfile FileName Boolean
 (:): ;function const string stringURLFromShortcut Shortcut

18 maXbox Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

 Introduction
 In the last issue Nr.64 I have installed some
 extra buttons in Lazarus, page 51. We also
 would like that for Delphi. Since we have the
 sources we can do that, BUT. We need to create
 a bundle or as it is called in Delphi: BPL, “Borland
Package Library”. As we had the three buttons
without them being united in to one group of
 components I thought it might be interesting to
 write a small article about how to create a Group
 of components that are united into one Group:
 a BPL. During the research I had to ask a few
 questions: what are BPL actually? There are
 basically two types of packages:
 Runtime and Designtime Packages.

Because this takes a longer explanation I will
dive into the depth of creating a BPL from
 scratch in the next issue. For now I will
 explain the way I installed this package by
 using a trick. Since I already had the
 necessary components all it needed to put
 into one package file. And that was
 surprisingly easy: first of all install your
 component of choice:
 HSButton.pas.

RUNTIME PACKAGES

are meant to be distributed with applications,
to keep the executable size as small as possible
and prevent distributing from duplicate code.

DESIGNTIME PACKAGES

Designtime packages are loaded by the Delphi
IDE. They make it possible to register
components for the component palette, for that
reason they need to contain the component's
icon needed for the IDE.

A screen pops up:
its easy to do: choose
install into a new package ->

Use the elipsis button (...) at
the right of the window, to
open a selection window
where you can find the
component you want to
install. See image on the next
page ->

INSTALLING COMPONENTS IN A PACKAGE PAGE 1/3
BY DETLEF OVERBEEK

expertstarter DelphiDX

20 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Make your choice:
After this another window pops
up: Here you need to add the
search path (where your
component resides...)
In my case that is:
F:\Buttons\HSButton\

examples but any path is ok...

Give the package a description
that it makes it recognizable

Now something crucial happens:
A new window pops up and you need in this
case to install the Framework of the VCL.
Some others are alos suggested and please say
yes to all of them.

INSTALLING COMPONENTS IN A PACKAGE PAGE 2/3

21Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Important: In issue 64 there was a peace of
code that was erroneous
double placed in the list. Jou Now can find
the right Code: HSButton.zip

Finally you will see the new project manager window: Here you
can find all kind of details. If you right click on the Project manger
a list of choice comes up. (See left). Now do the following steps
and repeat that for each component. Compile / Build / Install.

You will have to do this for each component that you want to add: Right
click on add select the component and add again. After that Compile /

Build / Install until you have done them all. Create a new application
and click on the form to check that you find the component group: See the
image at the lefty.

INSTALLING COMPONENTS IN A PACKAGE PAGE 3/3

22 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

23Issue Nr 6 2017 BLAISE PASCAL MAGAZINE

expertstarter DelphiDX

VIDEO EFFECTS AND ANIMATIONS PAGE 1/16
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING
BY BOIAN MITOV

Start a new application. Type in the VCL Form “player” Tool Palette

search box, then select component from the palette:TVLAVIPlayer

INTRODUCTION
In the previous Articles, I showed you how to use a variety of ready
to use image processing filters included in VideoLab, how to access
the video buffers, how to implement your own filters in code, or paint
over the video frames, and how to convert the video frames into a
bitmap.
In this article I will show you how to use more complex video effects
by rendering effect layers over the video. And in the next article you
will learn how to animate the layers with TimeLine animation
component from AnimationLab.
VideoLab contains a component called TVLDraw. This component can
render variety of graphics and video effects layers over the video.
There are many different types of layers that can be rendered, from
simple graphical objects such as Rectangles, Ellipses, line paths, or
text, to markers, LEDs, gauges, and displays.
VideoLab comes with a fair number of Video Layers. InstrumentLab,
PlotLab and VisionLab add more layers. In this project I will use some
of the layers included in VideoLab and InstrumentLab. For the
animation, in the next article, I will use AnimationLab.

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE24

And drop it on the form:

Type “imaged” in the box, Tool Palette search

then select from the palette:TVLImageDisplay

Drop two of them on the form, and arrange them
next to each other.
Type “draw” in the search box, then Tool Palette

select component from the palette:TVLDraw

And drop it on the form:

Select the component.TVLAVIPlayer

In the Object Inspector select the “FileName”
property, and click on the “...” ellipsis button:

VIDEO EFFECTS AND ANIMATIONS PAGE 2/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

25Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

In the file dialog, select a video file to play.
The can decode only limited number AVI Player

of video types, so to be sure that it will be able
to decode the selected video, it is best to use one
of the videos included in the VideoLab

installation.
Click the “Open” button:

Set the value of the “Loop” property to “True”:

VIDEO EFFECTS AND ANIMATIONS PAGE 3/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE26

Switch to the “Open Wire” tab.
Connect the “Video” Output Pin of the to the “Video” Input Pin of the VLAVIPlayer1 VLImageDisplay1.

Connect the “Video” Output Pin of the to the “Video” Input Pin of the VLAVIPlayer1 VLDraw1.

Connect the “Video” Output Pin of the to the “Video” Input Pin of the VLDraw1 VLImageDisplay2.

Click on the button of the component to open the editor dialog.TVLDraw Video Layers

In the dialog you can add many different types of layers, organized in categories, such as Displays, Objects,
Gauges, Indicators, Clocks and more.
One of the simplest layers is the It can draw Rectangle, Rounded Rectangle or TVLDrawShapeLayer.

Ellipse.
Expand the “Objects” category, select the and click on the “Add” button:TVLDrawShapeLayer

VIDEO EFFECTS AND ANIMATIONS PAGE 4/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

PASCON FOR LAZARUS

TH

14 OCTOBER 2017

DX
DX

DX

DXLAST REMINDER
YOU NEED TO REGISTER

27Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

This will add the layer.
Select the newly added layer in the view on the left.
In the set the value of the “ShapeType” property to “dsRoundRectangle”, the Object Inspector

“Height” property to “50”, the “Width” to “80”, the “X”, and “Y” to “30”:

Compile and run the application. You should see the video
playing in the displays,
and a yellow rounded corner rectangle drawn on top of it in
the second display:

Close the application.
Now that you know how to add video layer, it's
time to add some more layers.
In the right view of the Components Editor
dialog, select and click TVLDrawTextLayer,

on the “Add” button:

VIDEO EFFECTS AND ANIMATIONS PAGE 5/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE28

Select the newly added VLDrawTextLayer1 layer in the view on the left.
In the Object Inspector, set the value of the “Text” property to “Hello World!”,
the “X” property to “10”, the “Y” to “110”.
Expand the “Font” property.
Set the value of the “Size” sub property of the “Font” to “30”.
Expand the “Pen” sub property of the “Font” property.
Set the “Enabled” sub property of the “Pen” sub property to “True”:

Compile and run the application. You should see the newly
added text in the second display:

VIDEO EFFECTS AND ANIMATIONS PAGE 6/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Close the application.

29Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Next we will add an Analog Clock
layer. To have this layer available, you
need to have installed.InstrumentLab

In the Components Editor dialog
expand the “Clocks” category, select
the and click TILAnalogClockLayer

on the “Add” button. This will add the
layer.

Select the newly added layer in ILAnalogClockLayer1

the view on the left.
In the set the value of the “Left” Object Inspector

property to “80”:

VIDEO EFFECTS AND ANIMATIONS PAGE 7/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE30

Compile and run the application. You should see the newly added Clock in the second display:

The Clock is rendered on top of the other layers. The layers are rendered in the order in which they
are listed in the left view of the Component Editor dialog. We can use the editor to rearrange them
the way we want.

Close the application.

In the left view of the dialog, select the Component Editor ILAnalogClockLayer1.

Click 2 times on the “Up” button to move the layer up:

VIDEO EFFECTS AND ANIMATIONS PAGE 8/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

31Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

We can also make the background of the Clock partially transparent.
In the , double click on the editing area of the “Color” property:Object Inspector

In the , set the “A” (Alpha) channel of the color to “100”, and click OK:Brush Designer

The Alpha Channel of the color specifies how
transparent is the color. 0 means completely
transparent, and 255 completely non transparent.

Compile and run the application. You should see the
partially transparent Clock in the second display
rendered behind the rounded rectangle and the text:

VIDEO EFFECTS AND ANIMATIONS PAGE 9/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Close the application.

Issue Nr7 2017 BLAISE PASCAL MAGAZINE32

Compile and run the application. You should see the fire rendered over the video:

In addition to layers that can render object the
TVLDraw component can have layers that
render effects over the video or over specific
layers.
Next we will add Fire effect layer to the video.
Expand the “Effects” category, select the
TVLFireLayer and click on the “Add”
button to add it:

VIDEO EFFECTS AND ANIMATIONS PAGE 10/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

The fire is rendered over the entire frame, the same as the other layers. You can move it to the
proper Z order so it will be rendered between other layers. You can also specify that the fire will be
applied on one or more of the other layers. For simplicity in this demo I will apply it to only one
layer, but you can easily add other layers to which it will be applied. Close the application.

In the , select the component.Component Editor VLFireLayer1

In the select the “AssociatedLayers” property and click on the “...” of Object Inspector ellipsis button

its editor:

In the , click on the Items Editor Dialog

button to add an associated layer.

In the r click on the “Arrow Object Inspecto

Down” button of the property editor of the
“Layer” property, and select the layer over which
you want to apply the fire effect:

VIDEO EFFECTS AND ANIMATIONS PAGE 11/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

33Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

In this case we will apply it over the text, so select the VLDrawTextLayer1:

If you want the fire to be rendered over more than one other layer, you can add more items in the
collection, and specify the layer for each of them.

Compile and run the application.
You should see the fire rendered over the video starting at the contours of the Text:

Close the application.
Next we will add couple of more layers.

VIDEO EFFECTS AND ANIMATIONS PAGE 12/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE34

35

We will start by rearranging a bit the layers that we already added.
In the , select the component. Component Editor VLDrawShapeLayer1

In the set the value of the “X” property to “50”, Object Inspector

the “Y” to “10”, and the “Height” to “30”:

In the Object Inspector expand the “Brush”
property.
Set the value of the “Color” sub property of the
“Brush” property to “#5A4FFF00”:

VIDEO EFFECTS AND ANIMATIONS PAGE 13/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

In the Object Inspector expand the “Pen”
property. Set the value of the “Enabled” property
to “True”. Set the value of the “Width” property
to “3”:

In the add another Component Editor TVLDrawShapeLayer,

and arrange it immediately after the VLDrawShapeLayer1.
Select in the left view the newly added layer.VLDrawShapeLayer2

In the set the value of the “ShapeType” property to “dsEllipse”.Object Inspector

Set the values of the “Width” and “Height” properties to “50”.
Set the value of the “X” to “170”, and the “Y” to “120”:

VIDEO EFFECTS AND ANIMATIONS PAGE 14/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE36

37Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

In the expand the “Pen” property.Object Inspector

Set the value of the “Enabled” sub property of the “Pen”
property to “True”.
Set the value of the “Width” sub property to “5”.
In the expand the “Brush” sub property Object Inspector

of the “Pen” property.
Set the value of the “Color” sub property of the
“Pen.Brush” property to “Darkturquoise”:

In the Components Editor dialog expand the “Clocks”
category in the right view, select the
TILSegmentClockLayer and click on the “Add” button:

VIDEO EFFECTS AND ANIMATIONS PAGE 15/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

In the left view, select the newly added layer.ILSegmentClockLayer1

In the set the value of the “Color” property to “Null”:Object Inspector

In the set the value of the “Top” property to Object Inspector

“140”.

Expand the “Segments” property.

In the expand the “InactiveColor” sub Object Inspector

property of the “Segments” property.
Set the value of the “Color” sub property of the
“InactiveColor” sub property to “#642D2D2D”:

VIDEO EFFECTS AND ANIMATIONS PAGE 16/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE38

39Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Close the . In the “Open Wire” view, connect the “Progress” State Pin of the Component Editor dialog

VLAVIPLayer1 ILSegmentClockLayer1 VLDraw1 to the “In” pin of the layer of the component:

The two pins will be connected together with the help of a state dispatcher represented by
a circle in the diagram:OpenWire

The allows multiple State Pins to be connected and to share the same state. It and also State Dispatcher

allows Sink Pins to be connected and to receive the same state. Since the “Progress” pin is a State Pin
and can both receive and send the Progress position, it will always be connected through a dispatcher.
Compile and run the application. You should see the updated layers, and the time progress of the video
playing displayed in the segment clock:

VIDEO EFFECTS AND ANIMATIONS PAGE 17/17
CREATING VIDEO EFFECT WITHOUT HARDLY ANY CODING

CONCLUSION
In this article you learned how to add video
layers to the video, and how to apply
effects such as fire on them. I
demonstrated few different types of layers,
some simple shapes, others as complex as
visual instruments. There are many more
types of layers available in VideoLab, but I
will let you explore them on our own.
Instead in the next article I will show you
how you can use the TimeLine component
from AnimationLab to animate some of the
properties of the layers, and make cool
animation effects.

42 Issue Nr 2 2017 BLAISE PASCAL MAGAZINE42

FUTOSHIKI PUZZLE PAGE 1/4
BY DAVID DIRKSE

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Above you see a
futoshiki puzzle.
Left the original- and right
the solved puzzle. There are
25 fields of 5 rows and 5 columns. Per
row/column the numbers 1..5 appear just once.
Some numbers are filled in already. Between
fields sometimes a < or > operator is placed
indicating that adjacent number must be smaller
or larger. The player has to apply logical
deduction to find the number for each empty field

1. Below are five rules to solve futoshiki puzzles.

Only number “2” fits in the
orange field. I call this a
“single option field”.

2. , Empty fields may hold some of the numbers 1..5

that do not occur in the other fields of the row or
column. I call these numbers “options”.
In the image below the yellow field is the only
field of column 3 that has the option “1”
I call this situation a “single option field”.

3. Presence of a < or > operator

limits options.

In the left field the option 5 is
removed. In the right field this
is option 1. Read right to left for
the > operator.
In the left field the option 5 is
removed. In the right field this
is option 1. Read right to left for
the > operator.

4.
A field may be embedded between
< > or > < operators

In the middle field the options 1,2 are removed. Also
option 5 of the left and right fields are removed.

5. Look at the picture below and the field options:

The left fields hold options 1,2. So these numbers
cannot show up in the other fields. The removed
options are placed in red circles.

NOTE: rules 1,2,5 are examples of one general
rule: if in a row or column n fields hold n
options, than these options cannot occur in the 5-
n other fields. Rule 2. is the case where n = 4.
The example at rule 5. is the case for n=2.
This Delphi-7(and later) project assists in the
solution of puzzles.futoshiki

Menu buttons are placed horizontally at the
top of the form.
Load opens a previously saved puzzle.
File names have no extension but are prefixed
with “fut-”.
Save saves a puzzle on disc.
Print opens the printer dialog form.
This form may hold two puzzles. A checkbox
allows for the printing of options.
New Allows entry of a new puzzle.

ASSISTANCE BUTTONS:
Solve. Solves any puzzle by brute force method.
Back. Takes last move back.

Original. Puts puzzle in begin condition.

Reset. Erases all fields.

There are 3 unitsTHE DELPHI PROJECT

unit1 handles events. :

Buttons are of type davarrayBtn, part of
dav7components,my own work.
Paintbox shows game.
Label component is for messages.
Game unit data structures and procedures for :

game
print unit : buttons and procedures to

select printer and print games.

An marker indicates the field where a number orange
is added. The marker may be moved by the cursor
buttons or the space bar. .
Help opens the internet help page.
Play allows player to add numbers while searching
for a solution.
Assistence. The vertically placed buttons at the right
side allow for assistence.
Options Shows the options in each field.
Hints Show hints such as the situation in rules 1,2
Give warning if field is out of options.
Write. Performs the move indicated by the last hint.
Reduce. Remove superfluent options in rows and
columns.

FUTOSHIKI PUZZLE PAGE 2/4

43Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

DATA STRUCTURES

A puzzle has 5 rows of 5 columns,
so there are 25 fields.

type = (, ,);TFieldType mtFixed mtPlayer mtTrial
 = Tfield record
 : ; bf byte //1,2,4,8,16,32
 : ;ntype TFieldType //game; player; trial
 : ; options byte //bits 1..5
 : ; opcodeR byte //0:none;1<;2:> than right
 : ; opcodeB byte //0:none;1<;2:> than bottom
 ;end
 = TMove record
 : ;mcol byte
 : ;mrow byte
 ;end

var array of : [,] ;game Tfield1..5 1..5
 : [] ;colOpts bytearray of1..5
 : [] ;rowOpts bytearray of1..5
 : [] ;movelist TMovearray of1..25
 : ;movecount byte

ntype may be:
mtFixed:

field contains a preset number, not changeable by player
: mtPlayer

this field number was typed by the player, not
changeable by solver procedure

: mtTrial

the solver may add moves to search for a solution. The
solver initially changes all empty fields to the mtTrial

mode.
bf (byte)

holds the entered number in the following format:

number 0 : byte = 0000 0001 (empty field)
number 1 : byte = 0000 0010
number 2 : byte = 0000 0100
number 3 : byte = 0000 1000
number 4 : byte = 0001 0000
number 5 : byte = 0010 0000
The number is the bit set in the bf byte.
So, the next number n is ()n shl 1

Options : same as the bf field but a bit is set if the
option is present.
OpCodeR:
0 : no opcode
1 : operator is <
2 : operator is >
OpCodeB:

similar as above for lower operator.
ColOpts[1..5] :

bit set if option is present in this column.
RowOpts[1..5] :

bit set if option is present in this row

44 Issue Nr 2 2017 BLAISE PASCAL MAGAZINE44 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

CALCULATION OF OPTIONS
In an empty puzzle all options are
$3e = 0011 1110 (bits)
If a number (say 3) is added in column 1, row 5 then

- the fields bf value becomes 0000 1000 (bit 3 set).
- colOpts[1] becomes colOpts[1] xor bf
- rowOpts[5] becomes rowOpts[5] xor bf
A number entered in a field drops the options for that
row and column.

takes care.procedure CalculateOptions

The presence of an operator further may drop options
in an empty field. It does not affect row and column
options. Things are a little more complicated here.
See procedure procOperators.

This procedure repeats itself until no more changes
are noticed. Reason is, that operators may influence
each other. There are several helper routines for the
reduction of options by operators:
– procOperatorField(..)
– HIMASK
 bitmask excluding the lowest option in a field
– LOMASK
 bitmask excluding the highest option in a field
– HIMASK2
 bitmask excluding the 2 lowest options
 (< .. > case)
– LOMASK2
 bitmask excluding the 2 highest options
 (> .. < case)

FUTOSHIKI PUZZLE PAGE 3/4

TMove:

A player move is recorded as the column (mcol)

and row (mrow).

is the list of player moves.MoveList[...]

is the number of player moves.MoveCount

NEW GAME
MenuButton = mbNew.
There are two ways to enter a number in an empty field.

1.By keyboard.
Typed numbers are written in the field that is marked.
var markedRow : byte;
 markedColumn : byte;

indicates where the marker is placed. The marker is
moved by the cursor keys or the space bar.

The and functions have 1 LOMASK2 HIMASK2
byte as parameter input, which is the OR'd value of
the options right and left of an operator.
See puzzle description for an explanation.
See the source code for details.

MENU STRUCTURE
The main menu is a component TDavArrayBtn
having 1 row of 5 buttons.
One button may be down at the time.
The variable holds the pressed button: Menubutton
type = TMenuButton
(, , , , ,mbLoad mbSave mbprint mbNew mbHelp
mbPlay mbOff,);
...
var menubutton : TMenubutton
The value of menubutton directs events from
keyboard or mouse to the proper procedures.

2.By mouse
While moving the mouse pointer over the game, the
area covered is recorded in variable scanfield.

type = (, , ,);TscanType stNone stOption stOperator stDigit
 = Tscanfield record
 : ;stype TscanType
 : ;scol byte
 : ;srow byte
 : ;snr byte
 ;end
....
var : ;scanfield TScanfield
...
function (, :) : ;getScanfield x y word TScanField
begin
...
end;

stype = stOption
if mousepointer is over an option field.
stype = stOperator
if over an operator field.

 if over a number.stype = stDigit
is the column, scol

srow is the row
 is the option number or the operator fieldsnr

(1 right, 2 down).
Function gathers this information GetScanfield
during mouse moves.
On a , the scanfield information is mouse down
processed.

GENERATING HINTS
When the Hint button is down (on) after a move the
field options are searched for
1. a single option in a field
2. a field having the single option for it's row or column
2. a field being out of options
procedure procHints; takes care.
function SingleBit(b : byte) : boolean; is a helper, true is
returned if byte b has just one bit set.

REDUCING FIELD OPTIONS
See point 5. of the game description.
This part is somewhat more complicated.
Observe a column or row having options per field,
some fields filled in with a number. Finally, all fields
are filled with numbers 1..5.
But not every number fits in a field.
Purpose is to squeeze out redundant options in each
column and row.

All permutations are generated of numbers 1..5 and a
permutation is compared against the field options. (a
permutation is a sequence of elements, numbers 1..5 in this
case). If there is a match (permutation allowed in row
or column) than the bits per field are OR'd.
Say a row has options
 (1,2) (1,2) (1,2,3,4) (1,2,3,5) (2,4,5)
 Since the first 2 fields must hold numbers
 1, 2 finally, these numbers cannot be
 options in fields 3,4,5.
 Option reduction results in
 (1,2) (1,2) (3,4) (3,5) (4,5)
 At create time a table with all 120
 permutations (0..119) of numbers 1..5 is
 generated.
 procedure makepermutations; takes care

function : ; procPermGame boolean
checks the game rows and columns.
It calls function
procPermGroup grp TGroup boolean(:): ;var
for each row and column.

SOLVING A PUZZLE
Press this button to solve a puzzle.
The added numbers are colored orange.
Press the solve button again to check if more solutions
exist. A good puzzle however has one solution only.
function (SolveGame
 scode TsolveCode TsolveCode :) : ;
does the work.

Only the row- and column options are used, the options
of individual fields are not used or altered.

 is the trial move (2,4,8,16,32) for variable m
numbers 1,2,3,4,5.

are pointing to the field.xcol, xrow
The method used is Brute Force.
Simply all numbers are tried in a systematical way until
a solution is found or all possibilities are exhausted.

Load and Save

The save format is:
type array of = [] ; TA word1..27 // load,save

The game is saved as a typed file of TA.

word
 1 | u | f |
 2 | o | t |

| 3 | bf | x ntype R B ---[1,1] field
.......................................
 27 | bf | x ntype R B | ---[5,5] field

The filename is preceded by "fut-",
there is no extension. This concludes the
program description.
Please refer to the source code for details.

scStart : unsolved game

 solution found (result) or search scSolved :

for next solution (parameter)
 : no solution found;scEnd

See flowchart below with entry part of function
SolveGame:

type = (, ,);TSolveCode scStart scSolved scEnd
...
var : = ; solveResult TSolveCode scStart //in unit1

Left is the remaining flowchart
for the search for a solution.

FUTOSHIKI PUZZLE PAGE 4/4

var array of : [,] ;permutation byte1..5 0..119

45Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

CLIENT DATASETS TO-DO LIST PART 1 PAGE 8/8

barnsten

www.barnsten.com
.

• development tools • training
• consultancy • hands-on workshops
• components • support

Trainingen
Barnsten organiseert in samenwerking met Danny Wind van de Delphi
Company diverse Delphi en FireMonkey trainingen.
Het doel van de trainingen is u, als Delphi ontwikkelaar,
snel productief te laten werken.
Er zijn zowel Essentials als Advanced trainingen
en daarmee aanbod voor zowel de beginnende als de ervaren Delphi
ontwikkelaar.
Tijdens de trainingen maakt u gebruik van uw eigen laptop met daarop
Delphi 10.2 Tokyo inclusief InterBase XE7 geïnstalleerd (eventueel trial versie).

13-15 november 2017
Delphi 10.2 Tokyo Essentials VCL Training
Etten-Leur 1459,00

16-17 novmber 2017
Delphi 10.2 Tokyo Advanced Update Training
Etten-Leur 995,00

REST EASY WITH KBMMW PART 3 PAGE 1/2

3

expertstarter DelphiDX

COMPONENTS
DEVELOPERS4SSL (SECURE SOCKET LAYER) BY KIM MADSEN

I have in the former two “REST easy with
kbmMW” articles shown, how to make a REST
server with kbmMW, and how to use that REST
server to easily return and store data from/to a
database all in less than 30 lines of real code.

This article will center around how to ensure
that communication with the server stays
protected using SSL (Secure Socket Layer). In
other words, how to make the REST server talk
HTTPS rather than HTTP.

There are multiple ways to secure a kbmMW
based application server with SSL, but I will
focus on one simple way to do it using
OpenSSL.

First we should create a certificate we can use.
SSL certificates can be purchased from various
places where they sell official certificates, or
you can create one that is self signed. A self
signed certificate is generally as secure as
anything else, but it is not automatically trusted
by other servers, which may flag your certificate
as unsafe.

For inhouse use however, a self signed
certificate is usually fine.
There are many places on the internet
explaining the procedure of how to create SSL
certificates using OpenSSL. You can click here
for one of them:
https://www.digitalocean.com/community/
tutorials/openssl-essentials-working-with-
ssl-certificates-private-keys-and-csrs

Add a TIdServerIOHandlerSSLOpenSSL
component to the main form (Unit7).

You will need to set it’s SSLOptions properties
like this:

 must be SSLOptions.Mode sslmServer

 Of the supported SSLOptions.SSLVersions
 I will suggest enabling only sslvTLSv1_2

Leave the remaining properties as is at the
moment.

Now double click the event OnGetPassword

handler of the
IdServerIOHandlerSSLOpenSSL1 component
to write some code in an event handler.

procedure

TForm7 IdServerIOHandlerSSLOpenSSL1GetPassword.

(:);var stringPassword
begin
 := ; Password 'yourCertificatePassword'
end;

 The code going in the event should simply
 return the password you used when you
 created the private part of the certificate.
 It is required by to have access toOpenSSL

 this, to be able to use your private key.

Despite the above example, I would suggest you,
not to hardcode the password inside your
application, but rather read it from an external

configuration file, of security reasons, in case

your REST server executable got leaked
elsewhere.

But for the current sample, with a homemade
sample certificate, we can do with the
hardcoded password.

COMPONENTS
DEVELOPERS4 47Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

REST EASY WITH KBMMW PART 3 PAGE 2/2
DATABASE BY KIM MADSEN

COMPONENTS
DEVELOPERS4

Next we need to tell the side kbmMW server

transport to let the code handle the main OpenSSL

communication of our data.
One part of that is to write an event handler for
the event of the OnConnect
kbmMWTCPIPIndyServerTransport1
component.

procedure . (:);TForm7 kbmMWTCPIPIndyServerTransport1Connect AContext TIdContext
begin
 . . if is thenAContext Connection IOHandler TIdSSLIOHandlerSocketBase
 (. .).TIdSSLIOHandlerSocketBase AContext Connection IOHandler
 := ;PassThrough false
end;

To make the compiler happy, we also need to add
IdContext to the interface sections uses clause.

uses
 Winapi.Windows, Winapi.Messages System SysUtils System Variants System Classes Vcl Graphics, . , . , . , . ,

 . , . , . , , ,Vcl Controls Vcl Forms Vcl Dialogs kbmMWCustomTransport kbmMWServer
 , ,kbmMWTCPIPIndyServerTransport kbmMWRESTTransStream
 , , ,kbmMWCustomConnectionPool kbmMWCustomSQLMetaData kbmMWSQLiteMetaData
 , , , , , ,kbmMWSQLite kbmMWORM IdBaseComponent IdComponent IdServerIOHandler IdSSL
 , ;IdSSLOpenSSL IdContext

And finally we need to link the SSL component
to the server transport, and make the certificate
files available to OpenSSL.

We do that by writing the following piece of
code, for example in the event handler OnCreate

of the main form (containing the kbmMW Indy
server transport).

procedure . (:);TForm7 FormCreate Sender TObject
begin
 := . ();ORM TkbmMWORM Create kbmMWSQLiteConnectionPool1
 . ();ORM CreateTable TContact

 // Make sure that the server is now listening on port 443 which is
 // the default port for HTTPS communication.
 . . []. := ;kbmMWTCPIPIndyServerTransport1 Bindings Items Port0 443
 . . := ;IdServerIOHandlerSSLOpenSSL1 SSLOptions CertFile 'YourCertificateFile.cer'
 . . := ;IdServerIOHandlerSSLOpenSSL1 SSLOptions KeyFile 'YourPrivateKeyFile.key'

 // Optional root certificate file if purchased certificate or empty if self signed.
 . . := ;IdServerIOHandlerSSLOpenSSL1 SSLOptions RootCertFile ''
 . . := ;kbmMWTCPIPIndyServerTransport1 IdTCPServer IOHandler IdServerIOHandlerSSLOpenSSL1

 . ;kbmMWServer1 AutoRegisterServices
 . := ;kbmMWServer1 Active true
end;

Make sure that the files
YourCertificateFile.cer and
YourPrivateKeyFile.key is available to the
REST executable when it runs, but also make sure
that they are not accessible for download for
anyone else. It’s of high importance that those
files (along with your private key password) is kept a
secret for anybody else.

As you may notice, we change the port number for
the first binding from to since we want 80 443,

to support the standard port. You may also HTTPS

notice that it is possible to provide a Root

certificate file. The Root certificate file typically
contains a chain of public certificates that can be
used by and browsers to verify that OpenSSL

your own certificate is a valid and trusted
certificate generated by the entity from which
you have the root certificate.

Self signed certificates usually do not need any
root certificate files.

Now your is ready serving clients REST server

securely over SSL.

COMPONENTS
DEVELOPERS448 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

REST EASY WITH KBMMW PART 4 PAGE 1/4

4

expertstarter DelphiDX

COMPONENTS
DEVELOPERS4ACCESS MANAGEMENT BY KIM MADSEN

Building on the previous articles about how to
create a REST server using kbmMW, we have
now reached the stage where we should
consider access management.

What is access management? It’s the “science”
of who are allowed to do what.

It is obvious that data exists in this world, which
should be protected from being read, created or
altered by people/processes we have not
authorized to do so. Or turned on its head, some
data should be protected and be accessible only
by people/processes that we trust.

Other data might be left freely available for
reading, but never for modifying and so forth.

Fortunately kbmMW have features built in to
support us with that.

We start by adding a
TkbmMWAuthorizationManager to the main
form in the previous posts).(Unit7

We can use the authorization manager as is,
standalone, but it often makes sense to connect it
to the instance. Thus set the kbmMWServer

property
kbmMWServer1.AuthorizationManager to
point on kbmMWAuthorizationManager1.

This way, every call into the application server
will checked by the authorization manager for
access rights.

The is an entity kbmMW authorization manager

which understands the topics:
 ● resource
 ● actor
 ● role
 ● authorization
 ● constraint
 ● login

A resource is basically anything that you want to
add some sort of protection for.
It can be database related, it can be a specific
object, it can be a function or a service that you
want to ensure is only handled in ways that you
want it to, by people/processes that you have
granted access to it. Resources can be grouped in
resource trees, where having access to one
resource also automatically provides same access
to resources underneath that resource.

An actor, is typically a person (or a person’s login
credentials), a process or something else that
identifies that want access to your “someone”

resource’s.

A is a way to categorize general access role

patterns. in a library, could be a librarian, Roles

an administrator and a loaner. in a bank Roles

could be a customer, a teller, a clerk, an
administrator and so forth.
The idea is that each of the roles will have
 different access rights to the various resources.
 Actors usually will be given at least one role.
 An actor can have different roles, for example
 depending on how the actor logs in,
 or from where.

 An is a to operate as authorization “license”

 an actor or a role on a specific resource.
 An authorization can be negative,
 thus specifically denying an actor or role
 access to specific resources and their subtrees.

 A is a to an constraint limitation authorization

 or to a login. The authorization may only be
 valid within a specific timeframe, or be
 allowed to be accessed from specific
equipment and such, or the login can only
happen during daytime etc.

A login is the match between an actor/password
and a login token. When an actor is attempting to
be logged in, the system verifies login name,
password, requested role and whatever
constraints has been defined related to login in.
Only when everything has been checked up and
a login is allowed, a token is issued,

COMPONENTS
DEVELOPERS4 49Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

ARole may be nil, if it’s an unknown role that is
requested. You can choose to define the role on
the fly by returning a newly created
TkbmMWAuthorizationRole instance.
Remember to add any newly created actor or role
instances to the kbmMWAuthorizationManagers

Actors and Roles list properties before returning.

APassword will contain the password delivered
with the login attempt. You are allowed to
modify it on the fly (for example to change it to a
SHA256 hash, so no human readable passwords are
stored in the authorization manager).

If you return nil for or then it AActor ARole,

means that the login failed. You can provide an
explanation in the argument if youAMessage

 want.

 But let us continue with our simple actor
definition for this sample.

Now that we have actors and roles defined,
the authorization manager is ready to handle
login attempts.

There is only one way to login, and that is by
calling the of the authorization Login method

manager. This can, for example, be called from a
new function in your service.REST REST

An alternative is to let automatically kbmMW

detect login attempts, and call the Login method
for you. To do that, set the property of Options

kbmMWAutorizationManager1 [mwaoAutoLogin]. to

As you may remember, all requests to the kbmMW

server must be accompanied with a Token
identifying a valid login. If that token is not
available, (with mwaoAutoLogin set), kbmMW

is triggered to use whatever username/password

passed on from the caller, as data for a login
attempt and will return the token back to the
called if the login succeeded.

REST EASY WITH KBMMW PART 4 PAGE 2/4
ACCESS MANAGEMENT BY KIM MADSEN

COMPONENTS
DEVELOPERS4

which the will need to send actor/user/process

along with every request it makes to the kbmMW

based server.

So let us define two roles we want to have access
to our server. We can choose to name them REST

‘Reader’ ‘ReadWriter’, kbmMW and but as do not
pose any restrictions to naming of roles (nor on
actors and resources), we can name them anything
as long as the names are unique within their
category (roles, actors, resources).

 ● Reader

 ● ReadWriter

In code we define the roles like this (for example
in the OnCreate event of the main form:

kbmMWAuthorizationManager1 AddRole. ();'READER'
 . ();kbmMWAuthorizationManager1 AddRole 'READWRITER'

We also, somehow, need to tell the authorization
manager which actors exists so it can match up
login attempts with actors.

The simple way is to predefine them to the
authorization manager. That can for example
also happen in the event of the form, OnCreate

or elsewhere before the first access to the server.
The can be defined from a database or a actors

configuration file or etc. as needed.LDAP

kbmMWAuthorizationManager1 AddActor. (, ,);'HANS' 'HANSPASSWORD' 'READER'
 . (, ,);kbmMWAuthorizationManager1 AddActor 'CHRISTINE' 'CHRISTINEPASSWORD' 'READWRITER'

This defines two actors with their passwords,
and which role they should act as upon login if
they do not specifically ask for a different role.

It is possible not to predefine actors, but instead
use an event handler to verify their existence in a
different system via the OnLogin event of the
kbmMWAuthorizationManager1 instance.

procedure . (: ;TForm7 kbmMWAuthorizationManager1Login Sender TObject
 , : ; : ;const string var stringAActorName ARoleName APassPhrase
 : ; : ;var varAActor TkbmMWAuthorizationActor ARole TkbmMWAuthorizationRole
 :);var stringAMessage
begin
...
end;

An and the requested role name in AActorName

ARoleName is provided.
Optionally an actor instance may also be
provided, if the actorname is known to kbmMW.

If not, is nil, and must be created by you if AActor

you know about the actor.

COMPONENTS
DEVELOPERS450 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

COMPONENTS
DEVELOPERS4

As a is essentially a web server, REST server

adhering to the protocol standards, what HTTP

happens when detects an invalid (or non kbmMW

existing) login, is that will raise an kbmMW

EkbmMWAuthException, which in turn (when the
call comes via the REST streamformat), will be
translated into an which is HTTP error 401,

presented to the caller. In fact, if you would raise
that exception anywhere within your business
code and you do not manage it yourself, it will
automatically be forwarded to the caller as a . 401

This will prompt most browsers to present a login
dialog, where can be entered, username/password

and next call to back to the server, will include
that login information. will automatically kbmMW

detect this and use it.

So we have and in place. Now we actor, role login

need to determine what resources we have.
A resource can be anything you want to tag a
unique name on.

Most of the time, it makes sense to define REST

methods as a resource. This is done very easily
in our smart service, where we have the
functions for manipulating and retrieving
contacts We use the attribute.(Unit8). kbmMW_Auth

[()]kbmMW_Service 'name:MyREST, flags:[listed]'
[()]kbmMW_Rest 'path:/MyREST'
TkbmMWCustomSmartService8 TkbmMWCustomSmartService = ()class
 public
 [()]kbmMW_Auth 'role:[READER,READWRITER], grant:true'
 [()]kbmMW_Rest 'method:get, path:helloworld, anonymousResult:true'
 []kbmMW_Method
 : ;function HelloWorld TMyResult

 [()]kbmMW_Auth 'role:[READER,READWRITER], grant:true'
 [()]kbmMW_Rest 'method:get, path:contacts, anonymousResult:true'
 : ;function GetContacts TObjectList

 [()]kbmMW_Auth 'role:[READWRITER], grant:true'
 [()]kbmMW_Rest 'method:put, path:addcontact'
 ([()] : ;function const stringAddContact kbmMW_Rest AName'value:"{$name}"'
 [()] : ;kbmMW_Rest AAddress'value:"{$address}"' const string

 [()] : ;kbmMW_Rest AZipCode'value:"{$zipcode}"' const string

 [()] :): ; ;kbmMW_Rest ACity'value:"{$city}"' const string string overload

 [()]kbmMW_Auth 'role:[READWRITER], grant:true'
 [()]kbmMW_Rest 'method:get, path:"addcontact/{name}"'
 ([()] :): ; ;function const string string overloadAddContact kbmMW_Rest AName'value:"{name}"'

 [()]kbmMW_Auth 'role:[READWRITER], grant:true'
 [()]kbmMW_Rest 'method:delete, path:"contact/{id}"'
 ([()] :): ;function const stringDeleteContact kbmMW_Rest AID boolean'value:"{id}"'
 ;end

What happens behind the scenes is that kbmMW

automatically define resource names for the
functions like this: MyREST AddContect, ..

MyREST..GetContacts etc.
Notice the extra dot! If we had defined the
service to have a version, when we created it,
that would be put between the dots.

As you can see, the resource name is just a string,
and you can define all the resources you want to
yourself, but know that if you use smart kbmMW

services, it will automatically define resource
names in the above format.

kbmMW will also automatically ask the
authorization manager to validate that it is allowed
to use a resource, upon a call from any client.

You can choose to make finer grained authorization

by manually calling the authorization manager
for validation of a call like this:

var stringres TkbmMWAuthorizationStatus sMessage: ; : ;

begin
...
 := . (res AuthorizationManager1 IsAuthorized
logintoken sMessage, ,);'YOURRESOURCENAME'

REST EASY WITH KBMMW PART 4 PAGE 3/4
ACCESS MANAGEMENT BY KIM MADSEN

COMPONENTS
DEVELOPERS4 51Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

COMPONENTS
DEVELOPERS4

res can have the value of mwasAuthorized,

mwasNotAuthorized mwasConstrained. or

mwasConstained means that the authorization
might be given under different circumstances
(different time on day or similar). The returned
sMessage may explain in more detail what was
the reason that the access was denied.

In a smart service, you can get the login kbmMW

token (logintoken) as an argument to the method
like this:

[()]kbmMW_Auth 'role:[READER], grant:true'
 [()]kbmMW_Rest 'method:get, path:"someCall"'
 ([()] :): ;function const stringSomeCall kbmMW_Arg mwatToken AToken boolean

When the method is called, its SomeCall AToken

argument contains the logintoken.

You can also access the services
ClientIdentity.Token property instead from within
your methods if you do not want the token to be
part of the argument list of your method call.

Now your is protected by and REST server SSL

calls to its functionality limited by login.
There are many more features in the
authorization manager, which I have not
explained here, but visit our site at
http://www.components4developers.com,
and look for the documentations section kbmMW

for whitepapers.

If you like this, please share the word about
kbmMW wherever you can and feel free to link,
like, share and copy the posts of this blog to
where you find they could be useful.

REST EASY WITH KBMMW PART 5 PAGE 1/4

5

expertstarter DelphiDX

LOGGING BY KIM MADSEN

Following up on the previous blog posts about
how easily to create a REST server with kbmMW,
I today want to write a little bit about logging.

kbmMW contains a quite sophisticated logging
system, which lets the developer log various
types of information whenever the developer
needs it, and at runtime lets the administrator
decide what type of log to react on and how.

In addition the log can be output in a file, in the
system log (OS dependent), or be sent to a
remote computer for storage. In fact all the
above methods can coexist at once.

As you can tell, there seems to be various log
requirements for various stages of the lifetime of
the application:

 ● During development

 ● During usage

 ● Early warning

 ● Post incident investigation

A good log system should imo handle all the
above scenarios, while making it simple to use
for the developer, and allow the administrator to
tune on the amount of information needed.

kbmMW’s log system handles all these scenarios,
and can be late fine tuned for the required log
level.

In addition the log system should be able to
output the log in relevant formats, that match the
application’s purpose.

WHAT’S THE PURPOSE OF
LOGGING?

Well. There can be multiple
purposes, amongst others:

 ● For debugging while developing
 ● For debugging after deployment
 ● For keeping track of resources
 ● For keeping track of usage
 (perhaps even relates to later invoicing)

 ● For proving reasons for user complaints

 ● Of security reasons to track who is doing what

REST EASY WITH KBMMW PART 4 PAGE 4/4
ACCESS MANAGEMENT BY KIM MADSEN

COMPONENTS
DEVELOPERS452 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

They in turn calls a number of generic
TkbmMWLog.Log method which takes

arguments for log type, severity, timestamps and
much more.
You can ask to log content of streams, of kbmMW

memory buffers, and documents, byte XML JSON

arrays, and you can even ask to produce a kbmMW

stack trace along with your log (not currently
supported on NextGen platforms).

In our simple server, we might want to log REST

whenever a user logs in, when they are logged
out, when a function is called, and when an
exception happens.

To intercept the login situation, we will write
some event handlers for the and OnLoginSuccess

OnLoginFailed event on the
TkbmMWAuthorizationManager instance we
have on Unit7.

Web server applications, might want to output
some log data in a format generally accepted by
web servers, and thus also by web server log file
analyzer software, while other server
applications may have other requirements for
output.
kbmMW supports several output formats, and
also allows adding additional formats, without
having to make changes in the developer’s
logging statements. So let us get on with it.

First add the to the units in kbmMWLog unit

which you expect to do some logging.
In our case, we have the units (main form Unit7

unit), (Smart service unit… the actual REST Unit8

business code) and (a defined sharable Unit9

TContact object).
It makes sense to add support for logging in
Unit7 Unit8. Unit7 and In it would look

similar to this:

interface

uses
 . , . , . , . , . , Winapi WinapiWindows Messages System SysUtils System Variants System Classes
Vcl Graphics. ,

 . , . , . , , ,Vcl Controls Vcl Forms Vcl Dialogs kbmMWCustomTransport kbmMWServer
 , ,kbmMWTCPIPIndyServerTransport kbmMWRESTTransStream
 , , ,kbmMWCustomConnectionPool kbmMWCustomSQLMetaData kbmMWSQLiteMetaData
 , , , , , ,kbmMWSQLite kbmMWORM IdBaseComponent IdComponent IdServerIOHandler IdSSL
 , , , ;IdSSLOpenSSL IdContext kbmMWSecurity kbmMWLog

And in Unit8 we have also added kbmMWLog

to the uses clause. By simply adding this unit,
we can already log by calling one of the
methods of the public default available Log
instance. Eg.

Log Debug. ();'some debug information'
Log Info. (,[+]);'2 + 2 = %d' 2 2

COMPONENTS
DEVELOPERS4

kbmMW’s log system supports these easy
access methods:
● Debug
 (typically used during development purposes),
● Info
 (inform about some non critical and non error
 like information)
● Warn
 (inform about some non critical anormal
 situation)
● Error
 (inform about some error,
 like an exception or something else which still
 allow the application to continue to operate)
● Fatal
 (inform about an error of such magnitude
 that the application no longer can run).
● Audit
 (inform about some information that you want
 to be used as evidence in a post analysis scenario).

procedure . (TForm7 kbmMWAuthorizationManager1LoginFail
Sender TObject: ;

 , , :);const stringAActorName ARoleName AMessage
begin
 . (Log Warn
'Failed login attempt as %s with role %s.%s'

,[, ,]);AActorName ARoleName AMessage
end;

procedure

TForm7 kbmMWAuthorizationManager1LoginSuccess. (

Sender TObject: ;

 , : ; : const string constAActorName ARoleName AActor
TkbmMWAuthorizationActor;

 :);const ARole TkbmMWAuthorizationRole
begin
 . (Log Info 'Logged in as %s with role %s'
,[,]);AActorName ARoleName
end;

It makes sense to log a successful login as an
information, while an unsuccessful login is
logged as a warning. If it happens often, it could
be malicious login attempts, so warnings ought
to be looked after.

And we might also want to log a logout of a user.
The may happen automatically due to the logout

user being idle for too long. Refer to the previous
articles for more information.

REST EASY WITH KBMMW PART 5 PAGE 2/4
LOGGING

COMPONENTS
DEVELOPERS4 53Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

COMPONENTS
DEVELOPERS4

We might also want to log what calls are made by
logged in users.
This can be done in many ways and many places.
You could choose to do it within your business
logic code in the smart service in which Unit8,

makes sense if you want to log some more
specific information about the call.

But if you just want to log successful and failed
calls, then it’s easy to do so using the
OnServeResponse TkbmMWServer event of the
instance in Unit7.

As long as the request is formatted correctly and
thus served through the it will be TkbmMWServer,

attempted to be executed, and a response sent
back to the caller.

The execution may succeed or it may fail, but in
all cases the event will be OnServeResponse

triggered.

procedure . (: ;TForm7 kbmMWServer1ServeResponse Sender TObject
 : ; : ;OutStream IkbmMWCustomResponseTransportStream Service TkbmMWCustomService
 : ; :);ClientIdent TkbmMWClientIdentity Args TkbmMWVariantList
begin
 . if thenOutStream IsOK
 . (, Log Info 'Successfully called %s on service %s'
 [. , .])ClientIdent Func ClientIdent ServiceName
 else
 . (,Log Error 'An error "%s" happened while serving request for %s on %s'
 [. , . , .]);ClientIdent Func ClientIdent ServiceName OutStream StatusText
end;

Now we intercept and log at strategic places in
our code, and in fact the logging is already
working. But the log output is currently only
placed on the system log, which on Windows is
interpreted as the debugger.
 We need to have our log output to a file,
preferably with nice chunking when the file
reaches a certain size.
 The responsibility of the actual output, is the
log manager. There are a number of log managers
included with kbmMW:

TkbmMWStreamLogManager

– Sends log to a TStream descendant.
TkbmMWLocalFileLogManager

– Sends log to a file.
TkbmMWSystemLogManager

– Sends log to system log (depends on OS).
TkbmMWStringsLogManager

– Sends log to a TStrings descendant.
TkbmMWProxyLogManager

– Proxies log to another log manager.
TkbmMWTeeLogManager

 – Sends log to a number of other log managers.
 TkbmMWNullLogManager

 – Sends log to the bit graveyard.

If you have and thus kbmMW Enterprise Edition

also have access to the (Wide Information WIB

Bus) publish/subscribe transports, you have a
couple of additional log managers available for
remote logging:

TkbmMWClientLogManager

– Publishes logs via the WIB

TkbmMWServerLogManager

– Subscribes for logs on the and forwards WIB,

those through other log managers.

You can make your own log manager by
descending from TkbmMWCustomLogManager

and implementing the IkbmMWLogManager

interface.

To use a different log manager than the default
system log manager, you simply create an
instance of the log manager you want to use and
assign it to the TkbmMWLog.Log.LogManager

property. Eg.

However to set specific settings on the log
manager, it is better to instantiate a variable with
it, set its properties and then later assign that
variable to the property.Log.LogManager

An even easier way, is to use one of the
Log.Output... methods, which easily creates
relevant log managers for you with settings that
usually are good for most circumstances. Eg.

Log OutputToDefaultAndFile. ();'c:\temp\mylogfile.log'

Log LogManager. :=

TkbmMWLocalFileLogManager Create. (

'c:\temp\mylogfile.log');

This will in fact create 3 log managers, a system
log manager, a file log manager and a tee log
manager and automatically hooks them all up.

REST EASY WITH KBMMW PART 5 PAGE 3/4
LOGGING

COMPONENTS
DEVELOPERS454 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

COMPONENTS
DEVELOPERS4

In our case we just want to output to a file, so let
us stick with the
TkbmMWLocalFileLogManager. So we will
simply create an instance and assign it to the
Log.LogManager as shown above.

Now all the log will be output to the file, and the
file will automatically be backed up and a new
created when it reaches 1MB size. Backup
naming and size etc. are all configurable on the
TkbmMWLocalFileLogManager instance.

You can control which fields are output via the
Log.LogManager.LogFormatter property.
It is default a TkbmMWStandardLogFormatter.

kbmMW also supports a
TkbmMWSimpleLogFormatter which only
outputs date/time, type and the actual log
string.

The standard log formatter also outputs data
type, process and thread information and binary
data (usually converted to either Base64 or hexdump
(pretty) format).

There is much more to logging.
We didn’t touch the fact that the log system can
handle separate log files for auditing and other
logging, and that you can set filtering on each
log manager so that particular log manager only
logs certain log types or log levels or data types.

Happy logging.

REST EASY WITH KBMMW PART 5 PAGE 4/4
LOGGING

We are happy to announce the latest and
greatest release of our memory table.

Whats new in 7.77.10 September 16 2017

● Added support for SQL DDL statements:
 LIST TABLES, LIST INDEXES FOR TABLE xxx,
 DESCRIBE TABLE xxx, DESCRIBE INDEX xxx FOR
 TABLE xxx and some variations (ON instead of FOR,
 TABLE keyword optional in INDEX statement).
● Added support for CASE WHEN THEN ELSE END
 in both forms.
● Added support for NOT IN, NOT BETWEEN,
 NOT LIKE
● Fixed CREATE TABLE issues.
● Added support for SELECT INTO
● Added support for SQL multistatements.
 Statements separated by ; (semicolon)
● Added support for ALTER TABLE ADD COLUMN,
 ALTER TABLE DROP COLUMN,ALTER TABLE
 MODIFY /ALTER COLUMN, ALTER TABLE RENAME TO
● Added support for EXISTS TABLE and
 EXISTS INDEX
● Added support for DEFAULT value
in CREATE TABLE
● Added support for UNIQUE constraint in
 CREATE TABLE
● Improved SQL field datatype parsing.
● Added support for OUT parameters in SQL
 custom functions.
● Fixed SQLReplace (Replace)
 incorrect argument index.
● Added SQLSplit (Split) custom SQL function
 to split strings.
● Added SQLRegExp (RegExp) custom SQL function
 for pattern matching and splitting
● Added SQLDataType (DataType)
 custom SQL function for splitting
 SQL datatype declaration.

Professional Edition is released with source and
additional performance enhancement features
to holders of an active kbmMW Pro/Ent Service
and Update subscription (SAU).

A free CodeGear Edition can be found bundled
with kbmMW CodeGear Edition
for specific Delphi versions.

kbmMemTable supports the following development
environments:
 RAD Studio Delphi/C++ 10.2 Tokyo
 RAD Studio Delphi/C++ 10.1 Berlin
 RAD Studio Delphi/C++ 10 Seattle
 RAD Studio Delphi/C++ XE8
 RAD Studio Delphi/C++ XE7
 RAD Studio Delphi/C++ XE6
 RAD Studio Delphi/C++ XE5
 RAD Studio Delphi/C++ XE4
 RAD Studio Delphi/C++ XE3
 RAD Studio Delphi/C++ XE2
 Lazarus 1.2.4 with FPC 2.6.4

● Added Options:TkbmSQLOptions property
 to TkbmMemSQL.
 soOrderByNullFirst
 – Default Null orders last in comparison

 soOldFieldNamingSyntax
 – Revert to old field naming syntax

 soOldLikeSyntax
 – Revert to old wildcard style like syntax

 else use true SQL style format using % and ?.
● Added multiple overloaded ExecSQL functions to
 TkbmMemSQL to allow easy one line calls.
 If source table names are not provided they will
 be named T1..Tn.
● Changed to support multiple SQL parsing errors
 before erroring out.

COMPONENTS
DEVELOPERS4KBMMEMTABLE V. 7.77.20

STANDARD AND PROFESSIONAL EDITION RELEASED!

COMPONENTS
DEVELOPERS4 55Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

expertstarter

56 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

FPREPORT - A NEW REPORTING ENGINE PAGE 1/5
MICHAËL VAN CANNEYT

Abstract
In this article we discuss the new FPReport reporting
engine, the design goals that were at the basis of the
engine, what can be done with it, and we show how it
can be used.

Introduction
Many applications need to print data from time to time.
Delphi and Lazarus offer a printer canvas, on which you
can paint the page to be printed, as if you would paint it
on the screen. This works well for a small and quick
print, but when printing needs become more
complicated and elaborate, this approach is slow and
cumbersome. For this reason, reporting tools exist.
There are external reporting tools such as Crystal
Reports, JasperReport. Integrated solutions for Delphi
are FastReport, Quickreport, Rave reports and many
others. Lazarus ships with lazReport (based on a free
version of Fastreport 2), and FastReport has a version
that compiles for lazarus. They are banded reporting
tools: the output is divided in ’bands’ which are
repeated once or more on a page. This can be a list of
students attending a class, or an invoice for a customer
purchase, or an quartely overview of incoming funds...
All these integrated engines share a common design
fault: by design they require a GUI subsystem on the
system where the report is generated.

Today, when more and more development is
shifted to the web, this becomes an increasingly
difficult restriction: many webservers are simple
Linux containers without an X-Windows system
installed.
While this requirement of having a GUI system
present seems logical, it is not: strictly speaking, a
generating a report is just layouting text and
pictures on a page, determined by the data that
drives the report. This is just a matter of
calculating the sizes and positions of a series of
rectangles on a virtual ’page’.
The GUI system can come in handy to design the
report layout, and it is necessary to view the
resulting output. But the actual layouting does
not need a GUI.

A typical scenario is a webshop: the developers
designs the invoice to be sent to the customer as a
report, and integrates it in the web application: on
the server the report design is stored (it can be
crated in code in the binary, or as a file on disk).
When the customer has finalized his purchase,
a PDF is generated on the server, and sent to the
client by mail.
Or the client can opt to show the invoice in the
browser, in which case the report can be rendered
to HTML directly. To generate this PDF, or the
HTML based on the report design created by the
programmer, no GUI system is needed.

Considering all these use cases we arrive at
a set of requirements:

● The core layouting engine may not rely
 on a system to do its work.GUI

 It results in a description of a set of
 output pages.

● Various output formats (called renderers)
 must exist: L, Image. PDF, HTM

 These renderers again may not rely on a
 system. GUI

● Screen and printer are also output
 formats.

● The report designer to create the reports
 may depend on a GUI system.

● Multi-column layout must be possible.

HTML and PDF are just text files with
layouting instructions - one for a browser,
the other for a PDF reader. In this scenario,
PDF and HTML are possible outputs of the
reporting engine.
The manager in the office who wishes to see
and print an overview the monthly
purchases, may well be using a desktop
program to access the web shop data. He can
ask for a printed version of the monthly
report. Here, no PDF is needed, the report
can be sent directly to the printer or viewed
on screen: again 2 forms of output for the
reporting engine.

These requirements are the basis for FPReport,

with the class as the main class.TFPReport

This set of requirements has an interesting
consequence: To calculate the layout of a text,
the reporting engine needs to know the extent of
a text in the chosen font - a service that is
commonly provided by the GUI subsystem, but
which by our requirements, is unavailable.
Luckily, the is a free library that freetype library

can also provide this service for e fonts.TrueTyp

All classes in start with FPReport TFPReport,

and each class is aTFPReportNNN

simple descendant of a
TFPReportCustomNNN class, the former

publishes the protected/

published properties of the latter.

Important: In issue 64 there was a peace of
code that was erroneously
double placed in the list. Jou Now can find
the right Code: HSButton.zip

57Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

The system must be extensible: it must be
possible to register additional printing elements,
and a renderer for this element must exist.
The most common renderer simply draws
whatever is needed on a bitmap, and then the
report renderer draws the bitmap on screen,
in or whatever output is desired.HTML

It is possible to create and register renderers for
a specific format (for improved quality of output),
but this is entirely optional.
FPReport QRCode comes with barcode and
renderers.
It allows to use simple tags inside text HTML

elements (bold, italic, anchor, font), and allows
you to embed formulas in the text.

The amount to be paid is
[formatfloat(’##0.##’,total)] EUR.

The text between square brackets is a formula,
which will format the variable ’total’ using
the function. All fields in the data formatfloat

of the report is available as variables in the
formula. It is also possible to add named report
variables to a report: the value of these
variables will be made available in the formula by
their names. The engine also supports
aggregate data such as Min(SomeVariable)
The total amount is
[formatfloat(’##0.##’,sum(itemprice))]
EUR.

If represents the price of an item in itemprice

the invoice, the engine will update the
formula with each iteration over the items in the
invoice.
A report is driven by data. Traditionally this data
comes from a database, and is fetched
through a dataset: The report loops over the
records in the dataset, and prints a detail band
for each record in the dataset.
The idea of looping over data can be generalized,
and supports several ’dataFPReport

loops’ (all descendents of TFPReportDataLoop)

out of the box:

● A dataset-backed loop.

(TFPReportDatasetData).

Just hook up the dataset to the report. This can be
done visually in an IDE, there is no need to create
code.

 ● A JSON-array backed loop.

(TFPReportJSONData)

The array contains objects, and each property of
the object is available as a field.

● A Collection backed loop

(TFPReportCollectionData).

The published properties of the collection items
are the data available in the report.

● A list backed loop. The published properties
of the objects in the list are the data available in
the report. (TFPReportListData).

● A user event driven loop

(TFPReportUserData):

if none of the above suits your needs, a simple
solution is to use the event driven data loop: here
the names and values of variables are fetched
through events, and when the loop needs to go to
the next iteration of the loop, it calls an event as
well.
These loops are implemented in separate units,
so the only code that you actually use is
included in your application. This means is
possible to create reports without including
any database code in your application.

PRINTABLE ELEMENTS

What should a reporting engine be able to print ?
There are some obvious candidates, we call them
report elements:

● Preferably with some limitedText.

 formatting inside the text: bold, colors,
 and for PDF or HTML output: hyperlinks.
 The text should be customizable: this means
 that we must be able to get it from a data
 source, and we should have some formatting
 options available.
 (the class TFPReportMemo)

● This can be a company logo, Images.

 but can also be an image of an item you
 purchased, or the picture of a student in a
 list of students..
 (the class TFPReportImage).

 It can load any supported image type.FPC

● these are just a special case ofCheckboxes:

 an image: an image to represent ’true’,
 and an image to represent false.
 (TFPReportCheckbox)

● squares, circles, triangles or simpleShapes:

 lines. (TFPReportShape)

But preferably the list of ’printable’ things
should be larger:

● Barcodes

 (available in TFPReportBarcode).
● QR codes
 (available in TFPReportQRCode).

● Graphs. (not yet available, but planned)
● Pivot tables. (not yet available, but planned)

● ...

DATA AND CALCULATIONS

Formula in the text will be replaced by their
calculated result in the output. The reporting
engine uses the expression parser Free Pascal

engine to provide formula support. This engine
allows the use of variables (identifiers),
meaning that you can do something like

FPREPORT - A NEW REPORTING ENGINE PAGE 2/5

58 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

procedure . ;TPrintApplication DoRun
Var
PG TFPReportPage : ;

PH TFPReportPageHeaderBand : ;

PF TFPReportPageFooterBand : ;

DB TFPReportDataBand : ;

M TFPReportMemo : ;

PDF TFPReportExportPDF : ;

Fnt : ;String
begin
Fnt DejaVuSans:=' ';

FLines LoadFromFile ParamStr. (());1
gTTFontCache ReadStandardFonts. ;

gTTFontCache BuildFontCache. ;

PaperManager RegisterStandardSizes. ;

The first two lines speak for themselves.
The and ReadStandardFonts BuildFontCache

lines tell the font engine to load standard fonts
from standard locations.
This is a method, which registers all catchall

available fonts. More fine-grained control is
possible. The important thing is that the engine
loads in memory the needed font information
before the reporting engine starts layouting the
report.
After that the call is RegisterStandardSizes

used to register a set of commonly used
page sizes. Again, this is necessary once, to be able
to set the paper size of a report page. The next step
is adding a design page to the report:

// Page
PG TFPReportPage Create FReport:= . ();

PG Data FData. := ;

PG Orientation poPortrait. := ;

PG PageSize PaperName A4. . := ' ';

PG Margins Left. . := ;15
PG Margins Top. . := ;15
PG Margins Right. . := ;15
PG Margins Bottom. . := ;15

If no paper size is set, then unexpected things can
and will happen. Setting the margins is
natural, the whole page cannot be filled by a
printer. The used units are millimeters. Note
that the page owner is the report.

// Page header
PH TFPReportPageHeaderBand Create PG:= . ();

PH Layout Height. . := ; 10 // 1 cm.
// Filename
M TFPReportMemo Create PH:= . ();

M Layout Top. . := ;1
M Layout Left. . := ;1
M Layout Width. . := ;120
M Layout Height. . := ;7
M Text ParamStr. := ();1
M Font Name Fnt. . := ;

M Font Size. . := ;10
// date
M TFPReportMemo Create PH:= . ();

M Layout Top. . := ;1
M Layout Left PG Layout Width. . := . . - ;41
M Layout Width. . := ;40
M Layout Height. . := ;7
M Text Date. :='[]';

M Font Name Fnt. . := ;

M Font Size. . := ;10

The filename is just entered as the contents of the
report memo. The date is entered using a formula:
the function is available in formulas used in Date

the report, and will be formatted using standard
date notation (obviously, there are functions to change
the formatting).
Similarly, we can set up the page footer:

// Page footer
PF TFPReportPageFooterBand Create PG:= . ();

PF Layout Height. . := ; 10 // 1 cm.
M TFPReportMemo Create PF:= . ();

M Layout Top. . := ;1
M Layout Left. . := ;1
M Layout Width. . := ;40
M Layout Height. . := ;7
M Text Page PageNo. :=' []';

M Font Name Fnt. . := ;

M Font Size. . := ;10

The variable contains the current page. PageNo

The PageCount variable is also available,
and contains the total number of rendered
pages. The page count can be substituted at
the end of the rendering, or the report can be
rendered twice (this happens automatically)
and will be set to the number of pages that were
rendered at the end of the first run.

FPREPORT - A NEW REPORTING ENGINE PAGE 3/5

CREATING A REPORT IN CODE

To get a feel for what is involved in designing and
a report, we’ll create a report in code.
It’s a simple report, it just prints the contents of a
text file, nicely formatted. It adds a page header
with date and filename, and a page footer with the
page number. Instead of loading the stringlist
contents from file, this could be the contents of a
memo: the code can be used to print the contents
of a memo instead of a file. The program is
extremely simple, the main code is in the DoRun

method.

This is not a requirement, but doing so adds the
page to the report: a report can have multiple
designer pages, which will be rendered one after
the other.
NOTE FData that the page data is set to - this is

an event data loop, which will be set up later.
The reporting engine needs to know for each
design page which data loop must be run.
Once the page is set up, we set up a page header
with 2 memos: one to contain the filename
of the printed file, the other contains the date:

59Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

// Actual line
DB TFPReportDataBand Create PG:= . ();

DB Data FData. := ;

DB Layout Height. . := ; 5 // 0.5 cm.
DB StretchMode smActualHeight. := ;

M TFPReportMemo Create DB:= . ();

M Layout Top. . := ;1
M Layout Left. . := ;1
M Layout Width PG Layout Width. . := . . - ;41
M Layout Height. . := ;4
M Text Line. :='[]';

M StretchMode smActualHeight. := ;

M Font Name Fnt. . := ;

M Font Size. . := ;10

The memo contains a formula with a simple
variable name: Line. This is the name that
our data loop will need to report. The memo
by default will perform wordwrap, and we
set the stretch mode of the memo and the
band to This means smActualHeight.

that the memo will increase its height to fit the
length of the text, so long lines are accomodated.
In turn, the band will increase its height as the
memo grows in height. By default, the heights of
bands and printable elements is fixed
(smDontStretch).Then we set up our data

loop, which is event based:

// Set up data
FData OnGetNames DoGetNames. :=@ ;

FData OnNext DoGetNext. :=@ ;

FData OnGetValue DoGetValue. :=@ ;

FData OnGetEOF DoGetEOF. :=@ ;

FData OnFirst DoFirst. :=@ ;

The events are extremely simple. The first one
reports the ’variables’ that are managed by
the loop, as we’ve seen the memo expects a
’Line’ variable:

procedure . (: ; :);TPrintApplication DoGetNames Sender TObject List TStrings
begin
List Add Line. (' ');

end;

As the report loops over the data loop, the next
line in the stringlist must be returned. In
essence this loop is coded as

So we need a current line index, we’ll keep it in a
FLineIndex variable which is initialized,

updated and checked in the following routines:

procedure . (:);TPrintApplication DoFirst Sender TObject
begin
FLineIndex:= ;0
end;

procedure . (: TPrintApplication DoGetNext Sender
TObject);

begin
Inc FLineIndex();

end;

procedure . (: ; TPrintApplication DoGetEOF Sender TObject
var :);IsEOF boolean
begin
isEOF FLineIndex FLines Count:= >= . ;

end;

Finally, when converting the memo formula to
text, the event is called, and it OnGetValue

needs to return the correct variable. There is only
one variable, so this is easy:

procedure . (: ;TPrintApplication DoGetValue Sender TObject
const string : ;AValueName
var :);AValue variant
begin
Avalue FLines FLineIndex:= [];

end;

In an actual report with more variables, a check
on would have to be performed,AValueName

and the correct value corresponding to the
name would have to be returned.
Now everything is set up and the report can be
rendered:

// Go !
FReport RunReport. ;

PDF TFPReportExportPDF Create Self:= . ();

try
PDF FileName ChangeFileExt Paramstr pdf. := ((),'. ');1
FReport RenderReport PDF. ();

finally
PDF Free. ;

end;

The does the actual RunReport method

layouting of the report. The result of this
layouting is a structure in memory which can
then be rendered. The rendering happens using
the appropriate rendering class, and in the
example above, we render the report to a File PDF

using the class.TFPReportExportPDF

The result of this is a file, which can look as PDF

in figure 1 on the next page.

FPREPORT - A NEW REPORTING ENGINE PAGE 4/5

All that must be done is create a band in which
the contents of the string list will be displayed.
The data loop will return 1 line of the string list
on each iteration. That means that the data band
will be printed once for each line in the string list.
So we set up a data band with 1 memo that
stretches over the width of the band:

Data First. ;

While not do . Data EOF
begin
// Get data and Print bands
Data Next. ;

end;

60 Issue Nr 7 2017 BLAISE PASCAL MAGAZINE

Figure 1: The program runs on its own source code

FPREPORT - A NEW REPORTING ENGINE PAGE 5/5

Conclusion
The above is just a small example of what FPReport
can do. In a next article, we'll show how reports can
be designed visually, and how to to load a report
design from file. We'll also discuss more advanced
grouping and Master-detail relations.

PASCON FOR LAZARUS

TH

14 OCTOBER 2017

DX
DX

DX

DXLAST REMINDER
YOU NEED TO REGISTER

INTRODUCTION:
This is a very simple to use article about installing
Virtual Box and Linux Mint 1.8 and Lazarus 1.8
The installation is very easy and cost almost no time
at all. All programs are for free.
Here we explain the installation order, the most
necessary parts you need to know – having in mind
we want to install Lazarus 1.8 under Linux Mint 1.8.

VirtualBox is a x86 and AMD64/Intel64
virtualisation product for enterprise as well as
home use.
VirtualBox and Lazarus are solutions that are freely
available as Open Source Software under the
terms of the GNU General Public License (GPL)
version 2.
Linux Mint is free of charge and we hope you'll
enjoy it. Some of the packages we distribute are
under the GPL. Linux Mint is copyrighted 2006 and
trademarked through the Linux Mark Institute.
Lazarus is cross-platform IDE for Free Pascal.
Free Pascal is a GPL'ed compiler that runs on Linux,
Win32, OS/2, 68K and more. Free Pascal is
designed to be able to understand and compile
Delphi syntax, which is OOP.
Lazarus is the part of the missing puzzle that will
allow you to develop Delphi like programs in all of
the above platforms. Lazarus and Free Pascal
strives for write once compile anywhere. Since the
exact same compiler is available on all of the above
platforms it means you don't need to do any
recoding to produce identical products for different
platforms.
It is well-known that making use of virtualisations is
a very important way of organizing your computer
life. It helps in the way that you can use many
Operating Systems and environments for using
Delphi or Lazarus and develop.
A very good extra is that you can Import and Export
VDI’s (these files contain all your instalment data) so that

you can reuse them or use them as Backup.
In a separate article I will explain Virtualisations in
depth.

WHERE TO GET VIRTUAL BOX
https://www.virtualbox.org/
paths on your local Drive:
c:\Users\Detlef\VirtualBox Vms\
 Mint 1_8

WHERE TO GET LINUX MINT
https://linuxmint.com/download.php
WHERE TO GET LAZARUS
http://www.lazarus-ide.org/
index.php?page=downloads
or
https://sourceforge.net/projects/
lazarus/files/
Lazarus%20Linux%20amd64%20DEB/
Lazarus%201.8.0RC4/
You need to download all three Lazarus files!
The istallment we used are version Lazarus
1.8 Release Candidate which means the
latest version available. Stable versions will
be announced separately.

INSTALLING LAZARUS ON LINUX MINT IN VIRTUAL BOX
expertstarter BY DETLEF OVERBEEK PAGE 1/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 61

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 2/11

So after mentioning all the rights and make sure
you have the right addresses to start this project,
we need to begin with downloading VirtualBox
and start installing. If you need to find where the
material is placed on your hard disk it will be
probably: c:\Users\Detlef\VirtualBox
Vms\Mint 1_8 under win 7 and 10.
I installed it and tested it without problems. Mint
1_8 is the name I gave to the project, so if you have
another name that will change of course to that
name as well. I will show as much information to
you to make it all very easy to follow the
instructions. The first window you will see if you
click on the NEW button is the next Figure.

The name is what ever name you have in mind,
probably use a description of the project. You can
change it at any time. You can also change the
language of virtual box:

The Type should -> File|Preferences|Language.

be aiming at the sort of OS you might use. You
could make choice by using the drop down list.
The version will also change and you can make
choice there or type in something that you have
in mind. It has no actual consequences.

Now speaking about Memory size: it always is
better to have a lot then to have just what you
need. It makes the systems run much faster.

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE62

Before you can start creating the virtual
hard disk you really need to organize a few
things first:
Here is what I did: because I use win7 in
this case I Downloaded an ISO from Linux
Mint.
This I dropped in to my version of Alcohol
which is very good for these purposes:
create your extra virtual DVD and place
the ISO into the Virtual DVD. Virtual Box
accepts that as a source for loading your
OS.
Now there are of course other possibilities:
you could (In win 8/10) use the ISO
reading option, or if you can’t burn the ISO
to disk and use it. You also can create your
own Virtual disk and then read it and copy
the content to a special directory.

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 3/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 63

The size of the Hard disk is an open question.
You best choose 40 GB because that is sufficient to
really use the installation.

After these choices the Virtual Machine is created.
We need to make additional changes to the
standard options things are now organized in.

Just click on settings
and the next window
will appear...

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 4/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE64

Figure : The number of CPU should at least
be two but more if possible.

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 5/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 65

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 6/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE66

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 67

For the Folder path you need
to click on Other. That will
show a window where you
can pick the path you would
want to have available. You
should realise that in case of
connecting Linux and Windows
the hard disk you have chosen will
not become available. They have
different file sorts…
If you are working with Total
Commander (File Commander
help program) you could make a
connection that will be shown.

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 7/11

Create the virtual box additions by looking for
 the additions to be
 available. Go to devices

Because of my screen is 4 K it shows a note that
it needs to install and you also VBOX ADDITIONS

will have to activate the .3D Acceleration

Sometimes the insertion fails. No problem.
You could double click on the Virtualbox

Additions icon Mint at the left. In they made it
easy for you: the behavior is almost as in
Windows. A new screen appears. It runs and
then is automatically installed. Double click on
the icon. You need to restart before it will work.
The Virtual Additions have quite a lot of extra’s
that will work after installing it.

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 8/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE68

It will mention that it will install and warn you it will create the . Linux Mint virtual empty disk

The Program will ask you the standard things where do yo live, what time table, what sort of
keyboard. Enter your password name etc.

As soon you restart it will show the possibility to install Linux Mint

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 9/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 69

Issue Nr 6 2017 BLAISE PASCAL MAGAZINE70

We almost have achieved our final goal: .The problem is that Mint has already a Installing “Lazarus 1.8"

complete installation of an older version. So we need to follow this very carefully.... Double Click the icon
“Home”. A screen appears which contains a folder This folder will be empty. Now we can “Downloads”

download the files we need (we have them available in your own Blaise Pascal Magazine download section).
Just in case double click the , bottom left of the screen. FireFox Web Browser Icon

Go to the following addres:
https://sourceforge.net/projects/lazarus/files/Lazarus%20Linux%20amd64%20DEB/Lazarus%201.8.0RC4

You need to download the 3 Files: fpc_3.0.4-rc1_amd64.deb / fpc-src_3.0.4-rc1_amd64.deb
azarus-project_1.8.0RC4-0_amd64.deb fpc-src_3.0.4-rc1_amd64.deb.l

Take a good look at the files Free Pascal is RC 1 (release candidate 1) and Lazarus Rc4. That is correct.

Close the info and ingnore that. Follow the instructions. Installing will follow.
The error “ ” can be ignored.Breaks existing package

You can doubleclick on the items: the order of installing is also important but
logically:
fpc_3.0.4-rc1_amd64.deb -> fpc-src_3.0.4-rc1_amd64.deb and the last
Lazarus-project_1.8.0RC4-0_amd64.deb.

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 10/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE70

After all three files have been installed choose ” at the bottom left and click on “Menu programming.

Lazarus Icon “Add to Desktop”The is available. Right click on the Icon and choose . Double click the
 and the next screen becomes available: Everything seems to be installed correct, and now Lazarus icon

start Lazarus:

INSTALLING LAZARUS
ON LINUX MINT IN VIRTUAL BOX PAGE 11/11

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 71

expertstarter

Abstract
A previous article provided an overview
of the many dialogs available in the
Lazarus Component Library (LCL), both
component-based dialogs with an
Execute function, and those called
directly via a function or procedure
interface (see Issue 64).
In spite of the rich variety of LCL
dialogs available there are many
situations where a customised dialog is
the only solution for getting user input
comfortably when multiple kinds of
information are involved. Various
aspects of providing this functionality
are explored below, along with
examples.

Controlling numeric data input
Typically you encounter a situation
where you need a mix of numeric and
text data from the user. In theory you
could gather it all as text via an
uninspiring InputQuery() dialog to
which you pass an array of prompts.
But this dialog lets users type anything
at all. You would then have to validate
all the returned strings, handle error
situations with invalid data and re-
present the dialog, possibly more than
once. You also have to convert texts to
numeric types. This is frustrating for
both user and programmer. Far better
to design a custom dialog that
disallows invalid values at the point of
entry, and returns data you know is
immediately useable.

 A CROSSWORD EXAMPLE

 Suppose you are developing a program
 that lets the user design and construct
 crosswords. At the outset you want to
 identify the crossword author, give the
 crossword a title, and specify its horizontal
and vertical dimensions, so you know which
words fit, and can eliminate from the dictionary
of possibilities words that are too long. For
display you also want the user to choose a
suitable cell size in pixels (a partially sighted user
will need a bigger cell size and font, for instance).
You need these five data items:

 (of type String); title, author

and
 cellSize, colCount, rowCount
 ().of type Integer

The obvious way to package this data is via a
Pascal record. It might look like this:

CUSTOM LAZARUS DIALOGS PAGE 1/8
BY HOWARD PAGE CLARK

TXWordData = record
 : ;title String
 : ;author String
 : ;cellSize Integer
 : ;colCount Integer
 : ;rowCount Integer
 (, : ;procedure StringInit aTitle anAuthor
 , , :);aCellSize aColCount aRowCount Integer
 (:);procedure DisplayData aMemo TMemo
 ;end

Note the use of the advanced record
functionality providing two procedures, one
named for easy initialisation of the Init()

record, and the other named
DisplayData() used during the unit testing

phase to display the record contents in a
memo.
We need to include the compiler directive
{$ModeSwitch advancedrecords}

to activate this record functionality.

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE72

About the author
Howard Page-Clark

is a hobby programmer who
learned Pascal in the days of
Borland. After a career which
included some years as a
science teacher he works in
retirement as a volunteer at
a day centre, a secondary
school, a psychiatric hospital
and a church.

CALLING A CUSTOM DIALOG

What should the function signature look like
that we use to call the new dialog?
One good approach is to make the routine a
suitably named boolean function with an out
record parameter filled by user interaction with
the dialog. Following the call, if the function is
True the out data parameter is valid; but if the
function is False, it means the dialog was
cancelled, and the data record will simply be
full of zero values. In the crossword example
given above the dialog function call would be:

The function result is set by comparing the
modal dialog’s value with ModalResult

mrOK. The modal dialog (a form class) is

designed to include a record TXWordData

property named XWordData.

This read-only property (initially empty) is filled
with values entered by the user’s interaction
with the dialog when the OK button is clicked.
If the dialog is cancelled a default record is
returned.
If the user fills and then accepts the dialog, the
dialog’s property value will be XWordData

assigned to the calling function’s out
parameter.
The full code for the calling function is:

function out (:): ;GetXWordDataDlg XWordData TXWordData Boolean
var
 : ;dlg TXWordDialog
begin
 := ();XWordData TXWordDataDefault
 := . ();dlg TXWordDialog Create Nil
 try
 := . = ;Result dlg ShowModal mrOK
 if thenResult
 := . ;XWordData dlg XWordData
 finally
 . ;dlg Free
 ;end
end;

Note how the dialog is created with no
owner, and its memory allocation is
protected with a try … finally … end

construct which makes sure it is freed as
soon as its task is complete.
If the OK button is clicked to accept the
dialog entries then the dialog’s
XWordData property is assigned to the

function’s out parameter. This style of function
can serve as a general boilerplate template for
any custom dialog requirement. The function
has invented the class. TXWordDialog

Now we need to implement it.

DESIGNING TXWORDDIALOG

The dialog can be designed as you would any
additional form, whether modal or non-modal.
The Lazarus IDE menu option → File NewForm

will generate a default form unit. From the newly
generated unit we first delete the global
Form2: TForm2 variable Lazarus supplies.
Most likely your Lazarus settings are such that
generating a new form also puts a
Application.CreateForm(TForm2, Form2);

statement in the project’s file to main .lpr

create the new form. If so, this line in the .lpr
 needs to be deleted
 – make sure you delete the right
 one! Or you can achieve
 the same end by opening the
project’s , opening the Project Options dialog

Forms page and moving the correct form from
the forms list to the Auto-create Available forms

list. Now we merely need to add appropriate
widgets, labels and so on to our form, rename it
as (its type is then automatically XWordDialog

changed to and add a TXWordDialog),

XWordData OKButton.OnClick property and an
handler that populates the property correctly.
Below the form’s class declaration we add the
signature of the calling function, and put its
implementation in the unit’s implementation
section. The dialog that collects these five pieces
of information is shown in Figure 1.

Figure 1 : The crossword dialog displaying

CUSTOM LAZARUS DIALOGS PAGE 2/8

function out (:): ;GetXWordDataDlg XWordData TXWordData Boolean

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 73

NOTICE the five edits for collecting the five
pieces of information required, including three
spinedits which give full control over the range
and type of numeric information that can be
entered.
The project that exercises the crossword dialog
is called and the dialog itself Crossword.lpi,

can be found in a unit called uxworddialog.pp

in the downloadable code. The project reports
the values from the dialog as follows:

Figure 2 : Reporting dialog values

Figure 3 : A tabbed settings dialog from a multimedia app

DESIGNING THE UI

If your program is of moderate complexity, you
might choose a tabbed control as the main GUI

container for the settings dialog, so that related
settings can easily be grouped together on
separate pages accessed by clicking the
appropriate tab. Figure 3 shows a typical
tabbed-dialog preferences GUI.
 The illustrated page
 makes use of:
 • checkboxes
 • radiobuttons
 • comboboxes
 • sliders
 • standard buttons

A CUSTOM SETTINGS DIALOG

A common situation where the need for a custom
dialog arises is when obtaining, editing and
storing a program’s settings and user-
preferences.
You want to be able to present the user with a
dialog that gathers all options within a single
modal window where all the important settings
can be selected with minimal need for typing or
searching for particular options. The user can
simply click labelled controls (such as
radiobuttons, checkboxes, sliders ...) which are
named descriptively to identify their
functionality.

to gather the required
information from the user.
Notice the single Close button at
the bottom of the dialog.
This follows a contemporary
trend in UI design to minimise
the number of buttons shown.

Here accepts the entered Close

settings. The only way to the
user can change her mind and
cancel her choices is to click the
system in the top close X icon

right of the dialog, or perhaps
press the key.[Esc]

CUSTOM LAZARUS DIALOGS PAGE 3/8

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE74

To my mind this is a retrograde step in UI
design, however popular it has become.
The older convention of providing more than
one named button, each clearly specifying its
function seems a far clearer and more explicit
approach, because the action of closing the
dialog is the least important dialog action to
describe. All users realise this is a modal dialog

which will be closed when some button at the
bottom is clicked (other than Help if present,
which of course should not close the dialog).

The important question, not made explicit in
this UI design is: “Will my chosen settings be

saved or discarded?” A question that is not
answered explicitly by this . dialog design

The user clicks and hopes that her settings Close

have been saved. But a lingering doubt remains,
which could so easily be dispelled by naming
the button settings (or some such) rather Save

than Close.

When the dialog disappears the user knows it
has closed. But she still is not sure if her settings

were also saved... and why not provide a button
labelled Discard changes?
Not all innovations in UI design are
improvements.
To my mind explicit user feedback is far better
than relying on an unwritten convention that a
Close modal button also saves the data of a
dialog.

A popular alternative to a tabbed control is to
have a sidebar selection control (often a treeview
with nodes and sub-nodes) for navigating the
various settings pages. Where there are no sub-
nodes to navigate, the sidebar may more simply
be a panel or bar of large buttons. You might
prefer a top bar with buttons arranged
horizontally (as are most tabs in tabbed controls).
Figure 4 illustrates a typical dialog of this sort
where a user can tweak technical settings details.
The page illustrated makes use of:
• comboboxes
• standard edit fields
• checkboxes
• standard buttons

Figure 4 :
Dialog with treeview sidebar for page navigation

CUSTOM LAZARUS DIALOGS PAGE 4/8

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 75

 GUI WEAKNESSES

Wherever possible you want the user to select
from a list of possibilities rather than providing
an edit field for them to type in.
For instance, where a default font needs to be
set, you definitely don’t want the user to type
the name of the desired font. Far better to let
the user choose from a list of available fonts
than risk getting a wrongly spelled or non-
existent font name returned.
 But neither do you want a separate
TFontDialog in addition to your main settings
dialog. The font selection functionality is better
integrated into the main dialog.
However, programmers often use the off-the-

shelf TFontDialog solution of a component,
making font selection and editing happen in a
further modal dialog. S tacking on modal dialogs

top of one another in this fashion is certainly
possible, but can be a sign of lack of care in UI
design.
 Note illustrated dialogin the that numeric
entries are obtained via standard edit controls.
This is a , and forces weakness in the design

introduction of and error dialogs error

procedures where none would be needed if say
a spinedit control had been used.
 Spinedits exclude non-numeric entries by
design, and the programmer also has complete
control over the range of permitted values.
Perhaps this looser editing of frequency,
gain etc. was adopted since it shown in Figure 4

was assumed that only the most geeky users
would ever tweak these settings, and they
would know what they were doing…but even
geeks make typos.
 Also note how weak the separation of
sections appears in Figure 4 (they are named
Scale, Colors, Algorithm) since the section names
are not in bold, or otherwise made to stand out.
Compare this with the cleaner, more visually
appealing section layout in Figure 3 where
Display, Visual Effect and Colour Balance
separate the sections well, without need of any
divider line.
Also notice the small touch that Colour Balance

appears in spelling in Figure 3, localised UK

whereas in Figure 4 has not been Colors

localised, displaying only the spelling familiar
to the American programmer (who perhaps
designed the dialog) as encountered in the USA.
 Such details indicate some care has been
taken over the design – the dialog in Figure 3
was not just thrown together, and user
feedback has perhaps been taken on board to
enhance the design.

CUSTOM DIALOGS OF SOME COMPLEXITY
How do we go about implementing such complex
dialogs in Lazarus?
At least five questions need to be addressed at
the start of the design:

 1. What data is the dialog being designed
 to gather?
 2. What will the calling interface look like?
 We answer this question by considering how
 the data the dialog gathers is passed back to
 the calling program.
 3. Will the dialog need icons or other images,
 or will it be solely text-based? If images are
 needed, don’t forget that designing icons or
 gathering the required images will be a
 distinct additional task.
 4. Will the dialog be a persistent lfm-based
 window, or will it be a resourceless window
 created on-the-fly and destroyed as soon as
 it has been used? We answer this question
 partly by considering how difficult it is to
 design a good GUI without the aid of a RAD
 designer such as Lazarus provides, where
 you get immediate visual feedback about
 the layout and placement of control
 elements and how they fit into the overall
 design.
 You also need to gauge how often the dialog
 will be called during your program’s lifetime.
 Is it likely not to be called, or to be called
 only once? Or is it quite likely that it will be
 reused s everal times?
 In the first case it makes more sense to
 create the dialog on-the-fly if it is ever
 required, and then release allocated
 memory and resources for the rest of the
 program’s duration, so reducing your
 program’s overall memory footprint.
 In the second case, you might consider it OK
 to have the dialog loaded at start-up and
 using allocated memory throughout the life
 of your program so it is instantly available
 when needed. If you know your program is
 to be used on older, low-spec machines the
 question of minimising resource usage may
 be critical if you need several complex
 dialogs and your program also manipulates
 large amounts of data.
5. How will the dialog be laid out: very simply,
 with multiple pages …or in some other style?
 What Close-type buttons are required?
 Is a Help button needed?
 Are system icons wanted in the top window
 border?

CUSTOM LAZARUS DIALOGS PAGE 5/8

Programmers know that captions have been
included as resourcestrings to aid localisation for
the end user, and that someone has taken the
trouble to create and add translation files to the
project.

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE76

GOOD UI DESIGN IN CUSTOM DIALOGS

As an example of good design layout consider
the . Lazarus Anchors dialog

It is but illustrates good design for non-modal,

both modal and non-modal dialogs.

Figure 5 : The Lazarus Anchors dialog

The clean lines and logical placing of the control
groups left, top, right, and bottom
corresponding to the anchor being edited is
obvious, a pattern repeated in the centre for the
border-spacing spinedits.
Well-designed speedbutton icons obviate the need
for descriptive button text that would clutter the
interface. Integration with the IDE’s object
inspector is also tight and intuitive (though the
illustration cannot show that of course).
An obvious enhancement would be for the
groupbox titles (Left anchoring, Top anchoring
etc.) to be in bold. This is not done only because
of the restrictions of the native groupbox
widgets used by Lazarus in the LCL. It is not
possible to set the groupbox title font style
separately from the font style of contained
controls, whose captions (Sibling, Enabled)
should not be emboldened. So you either write a
custom groupbox control that does what you
want, or learn to live within (or work around) the
limitations of what native widgets offer.

CUSTOM LAZARUS DIALOGS PAGE 6/8

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 77

AN LFM-BASED CUSTOM DIALOG

Basing your custom dialog on a RAD form using
the Lazarus form designer is the least code-
intensive option for developing a custom dialog,
and gives you maximum ability to tweak

Form property Value

Autosize True

Height 530

BorderIcons []

BorderStyle bsDialog

Caption Preferences

Name PreferencesDialog

Position poScreenCenter

Width 450

layouts and styles, adjust critical properties
and experiment with alternative controls while
having continuous visual feedback which is
nearly always WYSIWYG.

If we take Figure 3 as an example to copy, you
would start with a new Lazarus project which
you name and save the TestPreferencesDlg

main form unit as Then via MainTestDialog.

FILE New Form→ generate a second form unit
named Using the project’s uPreferencesDlg.

Options dialog, remove this as an auto-created
form, and set the form’s properties as follows:

Right-click on the page control and choose Add
to add a General page named tsGeneral.

Repeat this to add a Display page named
tsDisplay and an Audio page named

tsAudio. tabsheet Select the named

tsDisplay and drop a number of controls on

it to emulate Figure 3.
If you don’t want to do this yourself, you can
look at the

 upreferencesdlg.pp

and
upreferencesdlg.lfm

in the code examples available for download
from the . Blaise Pascal website

To emulate the dialog I used a mix of
TLabel, TCheckBox, TRadioButton,

TComboBox, TTrackBar, TButton. and

Remove any global form variable.
This gives us the GUI for the dialog.
As with the simpler dialog in Figure 1 the best
way to get user-data out of the dialog is to create
a record as a data container.
A record of this type is then added as a private
field to the dialog class, and made public via a
read-only property. When the dialog is closed
dialog’s property value of the same type is
assigned to the corresponding parameter of the
function that called the dialog. The dialog can
then be freed.
In this instance the Display page is collecting 10
separate data items. We can wrap the data items
we want into a record called
TDisplaySettings that looks like this:

TDisplaySettings = record
 : ;newVideoResize Boolean
 : ;disableInterlacing Boolean
 : ;disableScreenSaverBoth Boolean
 : ;showVisualEffects Boolean
 : ;visualisationKind TVisualisationKind
 : ;visualisationSize TVisualisationSize
 : ;brightness Integer
 : ;contrast Integer
 : ;saturation Integer
 : ;hue Integer
 (, ,procedure Init aNewVideoResize aDisableInterlacing
 , : ;aDisableScreenSaverBoth aShowVisualEffects Boolean
 : ;aVisualisationKind TVisualisationKind
 : ;aVisualisationSize TVisualisationSize
 , , , :);aBrightness aContrast aSaturation aHue Integer
 (:);procedure WriteToMemo aMemo TMemo
 ;end

CUSTOM LAZARUS DIALOGS PAGE 7/8

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE78

Drop a TPageControl on the form
and set its properties as follows:

Form Property Value

Align alTop

BorderSpacing.Around 10

Name PageControl

Height 450

TVisualisationKind and

TVisualisationSize are simple enums

(see the source for dummy definitions).
You need to add the compiler directive
{$ModeSwitch advancedRecords} to the
uPreferencesDlg.pp to enable the

inclusion of procedures in the record.
The procedure is used to simplify Init()

initialisation with data, and WriteToMemo()

is used to display the contents of the record in
the program that exercises the dialog.
Init() looks complicated only because it

deals with ten data parameters at once.

How should the dialog be called by the program
using it?
Our simplest option is to design a boolean
function with this signature

which returns False (and an empty parameter)
if the dialog is cancelled, and returns True (with
a fully populated TDisplaySettings

parameter) if the user has accepted the dialog
preferences.
The calling program can then proceed, ignoring
a cancelled dialog, or dealing with the changed
settings data resulting from user interaction
with the dialog.
The calling function’s implementation will look
like this:

GetDisplaySettingsDlg TDisplaySettings Boolean(:): ;out

function (GetDisplaySettingsDlg
 out :): ;aDisplaySettings TDisplaySettings Boolean
var
 : ;dlg TPreferencesDialog
begin
 := ();aDisplaySettings TDisplaySettingsDefault
 := . ();dlg TPreferencesDialog Create Nil
 try
 :=(. =);Result dlg ShowModal mrOK
 if thenResult
 := . ;aDisplaySettings dlg DisplaySettings
 finally
 . ;dlg Free
 := ;dlg Nil
 ;end
end;

The out parameter is first initialised
using the recently introduced
Default() compiler intrinsic.
The dialog is then created within a
try...finally construct to make

sure it is properly destroyed after use.
The dialog is then shown via
ShowModal, whose result is compared
to mrOK.

This comparison becomes the calling function’s
boolean Result. If the Result is True then the
relevant data from the dialog’s
DisplaySettings property is copied to the
out parameter for later use. All that remains is to
provide an OnClick handler for the dialog’s Close
button that copies the ten required data items
from the various dialog controls to the dialog’s
DisplaySettings property, and to remove the
global variable thatTPreferencesDialog
Lazarus added when the form unit was
generated. See the downloadable code for the
details of this largely boilerplate code.
The project exercises this TestPreferencesDialog

example custom dialog.
 NOTE UI design paradigmthat adopting this of
a single Close button doubling as a Close and an
OK button, and not providing a Cancel button (or
its equivalent) means you have to write an
OnKeyDown [Esc] handler to trap the key, rather
than using the built-in functionality
of a Cancel bitbutton of Kind tkCancel;
with its Cancel property set to True. You must
then also remember to set the dialog form’s
KeyPreview property to True. Otherwise your
modal dialog will not respond to the key, [Esc]

which is a cardinal programming sin.

RESOURCELESS CUSTOM DIALOGS
If you are after a resourceless dialog (one that does
not need an .lfm at all) you will have to do some
extra work to duplicate the outcome of what
Lazarus’s streaming system would have done
with the form’s , had there been one. .lfm
 If (as here) you already have a completed form
resource, you can simply adapt the lfm text,
massaging it into a constructed-in-code version,
much in the same way as Lazarus does when
building any form from its resource when it .lfm
is first loaded.
If you don’t have any form resource as a basis to
work from, you will have to build the code in a
completely non-visual way.
In either case, you construct the form not via an
inherited Create() call, but via an
inherited CreateNew() call.
 You then create each control in code, set its
required layout and other properties and parent
each newly constructed control to the new
resourceless dialog form. Once the new form is
fully constructed you call its method ShowModal

and proceed as before.
 For complex dialogs with many (possibly
interacting) controls, building the GUI involves
many lines of setup code.
It is best to refactor these into a BuildGUI
procedure invoked from the new form’s
constructor to aid program organisation.

CUSTOM LAZARUS DIALOGS PAGE 8/8

Issue Nr 7 2017 BLAISE PASCAL MAGAZINE 79

Our boolean calling function,
GetDisplaySettingsNoLFMDlg()will be

almost identical to the earlier dialog invocation
function, except this time the function will create
(and subsequently free) a different dialog class, one
that sets itself up without loading classes and
property values from an file. Instead it lfm

creates all needed widgets and sets their
properties appropriately at the moment of
invocation.
 Again the downloadable code includes
sources for the dialog created in this way,
and a small calling program to exercise and test
its functionality. Since several groups of
controls needed a container with an
emboldened title, I chose to develop a simple
container that offered this functionality which I
could reuse to avoid creating and setting
properties for a title label over and over again.
Some people prefer to use a frame for this, but I
chose a custom control since I think it is usually
more lightweight and flexible than a frame.

CROSS-PLATFORM CONSIDERATIONS
Resourceless dialogs can run aground on
cross-platform issues to do with sizing and
layout, particularly if you also cater for scaling
at differing DPI settings. For instance most
Linux slider widgets are slimmer than recent
Windows equivalents. The chunkier Windows
widgets can throw a careful layout off if it is
designed first under Linux. Usually use of
anchoring combined with AutoSize overcomes
these platform differences, but not always.
The Lazarus autosizing algorithms are good but
not perfect, and in some complex layout
situations it can be tricky to get identical
layouts on disparate platforms without hackish
{$IFDEF xxx} conditionals. If you are designing
only for one platform you will probably avoid
headaches that others have to address.

EXAMPLE SOURCE CODE
The has code for the Blaise Pascal website

examples above: the simpler Crossword dialog,

and the more in complex Preferences dialog

two versions – an version and a lfm-based
resourceless version. The code compiles
with the 1.6.4 release of Lazarus (or any later
version). I apologise to readers of the previous
article which should have made clear that the
source code for the Lazarus dialog exerciser

program described in that article would only
compile with a trunk version of Lazarus or one
of the release candidate versions of Lazarus 1.8,
since it exercised not only the classic dialogs but
the recently added Perhaps TTaskDialog.
by the time you read this the 1.8 version of
Lazarus will have been released.

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI /
C++BUILDER BDS DEVELOPMENT FRAMEWORK FOR WIN 32 / 64, .NET AND LINUX WITH CLIENTS RESIDING ON WIN32 / 64, .NET, LINUX, UNIX
MAINFRAMES, MINIS, EMBEDDED DEVICES, SMART PHONES AND TABLETS.

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
- Easily supports large datasets with millions of records
- Easy data streaming support
- Optional to use native SQL engine
- Supports nested transactions and undo
- Native and fast build in M/D, aggregation /grouping,
 range selection features
- Advanced indexing features for e xtreme p erformance

- RAD Studio 10.2 Tokyo support including Linux support
 (in beta).
- Huge number of new features and improvements!
- New Smart services and clients for very easy
 publication of functionality and use from clients
 and REST aware systems without any boilerplate code.
- New ORM OPF (Object Relational Model Object
 Persistence Framework) to easy storage and retrieval
 of objects from/to databases.
- New high quality random functions.
- New high quality pronouncable password
 generators.
- New support for YAML, BSON, Messagepack
 in addition to JSON and XML.
- New Object Notation framework which JSON, YAML,
 BSON and Messagepack is directly based on,
 making very easy conversion between these formats and
 also XML which now also supports the object notation
 framework.
- Lots of new object marshalling improvements,
 including support for marshalling native Delphi objects
 to and from YAML, BSON and Messagepack in addition to
 JSON and XML.
- New LogFormatter support making it possible to
 customize actual logoutput format.
- CORS support in REST/HTML services.
- High performance HTTPSys transport for Windows.
- Focus on central performance improvements.
- Pre XE2 compilers no longer officially supported.
- Bug fixes
- Multimonitor remote desktop V5 (VCL and FMX)
- RAD Studio and Delphi XE2 to 10.2 Tokyo support
- Win32, Win64, Linux64, Android, IOS 32, IOS 64
 and OSX client and server support!
- Native PHP, Java, OCX, ANSI C, C#,
 Apache Flex client support!
- High performance LZ4 and Jpeg compression
- Native high performance 100% developer defined app
 server with support for loadbalancing and failover

- Native improved XSD importer
 for generating marshal
 able Delphi objects from XML schemas.
- High speed, unified database access
 (35+ supported database APIs) with connection
 pooling, metadata and data caching on all tiers
- Multi head access to the application server,
 via REST/AJAX, native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices,
 linked application servers, PCs, mobile devices, Java
 systems and many more clients
- Full FastCGI hosting support.
 Host PHP/Ruby/Perl/Python applications in kbmMW!
- Native AMQP support (Advanced Message Queuing
 Protocol) with AMQP 0.91 client side gateway
 support and sample.
- Fully end 2 end secure brandable Remote Desktop
 with near REALTIME HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
- Bundled kbmMemTable Professional
 which is the fastest and most feature rich in
 memory table for Embarcadero products.

COMPONENTS
DEVELOPERS4

KBMMW PROFESSIONAL AND ENTERPRISE EDITION
V. RELEASED! 5.03.00

DX

Quantum Computation possible with Majorana Fermions

NEW! AUTOMATIC DATABASE STRUCTURE UPDATE
NEW! GENERIC OBJECT ORIENTED CONFIGURATION FRAMEWORK

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80

