
1Blaise Pascal Magazine 116 2023

BLAISE PASCAL MAGAZINE 116

Blaise Pascal

Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js
Databases / CSS Styles / Progressive WebApps

Android / IOS / Mac Windows & Linux

MATTHIAS EISSING †
Manufacturing flexible electronics Page 10

By Detlef Overbeek
New Category: PASCAL USERS TIPS SOLUTIONS

NaN, Not a Number, an example program how to handle
By Danny Wind

BILLION, Whats the challenge?
By Ian Barker

Extended RTTI support FreePascal
By Michael van Canneyt

The Lazarus debugger part 6: breakpoints – to break or not to break
By Martin Friebe

Curve fit on metal
By James Goodger

Open Web Search: free, open and unbiased access to informa�on
By Detlef Overbeek

2Blaise Pascal Magazine 116 2023

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left
below) in 1968–69 and published in 1970, as a small, efficient language intended to encourage good
programming practices using structured programming and data structuring. A derivative known as Object
Pascal designed for object-oriented programming was developed in 1985. The language name was chosen
to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).Niklaus Wirth

ADVERTISING

ARTICLES

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & LinuxCONTENT

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
BLAISE PASCAL MAGAZINE 116

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

Blaise PascalBlaise Pascal

GDK Software Page 6 / 7
LAZARUS HANDBOOK Page 15
David Dirkse Book Computer /Graphs / Games & Math Page 17
SUPERPACK Page 22
LIBRARY Stick including USB Card Page 23
LIBRARY Stick including USB Card Page 28
LAZARUS HANDBOOK + SUBSCRIPTION Page 29
SUBSCRIPTIONS Page 44

DELPHI SUMMIT Announcement Page 45
DELPHI SUMMIT When we worked from home Ian Barker Page 46
DELPHI SUMMIT Sale Page 48
DELPHI SUMMIT Agenda Page 50

Database Workbench / Upscene Page 62
LAZARUS HANDBOOK + SUBSCRIPTION + Book Learning How to program Page 90
Ukraine Special Offer Page 91
Components4Developers Page 92

From your Editor Page 4
Humor: From our technical advisor Page 5
Cartoon from Jerry King
MATTHIAS EISSING † Page 8
Manufacturing flexible electronics Page 10
By Detlef Overbeek
New Category: PASCAL USERS TIPS SOLUTIONS Page 16
NaN, Not a Number, an example program how to handle Page 18
By Danny Wind
BILLION, Whats the challenge? Page 24
By Ian Barker
Extended RTTI support FreePascal Page 30
By Michael van Canneyt
The Lazarus debugger part 6: breakpoints – to break or not to break Page 52
By Martin Friebe
Curve fit on metal Page 58
By James Goodger
Open Web Search: free, open and unbiased access to informa�on Page 80
By Detlef Overbeek

Subscriptions can be taken out online at www.blaisepascalmagazine.eu or by written order, or by sending an email to
office @ blaisepascal.eu. Subscriptions can start at any date. All issues published in the calendar year of the subscription will be
sent as well. Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to: ABN AMRO Bank Account no. 44 19 60 863 or by credit card or PayPal
Name: Pro Pascal Foundation (Stichting Ondersteuning Programeertaal Pascal)IBAN: NL82 ABNA 0441960863 BICABNANL2A VAT/
NL814254147B01
Subscription department Edelstenenbaan 21 / 3402 XA Ĳsselstein, Netherlands + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

3Blaise Pascal Magazine 116 2023 3

SUBSCRIPTIONS (2023 prices) TOTAL

€ 348Printed Issue (8 per year) ±60 pages :
Electronic Download Issue (8 per year) ±60 pages :

Member and donor of

COPYRIGHT NOTICE
All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless
otherwise noted and may not be copied, distributed or republished without written permission. Authors agree that code
associated with their articles will be made available to subscribers after publication by placing it on the website of the
PGG for download, and that articles and code will be placed on distributive data storage media. Use of program listings
by subscribers for research and study purposes is allowed, but not for commercial purposes. Commercial use of
program listings and code is prohibited without the written permission of the author.

Member of the Royal Dutch Library KONINKLĲKE BIBLIOTHEEK

CONTRIBUTORS

WIKIPEDIA
Internat. excl. VAT

€ 200
€ 64,22

Internat. incl. 9% VAT

€ 218
€ 70

Shipment

€ 130

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Stephen Ball
http://delphiaball.co.uk
DelphiABall

Dmitry Boyarintsev
dmitry.living @ gmail.com

Michaël Van Canneyt
,michael @ freepascal.org

Holger Flick
holger @ flixments.com

David Dirkse
www.davdata.nl
mail: David @ davdata.nl

Benno Evers
b.evers @
everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtnernc-
gaertnma@netcologne.de

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Andrea Magni
www.andreamagni.eu andrea.
magni @ gmail.com
www.andreamagni.eu/wp

Paul Nauta PLM Solution
Architect CyberNautics
paul.nauta @ cybernautics.nl

Kim Madsen
www.component4developers.com
kbmMW

Boian Mitov
mitov @ mitov.com

Detlef Overbeek
- Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Siegfried Zuhr
siegfried @ zuhr.nl

Anton Vogelaar
ajv @ vogelaar-electronics.com

Danny Wind
dwind @ delphicompany.nl

Jos Wegman
Corrector / Analyst

Jeremy North
jeremy.north @ gmail.com

Helmut Elsner
Korrektor der Deutschen
Ausgabe
helmut.elsner@live.com

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavor to ensure that what is published in the magazine is correct, we cannot
accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a
correction where relevant.

4Blaise Pascal Magazine 116 2023

From your editor
Hello dear readers,
as with this commentary, I begin by expressing a joyous wish for you...: Happy Easter!
The hares will not emerge from your top hat, according to a Dutch saying, but will really surprise
you.
I think this issue contains many surprises, some of which are very hopeful:
Read the article on the Open Web set up in Europe. There is a lot going on with it and I think it
will be a real success. There is also a lot at stake of course: freedom of speech and our
democracy, to which I am personally very attached, and the forecast that politics has to go
through an even deeper valley before they realize what they are doing.

I heard with great sadness that a nevertheless so young Mattias Eissing has died.
It is a pity he did not get to live a long life like me. He would certainly have done a lot for the
community.
We wish his family and friends strength and send our condolences.

In contrast (feels unfair) it is given to me to become 77 years old and hope to do this work for a
very long time to come.
I don't think I have to convince anyone that it is a lot of work to do all the Magazine.
Still, I hope I can get some extra help from you as a reader: we have a great need for practical
helpers. For example, people who have a good command of the English language. Or Brazilian
(Portuguese).
That mainly for quality purposes. But to Readers and developers who want to write articles we
are in VERY great need. It is not anything to be afraid of. Writing an article is often great fun and it
also often helps to gain more insight into your own work.

We actually want to set up our own Forum where our readers can interact with each other. For
this, of course, another supervisor is needed. So please sign up!
As part of attracting young people, I have set up a section where small very useful code snippets
can be displayed.
We need submissions for that too.
I actually also wanted - since I am doing this alone - to also create an editorial board.
This is because we need to create something future-proof and I want to organize my own
dissent.
There could be a division of labour. Of course, as a reader, you are also welcome to criticize.
We have something to gain from that.

I am currently working very emphatically on a first lesson for Pascal for young people.
And that starts comprehensively and at the very lowest level. Where all the abstract concepts are
explained in an understandable way. This is a MUST because we need intake as you all know.
The best language deserves the best youth. I will write a lot more about it....

In this issue you will also find an advertisement about the Summit on 13/14 June. We will also be
present there with a stand. Maybe we can get to know each other.

Your Editor:

Detlef

5Blaise Pascal Magazine 116 2023

From our technical Advisor, Jerry King

6Blaise Pascal Magazine 116 2023

7Blaise Pascal Magazine 116 2023

8Blaise Pascal Magazine 116 2023

It is with deep sadness that we bid farewell to our long-time colleague and friend Matthias
Eißing, who passed away suddenly and unexpectedly on 14 February 2024 at the age of 53.
We are were all extremely shocked by the news of his death. Matthias leaves behind his
partner of many years, Maria, and all of us, in profound mourning.

Many knew Matthias as a very competent and technically adept colleague who now leaves a
huge gap. His great love of cats, which he not only adored at home but also liked to
incorporate into his presentations, remained a secret known only to a select few. Matthias
was the leading presenter at all German live and online events and his knowledge, skills, and
support were always greatly appreciated by customers and colleagues.

As a freelance systems consultant for Borland Paradox, Matthias first came into contact with
Borland products in the early 1990s and since 1997 worked as a permanent employee with
many software products from Borland, Inprise, CodeGear, and Embarcadero. Of all the
technologies, it was Delphi that he worked with since the very first release and that he had
grown most fond of.

It is very poignant to us that Matthias passed away on February 14th, Valentine’s Day which is
also the day we celebrate Delphi’s birthday, since his knowledge of Delphi had earned him the
status of a legend in the Delphi community.

We wish Maria and all her relatives much strength in their grief.

From The Embarcadero Germany team with additional text from The Embarcadero US and
International team.

We would also like to refer you to the following thread in Delphi Praxis

MATTHIAS EISSING †

9Blaise Pascal Magazine 116 2023

Eine sehr traurige Nachricht
 Alt 15. Feb 2024, 12:47
Mit einer Mischung aus blankem Entsetzen und großer Trauer muss ich Euch leider mitteilen, dass unser
langjähriges Community-Mitglied Matthias Eißing in der Nacht zu Mittwoch plötzlich und völlig unerwartet
verstorben ist.

Viele von Euch kannten Matthias natürlich nicht nur hier aus diesem Forum, sondern werden auch beruflich mit
Matthias zutun gehabt haben, da er als technischer Berater seit den frühen Borland-Zeiten bis heute bei
Embarcadero intensiven Kundenkontakt pflegte. Aber natürlich kannten wir ihn auch persönlich von unzähligen
Kongressen und Live-Veranstaltungen als exzellenten Referenten. Ich selbst durfte einige Vorträge mit ihm
halten, als Junior-Referent quasi, und es war mir jedes einzelne Mal eine Freude. Matthias technische
Begeisterung, gepaart mit seinem unerschöpflich wirkenden Delphi-Wissensschatz wird fehlen. Es gibt so vieles,
was ich von ihm lernen konnte - fachlich, aber auch menschlich. Ich vermag kaum aufzuzählen, wo überall
Matthias einer gigantische Lücke hinterlassen wird.

Matthias brachte mich vor Jahren auch mit meinem heutigen Arbeitgeber zusammen, was ich ihm nie
vergessen habe und auch nie vergessen werde.

Matthias, ich bin sehr, sehr traurig, dass wir keine Gelegenheit mehr haben werden, bei einem Bier zu
fachsimpeln, vom Thema abzudriften und hinterher über etwas ganz anderes zu sprechen und trotzdem Spaß
dabei zu haben. Hab eine gute Reise und ruhe in Frieden. Es war wunderbar, Dich kennengelernt zu haben.

In stiller Trauer,
Daniel
Daniel R. Wolf

Delphi Praxis / https://www.delphipraxis.net/214652-eine-sehr-traurige-nachricht.html

Very sad news
 Alt 15 Feb 2024, 12:47
It is with a mixture of sheer horror and great sadness that I have to inform you that our long-time community
member Matthias Eißing passed away suddenly and completely unexpectedly on Wednesday night.

Many of you knew Matthias not only from this forum, of course, but will also have had professional dealings
with Matthias, as he was a technical consultant with Embarcadero from the early Borland days until today. But
of course we also knew him personally from countless congresses and live events as an excellent speaker. I
myself had the honour of giving a few presentations with him, as a junior speaker so to speak, and it was a
pleasure every single time. Matthias' technical enthusiasm, coupled with his seemingly inexhaustible wealth of
Delphi knowledge, will be missed. There is so much I was able to learn from him - both professionally and
personally. I can hardly list all the places where Matthias will leave a gigantic gap.

Matthias also introduced me to my current employer years ago, something I have never forgotten and will
never forget.

Matthias, I am very, very sad that we will no longer have the opportunity to talk shop over a beer, drift off the
subject and talk about something completely different afterwards and still have fun doing it. Have a good trip
and rest in peace. It was wonderful to have got to know you.

In silent mourning,
Daniel
Daniel R. Wolf

BY DETLEF OVERBEEK The original article was published By the MIT (Massachusetts Institute of Technology)

FLEXIBLE MICROPROCESSORS

10Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 5

Silicon is the second most common element in the universe, after air. It makes up most of the
computers we use today. Forms of silicon can be found in rocks, clay, sand, and dirt. Even though
it's not the best, it's the easiest to get for electronics.
Because of this, silicon is the material that is most often found in electronics, like solar cells, sensors,
and the chips inside computers and smartphones.
MIT engineers are working on a way to use a lot of different, non-silicon materials to make very
thin films that are also semiconducting.

The researchers made bendable films of gallium arsenide, gallium nitride and lithium fluoride to
show how their method worked. Even though these materials work better than silicon, they have
been too expensive to use in functional products until now.

The experts say that the new method makes it easy and cheap to make flexible electronics from any
mix of semiconducting parts. These circuits would work better than the ones we use now, which are
based on silicon.

Figure 1: gallium nitride (mineral)

Figure 2: Hexagonal Chicken Wire of Graphene

Jeehwan Kim, who works at MIT (Massachusetts Institute of Technology - Massachusetts Avenue / Cambridge MA) in
both Mechanical Engineering and Materials Science and Engineering, stated,
"We have found a way to make flexible electronics that can be made from as many different types
of materials as silicon." MIT supposes that this technology can be used to create low-cost gadgets
that work well, like portable computers and sensors, as well as bendable solar cells.

HEXAGONAL CHICKEN WIRE
Kim and his coworkers came up with a way to "copy" expensive semiconductor materials with
graphene in 2017.

Graphene is an allotrope* of carbon consisting of a single layer of atoms arranged in a hexagonal
lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact
that the graphite allotrope of carbon contains numerous double bonds.

allotropy,
the existence of a chemical element in two or more forms,
which may differ in the arrangement of atoms in
crystalline solids or in the occurrence of molecules that
contain different numbers of atoms.

WIKIPEDIA

WIKIPEDIA

Figure 3: Eight allotropes of carbon:
(a) diamond,
(b) graphite,

(c) lonsdaleite,
(d) C60 buckminsterfullerene,

(e) C540 fullerite
(f) C70 fullerene,

(g) amorphous carbon,
(h) zig-zag single-walled carbon nanotube.

11Blaise Pascal Magazine 116 2023

ARTICLE PAGE 2 / 5

Carbon is capable of forming many allotropes (structurally different forms of the same element)
due to its valency. Valency is the number of atoms of a particular element that is combined with one
atom of another element to form a molecule. Valency is also known as molecular weight. Valency is
a measure of the combining power of an atom. The valency of an element is determined by the
number of electrons in its outermost shell. Well-known forms of carbon include diamond and
graphite. In recent decades, many more allotropes have been discovered and researched, including
ball shapes such as Buckminsterfullerene (It is a black solid that dissolves in hydrocarbon solvents to
produce a violet solution.) and sheets such as graphene.

Graphene is made up of a very thin layer of carbon atoms grouped in a way that looks like
hexagonal chicken wire.
Putting graphene on a pricey, pure wafer of a semiconducting material like gallium arsenide and
then letting the atoms of gallium and arsenide flow across the wafer made it look like the atoms
were interacting with each other in a way that made the graphene between them look like it
wasn't there.
So, the atoms were able to stick together in the exact single-crystalline pattern of the
semiconducting chip below. This let them make a perfect copy that was simple to peel off the
graphene layer. The inexpensive method, which they called "remote epitaxy (type of exposure)",
made it possible to make many layers of gallium arsenide with just one pricey chip underneath.

The team thought if their method could be used to make other semiconducting materials soon
after showing their first results. They tried remote epitaxy on silicon and germanium, which are
both cheap semiconductors, but when they put the atoms on top of graphene, they didn't
connect with the layers below. Suddenly, graphene went from being clear to opaque, making it
impossible for silicon and germanium atoms to "see" the atoms on the other side.
Quartz and germanium are both in the same group of elements in the periodic table. To be more
exact, these two elements are ionically neutral, which means they don't have any polarity. They are
in the fourth class of materials. This showed to be a hint.

WIKIPEDIA

FLEXIBLE MICROPROCESSORS

12Blaise Pascal Magazine 116 2023

ARTICLE PAGE 3 / 5FLEXIBLE MICROPROCESSORS

Figure 5: Notice the bending and flexibility

Figure 6: Enlarging the view

Figure 4: Peeling of the Microprocessor

13Blaise Pascal Magazine 116 2023

ARTICLE PAGE 4 / 5FLEXIBLE MICROPROCESSORS

Figure 7: The periodic Table If you click here you can go to the webpage and see some amazing extra’s

f you click here you go to the
webpage and see some amazing
extra’s: https://en.wikipedia.org/wiki/
Periodic_table

https://en.wikipedia.org/wiki/Periodic_table

14Blaise Pascal Magazine 116 2023

ARTICLE PAGE 5 / 5FLEXIBLE MICROPROCESSORS

But HBN is made of oppositely charged boron and nitrogen atoms, giving it polarity.
In their experiments, the researchers found that all the atoms that flew over hBN, even if they
themselves were highly polarised, were unable to fully interact with their underlying wafers.

This suggested that both the polarity of the main atoms and the intermediate material determine
whether the atoms will interact and form a copy of the original semiconducting wafer.

So it seems there are now rules for atomic interaction by graphene.
Researchers can now select only two elements with opposite charges by using this new
understanding to look at the periodic table (See Figure 7 on page 4 of this article).
They can make multiple accurate copies of the original wafer by using remote epitaxy methods
after making a main wafer from the same materials.

Silicon wafers are mostly used because they are cheap.
Using non-silicon materials is now made possible by this method.
You can simply buy one expensive wafer and copy it from time to time, allowing you to reuse the
wafer. The material library for this method is now fully expanded.

It is predicted that remote epitaxy can now be used to produce ultra-thin, flexible films from a wide
range of previously exotic semiconducting materials - as long as the materials are made of atoms
with a certain polarity.
Even in the distant future, these ultra-thin films can be combined to make small, flexible, versatile
devices such as wearable sensors, flexible solar cells and even "mobile phones that stick to your skin".
Kim says: "We need low-energy, highly sensitive computing and sensor devices, made from better
materials, in smart cities, where we may want to put small computers everywhere." "This study
opens the door to those devices."

What they discovered was that the way graphene interacts depends on how polar
(In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups
having an electric dipole moment, with a negatively charged end and a positively charged end.)
the atoms are. Even three layers of graphene can interact with each other for the strongest ionically
bound materials. It works a lot like how two magnets can pull together through a thin piece of
paper.

The team also discovered that it depends on the material in which the atoms interact.
They did experiments with both graphene and an inter-layer of hexagonal boron nitride (hBN),
a substance that mimics the atomic pattern of graphene and has properties similar to those of
Teflon, allowing overlying materials to peel off easily when copied.

The group believed that graphene should have its own ionic charge so that it could combine with
other molecules. Gallium arsenide, on the other hand, has a negative charge at the contact,
while arsenic has a positive charge.
This difference in charge, or polarity, can help the atoms repeat the basic pattern of an atom and
talk to each other through graphene as if it were clear.

15Blaise Pascal Magazine 116 2023 6Blaise Pascal Magazine 110 2023

PRICE: € 40,00POCKET PACKAGE (2BOOKS) EXCLUDING VAT AND SHIPPING

https://www.blaisepascalmagazine.eu/product-category/books/

LAZARUS HANDBOOK

How can I show the user that he has created an error?
This is often best done with an Exception. It allows you to step out of in

an elegant manor out of your function or procedure.

It turns out to be very useful if you create two standard error procedures:

a. one that beeps and jumps out of the function/procedure

b. one that also puts an error text on the screen.

Example: Use a procedure with an Abort-exception:

PROCEDURE AbortWithBeep;
BEGIN
 MessageBeep(-1); Abort;
END;

Use a procedure with an Exception that puts an error message on the
screen:

PROCEDURE ExceptOnMistake(Mistake : String);
BEGIN
 Messagebeep(-1);
RAISE Exception.Create(‘Error: ‘+ Mistake ;
END;

How can I ensure that the user can only enter numbers?
Let's assume for a moment that an Edit field is used.

Then you can check the input at two points:

a. or when the whole number is entered,

b. or as soon as a key is pressed.

For example, if you want to ensure that only (real) numbers are entered

you create the following OnExit event:

PROCEDURE TForm1.Edit1Exit(Sender: TObject);
CONST LF=#13;{linefeed}
BEGIN
 IF Edit1.Text=’’ THEN
 BEGIN
 Edit1.SetFocus;
 ExceptOnError
 (’The amount is empty.’+LF+
 ’We need to get the amount’);
 END{if};

 TRY StrToFloat(Edit1.Text);
EXCEPT
 Edit1.SetFocus;

 ExceptOnError
 (’The amount is not correctly typed.’+LF+
 ’Type only a number, minus or comma’);
END{try};

END;

Edit1 is checked for errors at 'onExit'. The previously described

ExceptOnMistake returns two error lines. The upper one names the

error and the lower one gives the solution. This is a good practice.

The constant LF (line feed) is declared locally (within the procedure)

declared.

In your program, it is better to declare it globally (at the beginning of

your program), then you can use it anywhere.

If you want to ensure that integers are fed in, then use StrToInt
instead of StrToFloat.

When it is plainly obvious which error has been made,

a beep will suffice instead of an error text.

In that case, use the AbortWithBeep mentioned earlier in your procedure:

Edit1 is now checked on every keystroke with

'onKeyPress'. If an amount is to be typed in Edit1 then you can catch an

accidentally typed letter with:

PROCEDURE TForm1.Edit2KeyPress
(Sender: TObject; VAR Key: Char);
BEGIN
 IF NOT (Key IN [#8, ’,’, ’-’, ’0’..’9’])
 THEN AbortWithBeep;
END;

Key #8 ensures that the Backspace key continues to work.

You don't need to use the above procedures with a DBEdit field.

When the field is linked to a 'number' field

in the Table, the entry is automatically validated.

16Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 1

screen resolution in Windows
I found another way to get the screen resolution in Windows that is

consistent between 32bit and 64bit programs using
GetSystemMetrics.
uses
Windows;

var
ScreenWidth, ScreenHeight: Integer;

begin
ScreenWidth := GetSystemMetrics(SM_CXSCREEN);
ScreenHeight := GetSystemMetrics(SM_CYSCREEN);

WriteLn('Screen Width: ', ScreenWidth, ' pixels');
WriteLn('Screen Height: ', ScreenHeight, ' pixels');

end.

This works well, and with PTCGraph, there is really no need to bother

figuring out what video modes are available anyway, especially now that

we can have custom resolutions for the PTCGraph window, I just need to

make sure it fits on the screen so it really doesn't matter how I get the

screen resolution. James Richters

PASCAL USERS
TIPS SOLUTIONS

17Blaise Pascal Magazine 116 2023

ADVERTISEMENT

https://www.blaisepascalmagazine.eu/product-category/books/

David Dirkse’s website: davdata.nl/math

COMPUTER
(GRAPHICS)
MATH & GAMES
IN PASCAL

Pocket
€ 50
ex Shipping

PDF
€ 35

18Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 14

Note that this mostly affects VCL applications, as FMX applications already used the new
exception model. It does also affect FMX a bit though, as underlying code now also more
closely follows IEEE 754.

NOT A NUMBER?
WHEN IS A NUMBER NOT A NUMBER?
WHEN IT IS A NaN.

BY DANNY WIND

DELPHI 12 NOW USES NaN AND INF

FPU detection Calculation <= Delphi 11.3 (VCL) >= Delphi 12 (VCL)
exInvalidOp 0.0 / 0.0 EInvalidOp NaN
 sqrt(-1)
exDenormalized 0.01 / 1e308 9,99999999999997E-311 9,99999999999997E-311
exZeroDivide 1.0 / 0.0 EZeroDivide INF
exOverflow 1e308 + 1e308 EOverflow INF
exUnderflow 1e-16 / 1e308 0.0 0.0
exPrecision Most calculations Closest round ties to even value Closest round ties to even value

Starting with Delphi 12 a floating point calculation which would previously raise an
exception will now result in a Not a Number (NaN) or INF value.

In Delphi 12 all the Floating Point Exceptions are now masked by default. In previous
Delphi versions three of the FPU Exceptions where unmasked, and a calculation might raise
an Invalid Operation, Zero Divide or Overflow exception that needed to be handled in code
with a try except. In Delphi 12 for VCL these exceptions are no longer raised and we now
get NaN and INF floating-point values as a result of invalid operation and division by zero
and overflow calculations.

WHAT'S NOT A NUMBER
The concept of NaN, or Not a Number in response to 0.0/0.0 or sqrt(-1) may be surprising
at first, but it soon starts to make sense after some careful thought.

When William Kahan, the Father of Floating Point, wrote the IEEE 754 rulebook for floatingpoint
numbers he did so with care and insight. One of these insights was including the
systematic use of a NaN value, where an invalid result of part of a calculation such as 0.0/0.0
would be allowed to yield a special floating-point value, a NaN, instead of halting the calculation
with an exception.
In this way all the following and surrounding calculations could continue and the NaN would
become part of this calculation. The NaN would propagate to parts of the end-result, following
specific rules. In this way calculations could still yield perfectly valid partial results, for instance with
matrices, even if some of the steps had NaN values. This works the same with INFinity values.

In the IEEE 754 specification it is written that you can also handle these and other boundary conditions,
with exceptions. Back then Delphi and several other programming languages chose to do just that.
But gradually over the years, more and more of the programming languages adopted the use of
NaN and INF values over exceptions.
Why?
Well, it leads to faster calculations and allows calculations, especially matrix multiplications,
to fail just partially, still yielding correct results outside of the boundary conditions. As now
most programming languages have moved over to this approach it is now time for Delphi
to do the same.

With the new Delphi 12 we fully embrace NaN and INF and do away with exceptions while
running calculations.
However because of that we also have to know more about these special values. And maybe its
also a good thing to freshen up on our general floating point knowledge.

19Blaise Pascal Magazine 116 2023

ARTICLE PAGE 2 / 4

The interpretation of NaN comparisons is unordered, as you can not really know what
number NaN would really represent. The only comparison that would be true is that when
x is a normal number it is not equal to a NaN. All other comparisons are False.

NAN UNEXPECTED RESULTS
This unordered definition leads to (NaN > x) being evaluated as False while NOT(NaN <=x)
evaluates to True. In software this could easily lead to unexpected results.
For instance in cruise control software for a vehicle. If the code uses something like this;

And if the designer of the the speed-o-meter decided to return NaN if the measurement is
invalid, you would soon be going faster than you intended to.

DEBUGGING NAN AND INF ISSUES
It is perfectly valid to re-enable the good-old FPU exceptions for debugging purposes.
This can easily be done by using the following code

while cruise control enabled do
begin
 if NOT(MeasuredSpeed >= TargetSpeed) then
 {keep adding 0.1 to acceleration to get up to speed}
 else
 {reduce acceleration to -0.1 and stabilize}
end;

NaN <> x True unordered NOT(NaN <> x) False
NaN = x False means NOT(NaN = x) True
NaN > x False it NOT(NaN > x) True
NaN >= x False has NOT(NaN >= x) True
NaN < x False no NOT(NaN < x) True
NaN <= x False order NOT(NaN <= x) True

NOT A NUMBER?
WHEN IS A NUMBER NOT A NUMBER?
WHEN IT IS A NaN.

NAN SPECIAL CONSIDERATIONS
If you look at a NaN it is essentially an unknown number.

This means that any comparison with another number or even with a NaN would make no
sense. It could be both True and False. In IEEE 754 the result of a comparison with NaN is
suggested to always result in a False result. Note that this behaviour is not mandatory,
each and every language and CPU platform may choose to implement NaN comparisons differently.

In calculations, anything that you calculate with a NaN should result in a NaN as well.
Or as put forward in IEE 754: “For an operation with quiet NaN inputs, other than maximum and
minimum operations, if a floating-point result is to be delivered the result shall be a quiet
NaN which should be one of the input NaNs. “

Comparison between NaN and other numbers

uses System.Math;
SetExceptionMask(exAllArithmeticExceptions-LegacyExceptionFlags);

20Blaise Pascal Magazine 116 2023

ARTICLE PAGE 3 / 4NOT A NUMBER?
WHEN IS A NUMBER NOT A NUMBER?
WHEN IT IS A NaN.

After re-enabling these exceptions you can throw all kinds of unit, regression and other
tests you can come up with at your software to weed out all these exceptions.
At this point you might be wondering if it would not be easier to leave all the old code as is
and just re-enable these legacy exceptions. Its not a bad thought, however it does come
with some pitfalls. One of them is that the new Delphi 12 base code more closely follows
IEE 754 in general and you can not entirely go back to the old behaviour.
For instance in comparisons with NaN Delphi 11.3 and Delphi 12 behave differently.

NaN > x Platform <= Delphi 11.3 >= Delphi 12
 VCL – Win32 True False
 VCL – Win64 EInvalidOp False
 FMX – Win32 True False
 FMX – Win64 False False

The results you get with Delphi 12 are arguably better and conform to IEEE 754.
You can verify this yourself with Delphi 11.3 and Delphi 12 with the following code snippet.

function NaN_larger_x: Boolean;
var
 lNaN, x: Double;
begin
 lNan := Double.NaN;
 x := 42.0;
 if (lNaN > x) then
 Result := True
 else
 Result := False;
end;

FPU CONTROL WORD
The default for the FPU 8087 Control Word has also changed in Delphi 12. This value only
has meaning for Win32 (x86 32-bits) and influences rounding, precision and exceptions.

FPU Control Word <= Delphi 11.3 >= Delphi 12
VCL – Win32 1372 Default 037F

0001 0011 0111 0010 0000 0011 0111 1111
 Legacy 0372

0000 0011 0111 0010
FMX – Win32 137F Default 037F

0001 0011 0111 1111 0000 0011 0111 1111
 Legacy 0372

0000 0011 0111 0010

The Delphi 12 column lists both the 8087 CW value when all FPU exceptions are masked
(Default) and when the three legacy FPU exceptions are unmasked (Legacy).
We expect some of these changes, as the (un)masking of exceptions is part of the 8087 Control Word.
The exception mask consists of the last 6 bits on the right of the 8087 CW and these values
are as expected.
With all exceptions masked these bits are all 1, for the legacy setting three of them are zero.

21Blaise Pascal Magazine 116 2023

ARTICLE PAGE 4 / 4NOT A NUMBER?
WHEN IS A NUMBER NOT A NUMBER?
WHEN IT IS A NaN.

But what is happening with the fourth bit from the left?
Why is that bit now a zero instead of a one?

From the floating-point reference sheet for intel architecture we learn that bit 12 is a reserved bit,
X marks the spot. With a bit of digging in the past it would seem that on 80387 CPUs settings this
bit was reserved and used to enable positive and negative infinity instead of just single infinity.
Other sources suggest it can be used to set denormals to be flushed to zero or saved.
However the 8087 seems to have never supported flushing denormals to zero,
it is supported on SSE though.
Based on this info, the current spec and some tests I suspect this bit does nothing anymore,
and this is just a bit of cleanup.

As a side note, the value 037F is the default value that Intel uses for the 8087 CW.

I'm going to stop here, although there is much more to know and learn about floatingpoint
numbers. It still happens that floating-point calculation surprises me and it may also
surprise you from time to time.
I'm going to sign off with this one fun fact:

FUN FACT
Did you know that if you keep adding 1.0 to a Double value you eventually end up with
9.007.199.254.740.992 ?
You may think that this is the maximum value for a Double, but it is not.
It's just the value where the precision of the Double becomes less than 2,
and the succeeding value+1 is rounded back to even to the nearest and exact same value.
You can go higher, but you have to add more than just 1 to get to the next floating-point
value.
The step or interval between floating-point values is known as the ULP, the Unit in the Last Place.
This also means that after this number there are only even numbers.

USEFUL LINKS AND REFERENCES (just click on it)

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

https://www.intel.com/content/www/us/en/developer/articles/technical/
floating-pointreference-sheet-for-intel-architecture.html

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.intel.com/content/www/us/en/developer/articles/technical/floating-pointreference-sheet-for-intel-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/floating-pointreference-sheet-for-intel-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/floating-pointreference-sheet-for-intel-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/floating-pointreference-sheet-for-intel-architecture.html

22Blaise Pascal Magazine 116 2023

LE
AR

N
TO

PR
O

GR
AM

U
SI

N
G

LA
ZA

RU
S

H
O
W

AR
D

PA
G
E
-C

LA
R
KLAZARUS

HANDBOOK
FOR PROGRAMMING WITH F PASCAL AND LAZARUSREE

934 PAGES

LAZARUS
HANDBOOK

SPRING OFFER
SUPER
 PACK

7 ITEMS

3

4 6 7
1. One year Subscription
2. Internet Viewing of the Magazine
3. The newest LIB Stick
 - All issues 1-111
 - On Credit Card
4. Lazarus Handbook Pocket
5. LH PDF including Code
6. Book Learn To Program
 - using Lazarus PDF including
 19 lessons and projects
7. Book Computer Graphics
 Math & Games
 - PDF including ±50 projects

PRICE € 120
NORMAL PRICE € 275

ADVERTISEMENT

POCKET
Edition
+shipment

LAZARUS
HANDBOOK
PDF

Delphi ATHENS (12) introduction
DEBUGGING A 64-BIT-BOX

testing numbers
Installation of latest version of Fast Reports

Math That Goes On Forever but Never Repeats
Overview of PascalScript feature in Syncovery

Is Passkey (authentication) the solution for the future
Test insight

Add text layer to PDF files

5

1 2

8 2022 Blaise Pascal Magazine 116 2023

LIB-STICK ON USB CREDIT CARD
BLAISE PASCAL MAGAZINE
LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 100

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

BLAISE PASCAL MAGAZINE 112
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE 116
Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js

Databases / CSS Styles / Progressive WebApps
Android / IOS / Mac Windows & Linux

Manufacturing flexible electronics
Push notifications

NaN, Not a Number, an example program how to handle
AI and energy consumption…

Database Workbench: 6.4 this version, offers full SQLite support
Pas2JS version 3, whats new?

Delphi’s 29th birthday...
Open Web Search: free, open and unbiased access to informa�on

Inside Intel's Chip Factory

Blaise Pascal

With highlighting
the result
on search

24Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 3

WHAT’S THE
CHALLENGE?

https://github.com/gcarreno/1brc-ObjectPascal

25Blaise Pascal Magazine 116 2023

A BILLION IS COOL
BY IAN BARKER, EMBARCADERO DEVELOPER ADVOCATE

There is a fantastic scene in The Social Network movie during Eduardo Saverin’s pre-trial
deposition where he recalls a moment when he and Marc Zuckerberg meet Sean Parker,
the founder of Napster for the first time. Zuck, Eduardo, and Sean are discussing
monetization of “The Facebook” as it was still called at the time. In the fictional scene,
after Marc and Eduardo suggest that the site could be worth a substantial amount of
money Sean Parker delivers an immortal line: “Yeah sure, you could do all that and get a
valuation of a million dollars. But you know what’s really cool? A BILLION dollars”.

Why a million is not enough
That’s the crux of things. Nowadays our societal sophistication is such that the word
“million” is almost passè. A million dollar valuation of a US business would be considered
almost tiny. Sending a spaceship on a million mile journey is just not that incredible any
more. Been there, done that. This goes for the world of computing too where having a
database with a million records is cool but, actually, there are data breaches which are
regularly in the tens of millions.

To paraphrase Sean Parker, do you know what is cool? A database with a BILLION records.

THE ATTRACTION OF THE DARK SIDE
Normally I’m not really that lit up by coding challenges. To me they have a tendency to be a form
of intellectual onanism. They can often be elitist and have a kind of “you’re not in our gang” frat-
house vibe precluding participation. Since my raison d'etre is about getting as many new people as
possible to use Delphi I lean towards things which get new people to see what Object Pascal can
do for them and show them why I think it’s the best choice in almost any situation. Actions speak
louder than words. I’m not going to be able to lure unsuspecting new coders to the florid charms
of being/end statements and strong types by fussing over esoteric exchanges about CPU cycles
and maven geek speak about re-entrant black magic frippery am I?

But on the other side of this, Object Pascal, the language we all love, is also alive, capable, and can
kick many of its peers in their soft and squishy bits when it comes to speed, code safety, and a
sublime succinctness of expression. So, with that in mind, are you in the mood to flex your coding
muscles in anger and really wield Object Pascal like the precision-guided weapon of choice it is?
You are? Then welcome to the Billion Row Challenge.

WHAT IS THE BILLION ROW CHALLENGE?
This came about thanks to Embarcadero MVP Gus Carreno. Here’s how he describes things:

I've stumbled on a very interesting challenge: Reading 1 billion rows of text, processing some
temperature values, ordering the collated values and then outputting them.
Do it single thread, do it multithread, but do it as fast as possible!

The original idea came from the Java world: 1BRC in Java
https://github.com/gunnarmorling/1brc

I immediately thought this would be a wonderful, and fun, challenge to do in Object Pascal.

If you think that this is a thing you'd enjoy, please head on to the 1BRC in Object Pascal repo
which can be found here:
https://github.com/gcarreno/1brc-ObjectPascal

The fundamentals of this challenge are described there, but I can summarize it in a
single sentence: Learn something, teach something, but please have fun doing so.

https://github.com/gcarreno/1brc-ObjectPascal

26Blaise Pascal Magazine 116 2023

A BILLION IS COOL
BY IAN BARKER, EMBARCADERO DEVELOPER ADVOCATE

https://github.com/gcarreno/1brc-ObjectPascal

27Blaise Pascal Magazine 116 2023

A BILLION IS COOL
BY IAN BARKER, EMBARCADERO DEVELOPER ADVOCATE

https://github.com/gcarreno/1brc-ObjectPascal

28Blaise Pascal Magazine 116 2023

LIB-STICK BLAISE PASCAL MAGAZINE

LIB-STICK USB-CARD: ALL ISSUES / CODE INCLUDED. SAME INTERFACE AS THE
INTERNET LIBRARY € 89 CHRISTMAS OFFER

Higlight
With

 Higlight
the result
on search

Blaise Pascal Magazine 107/108 2022 29Blaise Pascal Magazine 116 2023

SPECIAL OFFER € 75

● Lazarus Handbook
● Printed in black and white
● PDF Index for keywords
● Almost 1000 Pages
● Including 40 Examples
● Blaise Pascal Magazine
● English and German
● Free Lazarus PDF Kit Indexer
● 8 Issues per year
● minimal 60 pages
● Including example
 projects and code

ADVERTISEMENT

LAZARUS HANDBOOK (PDF)
+SUBSCRIPTION 1 YEAR

30Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL
BY MICHAEL VAN CANNEYT

ABSTRACT
For a long time, Free Pascal lacked support for Extended RTTI. Recently, the Extended RTTI support
has been merged to the main development tree, making Free Pascal again more compatible to
Delphi. In this article we take a closer look.

❶ INTRODUCTION
Introspection is the ability to examine the structure of data (or types) at runtime, without
knowing exactly what type the data is:
it allows you to examine the type using some API provided by the programming language. In
Delphi and Free Pascal, the introspection mechanism is labeled RTTI:
Run-Time Type Information.

Since its inception, Delphi has supported a limited form of RTTI:
The published properties of a class could (and still can) be examined with the aid of the RTTI API:
at first the TypInfo unit, later the System.Rtti unit. This mechanism is used to implement
streaming, and streaming is what makes form files work, both for FMX and the VCL.

Free Pascal has supported this form of RTTI for a very long time. Delphi 2010 extended
the RTTI system from not only published properties to all elements of a class: fields, properties,
and methods could be examined using this "Extended RTTI", not just for published
properties, but also for private, protected and public fields.
Additionally, it introduced Attributes:
a system to annotate the class and its fields, properties and methods with extra information.

Free Pascal introduced support for Attributes quite early on, but they were limited to published
properties. It took more than 10 years to catch up and implement, and several more
years to merge the support for Extended RTTI in the main development compiler. The largest part
of the work has now come to an end, and extended RTTI and attributes can now be used.

❷WHY EXTENDED RTTI?
Before diving into the details of the RTTI Api and the possibilities, why would you want to use RTTI?
One of the main uses of RTTI is streaming:
it allows you to examine a class and write the contents of this class to file or database.
Later the information in file or database can be read and used to reconstruct the object.
All this can be done by a standalone system, that does not need to know the details of the classes
it writes or reads: it can use the RTTI to examine the classes and to manipulate the classes.

To make this more specific, take the TTimer class:

TComponent= class (TPersistent)
published

Property Name : string Read FName Write SetName;
end;

TTimer = class (TCustomTimer)
published
 property Enabled: Boolean read FEnabled write SetEnabled default True;
 property Interval: Cardinal read FInterval write SetInterval default 1000;
 property OnTimer: TNotifyEvent read FOnTimer write SetOnTimer;
 property OnStartTimer: TNotifyEvent read FOnStartTimer write FOnStartTimer;
 property OnStopTimer: TNotifyEvent read FOnStopTimer write FOnStopTimer;
end;

❸ WHY ATTRIBUTES ?
To see why annotations can be useful, assume you have a external REST service which
serves and consumes data through JSON. For example a JSON contact person object

{
"first-name" : "michael",
"last-name" : "Van Canneyt"
"date-of-birth" : "19700707"
}

If you wish to model this data in an object, you need to use pascal identifiers, and pascal types:

TPerson = record
firstname : string;
lastname : string;
birthdate : TDateTime;
end;
Two problems become immediately apparent: the fieldnames (keys) in the JSON are not
valid pascal identifiers, so you need to map somehow the names used in JSON to the field-names
and vice versa.
The date field needs to be read (and written) in a format which is not handled by a simple
StrToDate or DateToStr method. If multiple REST resources are used, then you need a
mapping between the class and the REST resource to be consumed.

One way of doing this is creating some data structure which contains the mapping and which
provide the format. Another way would be to have all data structures descend from a basic class
which provides some methods to create the mapping:

Through the RTTI, a streaming system knows that the TTimer class has 6 properties that it can stream.
It knows the type of the property (for instance Cardinal for Interval), how it
must be read (directly from the field FInterval) or written (through the SetInterval method),
and what the default value is (1000):
the default value is a way to optimize the writing by not writing the value of a property if it matches
the default value.

The same mechanism allows the property inspector to show objects that it does not know.

The RTTI above had quite some limitations:
Only published properties can be examined. The type of information that could be published was
also limited: classes descendent from TPersistent, ordinal types, set types (up to 32 elements)
and float types.
Methods had to be published as well in order to be usable as event handlers.

So no records, or no arrays, no public or protected properties or simply fields. The absence
of annotations meant also that the streaming system had no possibility to store extra
information (for instance an alternative name for a property).
With the introduction of Extended RTTI and Attributes, these restrictions were lifted:
Information of any type can be examined, fields can be examined.
All visibilities (public, protected, private) are now subject to inspection.

31Blaise Pascal Magazine 116 2023

ARTICLE PAGE 2 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

TPerson = Class
 class function ResourceName : String;
 class function FieldToJSONName(const aField : String): String;
 class function FormatDate(aDate : TDatetime) : String;
 firstname : string;
 lastname : string;
 birthdate : TDateTime;
end;

If you additionally wish to save the data into a database using some ORM technology,
then it becomes even more complicated: The names of the database fields can also be different
from the fields used in the class. A similar technique can be used to introduce a second
mapping for the database;

[Table(’People’)]
[Resource(’/REST/Contact’)]
TPerson = Record
 [DBKeyField]
 id : integer;

 [JSONKey(’first-name’)]
 [DBField(’pe_name’)]
 firstname : string;

 [JSONKey(’last-name’)]
 [DBField(’pe_lastname’)]
 lastname : string;

 [JSONKey(’date-of-birth’)]
 [DateFormat(’yyyymmdd’)]
 [DBField(’pe_birthdate’)]
 birthdate : TDateTime;
end;

32Blaise Pascal Magazine 116 2023

ARTICLE PAGE 3 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

The result usually is a multitude of functions in the declaration (and their implementation, of course)
to take care of the necessary mappings and provide information on how and what to stream.

Attributes can make this a lot simpler:
The same information can be provided with simple annotations on the fields themselves:

The above uses 5 attributes:

Table specifies the database table in which to save the object.

Resource specifies the URL at which the resource can be retrieved

JSONKey specifies the key to use when reading/writing the JSON Object.

DBField specifies the database fieldname to use when loading/saving from/to the database.

DateFormat specifies the formatting used in JSON for a date.

A system that consumes REST services and a second system that loads/saves objects to
database can inspect these attributes using RTTI and use them to load or save the objects in
the correct location and with the correct format. In a realistic system, more attributes will
be needed, of course.
If you have only 1 service to create and one database table to maintain, using attributes may
be overkill: The whole operation to create JSON can then of course be done much simpler:

TPerson = Class
 Class function TableName : string;
 class function FieldToJSONName(const aField : String): String;
 class function ResourceName : String;
 class function FieldToDBField(const aField : String): String;
 class function FormatDate(aDate : TDatetime) : String;
 firstname : string;
 lastname : string;
 birthdate : TDateTime;
end;

function TPerson.ToJSON : TJSONObject;
begin
Result:=TJSONObject.Create([
’id’,id,
’first-name’,firstname,
’last-name’,LastName,
’date-of-birth’,FormatDateTime(’yyyymmdd’,birthdate)
]);
end;

33Blaise Pascal Magazine 116 2023

ARTICLE PAGE 4 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

❹ THE SYSTEM.RTTI UNIT
The classical RTTI as it existed since Delphi 1 (or Free Pascal) could be examined through the
routines in the TypInfo unit. These were low-level routines, requiring manually allocating memory
and using pointers. With the introduction of Extended RTTI, a new API to consult and use the RTTI
was also introduced:

The extended RTTI needs to be examined using the System.Rtti unit. It provides the
same functionality as the TypInfo unit offered, but offers more convenient APIs: record, objects.

For every type and kind of data, the RTTI unit contains a dedicated object which represents
the RTTI data for that type. Here are the main classes:

TRttiType This is the parent class for all types.

TRttiInstanceType Represents the RTTI for a class type.

TRttiRecordType Represents the RTTI for a record.

TRttiField Represents the RTTI for a field of a record or class.

TRttiProperty Represents the RTTI for a property of a record or class.

TRttiMethod Represents the RTTI for a method of a record or class.

These classes offer methods to find related RTTI: for a class, its list of fields, for a method,
its parameters. Almost all classes have a method to get the Attributes associated with the
data or type they represent.
The property and field classes have a method to set the value of the field or property, given an
instance. The method classes can be invoked, allowing you to call any method without knowing the
exact calling mechanism. To make all this possible without using the actual types, a TValue type
has to be used: this new type is much like a variant, but offers an exacter type match than a variant.
It it used to set/get property or field values, it is used to return values of functions you call and
has to be used to supply parameter values for methods that need parameters.

But with many tables and many REST resources to create or consume, the use of attributes
avoids writing a lot of functions such as the above or even to provide the necessary metadata
for the systems that interact with the REST service or database.
From the declaration of the object the programmer can also immediately see how the mappings
are defined, without needing to dive into functions that provide the same information.
Of course, it can be argued that this meta-information should not be inside the object itself,
that these mappings should be constructed outside the business objects: the above approach
introduces a coupling between the used JSON streaming framework and the business objects.
Similarly for the ORM (Object-Relational Mapping: the framework to save objects to a database).
Additionally, it does not cover all possible use scenarios, for example what if an object needs to be
loaded from one database and saved in another database with a different structure?
This questions are legitimate, but are the subject of a separate discussion:
here we just want to illustrate a possible use of attributes.

34Blaise Pascal Magazine 116 2023

ARTICLE PAGE 5 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

The APIs in this unit use classes, but the lifetime of these classes are completely managed by the
unit: there is no need to free them. To make this possible a TRttiContext must be used when
calling the APIs of the Rtti unit: when the context is freed, all instances of RTTI classes that are no
longer used will be released.
NOTE that in Free Pascal the routines in the Rtti unit are just a convenience layer on top of the
routines in the TypInfo unit: everything that can be done with the Rtti unit can also be done with
the routines in the TypInfo unit (except the Invoke functionality to call a method). In Delphi, this is
not the case: some functionalities are only present in the Rtti unit. So if you have code that you
want to run in FPC and in Delphi, you should stick to using the Rtti unit.

unit contact;

 {$mode objfpc}
 {$H+}
 {$modeswitch prefixedattributes}
 {$modeswitch advancedrecords}

interface

uses
 Classes, SysUtils, rest.types, rttitojson.types, objtodb.types;

 {$RTTI EXPLICIT Fields[vcPublic]}
 Type
 [Table(’People’)]
 [Resource(’/REST/Contact’)]
 TPerson = Record
 [DBKeyField]
 id : integer;

 [JSONKey(’first-name’)]
 [DBField(’pe_name’)]
 firstname : string;

 [JSONKey(’last-name’)]
 [DBField(’pe_lastname’)]
 lastname : string;

 [JSONKey(’date-of-birth’)]
 [DateFormat(’yyyymmdd’)]
 [DBField(’pe_birthdate’)]
 birthdate : TDateTime;
 end;

❺ USING THE EXTENDED RTTI AND ATTRIBUTES
So, how can we use the Extended RTTI and the Attributes?
We’ll demonstrate this by expanding on the example given above:
We’ll create some routines that make a JSON object from data in any record, after reading this
record from the database.
We’ve seen that 5 attributes were used. We’ll start by introducing the complete code that defines
the person record.

An extra attribute (DBKeyField) is used to indicate the key field for the record.

The block with modeswitch directives instruct the Free Pascal compiler to allow prefixed attributes
- this is needed because traditionally, Free Pascal uses the attribute notation to specify modifiers for
procedures and functions. The second directive allows the use of advanced records.
The {$RTTI } directive deserves a mention: This directive controls how much RTTI is generated for
your classes and records.

{$RTTI EXPLICIT FIELDS[vcPublic]}

The EXPLICIT keyword tells the compiler that what follows is the only kind of information that
should be generated, and it should ignore the RTTI settings for parent classes.

35Blaise Pascal Magazine 116 2023

ARTICLE PAGE 6 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

Alternatively INHERITED can be used to indicate that what follows should be generated in
addition to what information is used for the parent class. Finally, the FIELDS keyword
tells the compiler what kind of information should be generated for fields. The other possibilities
are METHODS and PROPERTIES, which are used to specify what RTTI should
be generated for methods and properties, respectively. Finally a list of visibilities must be
specified: the visibility sections for which RTTI information must be generated.
The above directive therefore tells the compiler that it should only generate RTTI for public
fields. The following directive tells the compiler to generate all possible RTTI information

The next thing to note is the presence of the rest.types rtitojson.types and
objtodb.types units. These units define the various attributes used in the definition.
An attribute in Delphi is any class which descends from TCustomAttribute.
The attribute notation

[JSONKey(’first-name’)]

Tells the compiler that it should construct an attribute of class JSONKey or JSONKeyAttribute,
(the compiler will optionally strip off the Attribute from the classname when looking for the class)
and that it should pass the string ’first-name’ to the constructor of the class.
The following unit defines the attributes for the JSON streaming:

unit rttitojson.types;
{$mode ObjFPC}{$H+}
interface

uses
 Classes, SysUtils;
Type
{ JSONKeyAttribute }
JSONKeyAttribute = class(TCustomAttribute)
private
 FKey: string;
public
 constructor create(aKey : String);
 property Key : string Read FKey;
end;
{ DateFormatAttribute }
DateFormatAttribute = class(TCustomAttribute)
 FFormat : String;
Public
 constructor create(aFormat : String);
 Property DateFormat : String Read FFormat;
end;

implementation

{ JSONKeyAttribute }
constructor JSONKeyAttribute.create(aKey: String);
begin
 FKey:=aKey;
end;

{ DateFormatAttribute }
constructor DateFormatAttribute.create(aFormat: String);
begin
 FFormat:=aFormat;
end;

end.

The implementation is quite simple:

{$RTTI EXPLICIT
FIELDS [vcPrivate, vcProtected, vcPublic, vcPublished]
METHODS [vcPrivate, vcProtected, vcPublic, vcPublished]
PROPERTIES[vcPrivate, vcProtected, vcPublic, vcPublished]
}

The create and free methods create and free a TRttiContext which is needed to call the
various functions from the Rtti unit:

The main entry point is the generic ToJSON function. In Free Pascal notation:

Generic function ToJSON<T>(var aData : T) : TJSONObject;

This is actually just a convenience function with a quite simple implementation. It creates the result
JSON Object and calls an overloaded version of the ToJSON function, passing it the type
information of the type T (a record):

generic function TRTTĲSONWriter.ToJSON<T>(var aData : T) : TJSONObject;
begin
 Result:=TJSONObject.Create;
 try
 ToJSON(@aData,TypeInfo(T),Result);
 except
 Result.Free;
 Raise;
 end;
end;

36Blaise Pascal Magazine 116 2023

ARTICLE PAGE 7 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

The GetAttributes call can be used to get all attributes on an identifier. The GetAttributes
call can be used to get a single attribute, by specifying the class for the attribute.

❻ USING ATTRIBUTES TO CREATE JSON
How can we use this to convert a record to a JSON object ? This is done with a TRTTĲSONWriter
in a separate unit (we could also have used a class obviously).
Note that the TPerson record in no way references the writer: only the attributes are
needed to define our TPerson record.

unit rttitojson.writer;
{$mode ObjFPC}
{$H+}
{$modeswitch advancedrecords}
interface

uses
 Classes, SysUtils, fpJSON, typinfo, rtti, rttitojson.types;
Type
 TRTTĲSONWriter = record
private
 Ctx : TRTTIContext;
 function DateFieldToJSON(aDate: TDateTime; Fld: TRTTIField): TJSONData;
 function FieldToJSON(aData: Pointer; Fld: TRTTIField): TJSONData;
Public
 Procedure ToJSON(aData : Pointer; aTypeInfo : PTypeInfo; aJSON : TJSONObject);
 Generic function ToJSON<T>(var aData : T) : TJSONObject;
 class function create : TRTTĲSONWriter; static;
 procedure Free;
end;

class function TRTTĲSONWriter.create: TRTTĲSONWriter;
begin
 Result.Ctx:=TRttiContext.Create(False);
end;

procedure TRTTĲSONWriter.Free;
begin
 Ctx.Free;
end;

37Blaise Pascal Magazine 116 2023

ARTICLE PAGE 8 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

The actual work is done in the other ToJSON function.

In essence this gets the Rtti for the record and loops over all fields:
the list of fields is retrieved with the GetFields call, which returns an array of TRttiField
instances. For each field it determines the key name to use when writing the JSON, and then calls
FieldToJSON to convert the value of the field to a JSON data element, which is then
added to the JSON object.

procedure TRTTĲSONWriter.ToJSON(aData: Pointer; aTypeInfo: PTypeInfo;
 aJSON: TJSONObject);

Var
 R : TRttiRecordType;
 Fld : TRttiField;
 Key : JSONKeyAttribute;
 KeyName : String;
begin
 R:=Ctx.GetType(aTypeInfo) as TRttiRecordType;
 For Fld in R.GetFields do
 begin
 KeyName:=Fld.Name;
 Key:=JSONKeyAttribute(Fld.GetAttribute(JSONKeyAttribute));
 if Assigned(Key) then
 KeyName:=Key.Key;
 aJSON.Add(KeyName,FieldToJSON(aData,Fld));
 end;
end;

NOTE the use of the GetAttribute call with the JSONKeyAttribute class name. If no attribute
of this class exists for the field, Nil will be returned, and in that case the actual field name is used.
The FieldToJSON call starts by getting the value of the field using the GetValue name,
passing the function a pointer to the record. The GetValue function will use the field’s RTTI to
calculate the correct memory address to retrieve the value:

function TRTTĲSONWriter.FieldToJSON(aData: Pointer; Fld : TRTTIField): TJSONData;
var
 V : TValue;
begin
 V:=Fld.GetValue(aData);
 case V.Kind of
 tkFloat : if V.TypeInfo=TypeInfo(TDateTime) then
 Result:=DateFieldToJSON(V.AsDateTime,Fld)
 else
 Result:=TJSONFloatNumber.Create(V.AsDouble);
 tkInt64 : Result:=TJSONInt64Number.Create(V.AsInt64);
 tkInteger : Result:=TJSONIntegerNumber.Create(V.AsInteger);
 tkEnumeration : Result:=TJSONString.Create(GetEnumName(V.TypeInfo,V.AsInteger));
 tkAString,
 tkString : Result:=TJSONString.Create(V.AsString);
 tkWString,
 tkUString : Result:=TJSONString.Create(UTF8Encode(V.AsUnicodeString));
 else
 Raise Exception.Create(’Unsupported type’);
 end;
end;

After the value was retrieved, the type of the value is examined, and an appropriate JSON
data structure is created using the data. For a TDateTime field, a special routine is called
which uses the DateFormat attribute to create a correctly formed JSON string:

38Blaise Pascal Magazine 116 2023

ARTICLE PAGE 9 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

function TRTTĲSONWriter.DateFieldToJSON(aDate : TDateTime; Fld : TRTTIField) : TJSONData;
var
 Res,Fmt : string;
 DateFormat : DateFormatAttribute;
begin
 Fmt:=’’;
 DateFormat:=DateFormatAttribute(Fld.GetAttribute(DateFormatAttribute));
 if Assigned(DateFormat) then
 Fmt:=DateFormat.DateFormat;
 if Fmt=’’ then
 Res:=DateToISO8601(aDate)
 else
 Res:=FormatDateTime(Fmt,aDate);
 Result:=TJSONString.Create(Res);
end;

With this, we’re all done. The following program tests our code:

uses sysutils, contact, fpjson, rttitojson.types, rttitojson.writer;
Procedure WriteJSON(P : TPerson);
var
 Writer : TRTTĲSONWriter;
 JSON : TJSONObject;
begin
 JSON := Nil;
 Writer := TRTTĲSONWriter.Create;
 try
 JSON :=Writer.ToJSON<TPerson>(P);
 Writeln(’JSON : ’,JSON.FormatJSON());
 finally
 JSON.Free;
 Writer.Free;
 end;
end;

var Person : TPerson;

begin
 With Person do
 begin
 id:=1;
 FirstName:=’Kirth’;
 LastName:=’Gersen’;
 birthdate:=EncodeDate(1486,5,14);
 end;
 WriteJSON(Person);
end.

The output is shown in figure 1 on page 9 of this article.

Figure 1: The generated JSON

39Blaise Pascal Magazine 116 2023

ARTICLE PAGE 10 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

❼ USING ATTRIBUTES TO READ AND WRITE FROM DATABASE
A similar unit with a similar record can be created for the reading/writing of an object from database:

TRTTIDBReader = record
private
 Ctx : TRTTIContext;
 Conn : TSQLConnection;
 function CreateQuery(aSQL : String) : TSQLQuery;
 Procedure DBFieldToField(DBData : TDataset; aData: Pointer; Fld: TRTTIField);
 Procedure FieldsToParams(Params : TParams; aData: Pointer; Rec : RttiRecordType);
 function RecordToWhereClause(Rec: TRttiRecordType): String;
 Function RecordToSQL(Rec: TRttiRecordType) : String;
 procedure ValueToParam(V: TValue; Parm: TParam);
Public
 function ReadFromDB(aData : Pointer; aTypeInfo: PTypeInfo) : Boolean;
Generic function ReadFromDB<T>(var aData : T) : Boolean;

 class function create(aConnection : TSQLConnection): TRTTIDBReader; static;
 procedure Free;
end;
We’ll examine only the main methods. The generic function is again a small convenience wrapper:

Generic function TRTTIDBReader.ReadFromDB<T>(var aData : T) : Boolean;
begin
 Result:=ReadFromDB(@aData,TypeInfo(T));
end;

Function TRTTIDBReader.ReadFromDB(aData : Pointer; aTypeInfo: PTypeInfo) : Boolean;
var
 lRtti : TRttiRecordType;
 Qry : TSQLQuery;
 Fld : TRttiField;
 SQL : String;
begin
 lRtti := Ctx.GetType(aTypeInfo) as TRttiRecordType;
 SQL := RecordToSQL(lRtti);
 Qry := CreateQuery(SQL);
 try
 FieldsToParams(Qry.Params,aData,lRtti);
 Qry.Open;
 Result := not Qry.IsEmpty;
 if Result then
 For Fld in lRtti.GetFields do
 DBFieldToField(Qry,aData,Fld);
 finally
 Qry.Free;
 end;
end;

The actual work is done in the following function. It starts by using the rtti of the record to
create an SQL SELECT statement, which is then used to create a query object: the query is
opened, and if it returns a result, the record is loaded from the result:

The main loop here is again a loop over the fields in the record. The DBFieldToField
procedure transfers the data from the dataset fields to the fields in the record.

The RecordToSQL routine constructs an SQL Select statement to retrieve the data
for the record from the database. It uses the Table attribute on the record definition
to determine the table name, and uses the DBField attribute on the fields of the record
definition to get the name of the database table fields. Both times, the pascal name of the
record type or field is used as a fallback:

40Blaise Pascal Magazine 116 2023

ARTICLE PAGE 11 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

The record definition presented earlier reads records from the People table, which can be
defined in SQL as follows:

create table people (
id int not null,
pe_name varchar(127) not null,
pe_lastname varchar(127) not null,
pe_birthdate date not null
);

Function TRTTIDBReader.RecordToSQL(Rec: TRttiRecordType) : String;
var
 Tbl : TableAttribute;
 Fld : TRttiField;
 DBField : DBFieldAttribute;
 FieldName : String;
 TableName : string;

begin
 Result:=’’;
 For Fld in Rec.GetFields do
 begin
 FieldName:=Fld.Name;
 DBField:=DBFieldAttribute(Fld.GetAttribute(DBFieldAttribute));
 if Assigned(DBField) then
 FieldName:=DBField.Name;
 if Result<>’’ then
 Result:=Result+’, ’;
 Result:=Result+FieldName;
 end;
 TableName:=Rec.Name;
 Tbl:=TableAttribute(Rec.GetAttribute(TableAttribute));
 If Assigned(Tbl) then
 TableName:=Tbl.Table;
 Result:=’SELECT ’+Result+’ FROM ’+TableName;
 Result:=Result+’ WHERE ’+RecordToWhereClause(Rec);
end;

on TRTTIDBReader.RecordToWhereClause(Rec: TRttiRecordType) : String;
var
 Fld : TRttiField;
 DBField : DBFieldAttribute;
 FieldName : string;
begin
 Result:=’’;
 For Fld in Rec.GetFields do
 begin
 FieldName:=Fld.Name;
 if Assigned(Fld.GetAttribute(DBKeyFieldAttribute)) then
 begin
 DBField:=DBFieldAttribute(Fld.GetAttribute(DBFieldAttribute));
 if Assigned(DBField) then
 FieldName:=DBField.Name;
 if Result<>’’ then
 Result:=Result+’ AND ’;
 Result:=Result+’(’+ FieldName+’ = :’+FieldName+’)’;
 end;
 end;
end;

The RecordToWhereClause function executes a similar loop to construct the where
clause that will select a single record from the database, based on the key fields, which are
marked with the DBKeyField attribute:

41Blaise Pascal Magazine 116 2023

ARTICLE PAGE 12 / 14

SELECT id, pe_name, pe_lastname, pe_birthdate
FROM people WHERE (id = :id)

EXTENDED RTTI SUPPORT IN FREE PASCAL

The above routines will create the following SQL:

To fill the parameters used in the WHERE clause, the following routine is used, which is
just another variation on the previous routines:

Procedure TRTTIDBReader.FieldsToParams(Params: TParams; aData: Pointer;
Rec: TRTTIRecordType);

var
 Fld : TRttiField;
 DBField : DBFieldAttribute;
 Parm : TParam;
 V : TValue;
 FieldName : string;

begin
 For Fld in Rec.GetFields do
 begin
 FieldName:=Fld.Name;
 if Assigned(Fld.GetAttribute(DBKeyFieldAttribute)) then
 begin
 DBField:=DBFieldAttribute(Fld.GetAttribute(DBFieldAttribute));
 if Assigned(DBField) then
 FieldName:=DBField.Name;
 Parm:=Params.FindParam(FieldName);
 if Assigned(Parm) then
 begin
 V:=Fld.GetValue(aData);
 ValueToParam(V,Parm);
 end;
 end;
 end;
end;

The ValueToParam routine applies the TValue to a TParam. No attributes are used
this time, the TValue contains all information we need to apply the value to a query`parameter

Procedure TRTTIDBReader.ValueToParam(V : TValue; Parm : TParam);
begin
 Case V.Kind of
 tkInteger : Parm.AsInteger:=V.AsInteger;
 tkInt64 : Parm.AsInteger:=V.AsInt64;
 tkAString,
 tkString : Parm.AsString:=V.AsString;
 tkUString : Parm.AsUnicodeString:=V.AsUnicodeString;
 tkWString : Parm.AsUnicodeString:=V.AsUnicodeString;
 tkFloat :
 if V.TypeInfo=TypeInfo(TDateTime) then
 Parm.AsDateTime:=V.AsDateTime
 else
 Parm.AsFloat:=V.AsDouble;
 else
 Raise Exception.Create(’Unsupported type’)
 end;
end;

42Blaise Pascal Magazine 116 2023

ARTICLE PAGE 13 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

Finally, the DBFieldToField routine is used to write the content of a database field to
a field in the record. The TRttiField.SetValue method accepts a TValue, so the
routine starts by creating such a value from the database field:

Procedure TRTTIDBReader.DBFieldToField(DBData : TDataset; aData: Pointer;
 Fld: TRTTIField);
var
 V : TValue;
 DBField : DBFieldAttribute;
 DBFld : TField;
 FieldName, S : String;
 DT : TDateTime;
 U : UnicodeString;
begin
 FieldName:=Fld.Name;
 DBField:=DBFieldAttribute(Fld.GetAttribute(DBFieldAttribute));
 if Assigned(DBField) then
 FieldName:=DBField.Name;
 DBFld:=DBData.FieldByName(FieldName);
 Case DBFld.DataType of
 ftInteger,
 ftSmallint,
 ftWord : TValue.Make(DBFld.AsInteger,fld.FieldType.Handle,V);
 ftLargeInt : TValue.Make(DBFld.AsLargeInt,fld.FieldType.Handle,V);
 ftString :
 begin
 S:=DBFld.AsString;
 TValue.Make(@S,fld.FieldType.Handle,V);
 end;
 ftWideString:
 begin
 U:=DBFld.AsUnicodeString;
 TValue.Make(@U,fld.FieldType.Handle,V);
 end;
 ftDate
 ftTime,
 ftDateTime:
 begin
 DT:=DBFld.AsDateTime;
 TValue.Make(@DT,fld.FieldType.Handle,V);
 end;
 else
 Raise Exception.Create(’Unknown field type: ’+GetEnumName(TypeInfo(TFieldType),

end;
 Fld.SetValue(aData,V);
end;

Once the value is created, the Fld.SetValue copies the value to the appropriate record
field. With all this in place, the code to read a record from a database and write it out as a
JSON structure is as follows:

43Blaise Pascal Magazine 116 2023

ARTICLE PAGE 14 / 14EXTENDED RTTI SUPPORT IN FREE PASCAL

❽ CONCLUSION
The arrival of Extended RTTI in free pascal opens up new possibilities in Free Pascal and Lazarus:
as shown here, it is possible to create a functional JSON serialization and a mini ORM framework
with very little code. Needless to say, in a real world program some more
attributes will be needed, but the basic working would be as described here. Not in the
least, the arrival of Extended RTTI in Free Pascal will enable the use in Free Pascal of
similar such frameworks written for Delphi.

THE ARRIVAL OF
EXTENDED RTTI
IN FREE PASCAL
DOES ENABLE THE USE
OF FRAMEWORKS
WRITTEN FOR DELPHI.

Function LoadPerson(aID : Integer) : TPerson;
var Reader : TRTTIDBReader;
 Conn : TSQLConnection;
 P : TPerson;
 ReadOK : Boolean;
begin
 P.ID:=aID;
 conn:=GetConnection;
 try
 Reader:=TRTTIDBReader.Create(Conn);
 ReadOK:=Reader.ReadFromDB<TPerson>(P);
 if not ReadOK then
 Writeln(’Failed to read person’);
 Result:=P;
 finally
 Conn.Free;
 end;
end;

begin
 WriteJSON(LoadPerson(1));
end;

The same code could then be used to load and write all other objects. If we insert a record
in the database with the following SQL:
;
insert into people values (1,’Kirth’,’Gersen’,’1486-05-14’);

Then the output of our modified program will look exactly the same as figure 1 on page 9.

44Blaise Pascal Magazine 116 2023

BLAISE PASCAL MAGAZINE 116
Multiplatform / Object Pascal / Internet / JavaScript / Web Assembly

/ Pas2Js
Databases / CSS Styles / Progressive WebApps

Android / IOS / Mac Windows & Linux Blaise Pascal

SUBSCRIPTION
1 YEAR

€ 64,22 EX VAT
€ 70 INC VAT

ADVERTISEMENT

https://www.blaisepascalmagazine.eu/en/register/

45Blaise Pascal Magazine 116 2023

JUN 13-14 2024 | AMSTERDAM

Delphi Summit

Spinnekop 3, 1444 GN Purmerend, the Netherlands

46Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 3

WHEN WE WORKED FROM HOME
BY IAN BARKER, EMBARCADERO DEVELOPER ADVOCATE.

The global pandemic of 2020 was something that did so much damage. Lives lost,
livelihoods lost, in fact, a whole lot of loss. It's going to be written about in future history
books, for sure. Life changed too in a myriad of other ways. Many companies embraced
the concept of remote and work from home scenarios. Some out of a greed, or need, to
keep making money while the world learned that coughing hands that touch fruit touch
you, touch your workers, and eventually touch your finances. The majority, of course,
simply heeded scientific advice to stay away from each other, shun crowded public
spaces, and spurn the daily commute.

As COVID fades into history there’s a bit of reversal going on, particularly in the tech industry, with
‘adjustments to headcounts’ en masse. Many tech giants who had gushed worthily over allowing
staff to work from home, either permanently, or at least primarily, have since reneged on that idea
and have faltered on the altar of a corporate fundamental belief that in order to be efficient it’s
better to lump as many people as possible into a single physical space - the office.

The bigger the company the more likely they are to have a huge whale-like building which is
packed to the gills with people who could have regained a couple of hours of their personal time
by not being there and instead attend meetings virtually. It seems some lessons learned during The
Pandemic were very quickly forgotten.

47Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 3

SHAREHOLDERS SAY IN-PERSON IS BEST
If you are a software developer I guarantee you that you are no more efficient by having to
commute to an office and spend hours wedged in a cubicle on the off-chance that a meeting
might need to happen where your physical presence can in some way improve it. I say this as
a senior developer with nearly 40 years of experience at every single level for all sorts of
companies from tiny start-ups to Fortune 500 sprawling giants. Funny how the decision ‘in the
office not the home’ is often made by leaders who do not actually come into the building
where the great unwashed ply their trade or, indeed have what anyone would recognize as a
regular office job.

With the advent of capable meeting software such as Google Meet, Skype, Microsoft Teams,
Zoom, GoToMeeting and the many other competitors, combined with affordable high-quality
webcams and mics or headsets there is almost nothing that requires you to be physically
present if you are a software developer, designer, project manager, or QA. You’re not a baker,
you do not need to physically smell your products. You’re not a winemaker so there is no
need to tramp up and down acres of vines tutting loudly at soil moistures and the friability of
your terroir. Your job literally exists in the ether. You ARE The Matrix. That’s your proper place.

There are plenty of options too if it’s a matter of trust. Lots of apps which will assess your
worker’s activity, check they were not goofing off or ‘Netflix and chilling’ when they should
have been bug fixing. If you need to be a control freak geek boss there is a whole industry of
tattle tale software apps vying to be your number one spy master.

SOMETIMES YOU JUST NEED SWAG AND TO HANG OUT
But some things are better done in person and one of those got decimated by The Pandemic - the
in-person tech conference. You can attend any kind of virtual event you like but I can tell you for
sure that the casual connections you make with like-minded techies at play are much more
profound and long-lasting if they are in-person. Granted, as a species we geeks and nerds do have
a bit of a reputation for poor personal hygiene and a dress sense that could blind a unicorn at 100
metres but I think that’s mostly an undeserved thing…mostly.

As the world finally got on top of COVID we all returned to worrying about regular things like
nuclear war wiping us out instead of the unwashed handles of a grocery store door. Little by little
the in-person events have returned. Last October I got to go to the Foren Tage event in Germany.
Since then there has been a steady uptick in face-to-face meetings and conferences.

THE GLOBAL DELPHI SUMMIT 2024
If you can make it to Amsterdam on JUNE 13TH AND 14TH then I absolutely recommend you go to
the Global Delphi Summit organized by GDK Software and various sponsors including the ever-
wonderful Barnsten, and, of course, Embarcadero.

I will be there for both days, all day. I am presenting keynotes on day one and day two but I’ll also
be hanging out, meeting with you all and answering your questions where I can. The unmissable
Marco Cantú is presenting a special session and other well-known Delphi folk such as Dr Bob will
be around too. It’s going to be truly awesome.

I realize not everyone will be able to make it. I know how that feels, I’ve been in that position many
times too, and it’s painful. I will be streaming live throughout both days, and there will be an official
stream and recordings by the organizers too. If you are attending in June, come say hi.

48Blaise Pascal Magazine 116 2023

49Blaise Pascal Magazine 116 2023

50Blaise Pascal Magazine 116 2023

51Blaise Pascal Magazine 116 2023

52Blaise Pascal Magazine 116 2023

BY MARTIN FRIEBE

Starter Expert

THE LAZARUS DEBUGGER
PART 6: BREAKPOINTS – TO BREAK OR NOT TO BREAK

ARTICLE PAGE 1 / 6

WHEN THE TIME IS RIGHT
We have looked at breakpoints before. They give us the ability to run our app and break at any
suspicious code that we then want to inspect under the debugger.

But what if that code is in a loop, or called from within a loop?
The breakpoint will be hit in each iteration of the loop and the error may only happen after a great
many iterations. That could be hundreds of times for which we have to just press F9 to continue.
There are better ways to deal with that. We can tell the debugger when it should and when it
should not pause the app at a breakpoint.

The following app converts Hex numbers to integer, and we test it by calling the method with all
hex numbers from $000 to $FFF. The result must be the same as FPC’s build in “StrToInt”.

The app will print a lot of lines and then stop with

$0FE = 254
$0FF = 255
$100 = 265

1. program project1;
2. {$Mode objfpc}{$H+}
3.
4. uses SysUtils;
5.
6. function Hex2Int(h: string): integer;
7. const
8. c = '0123456789ABCDEF';
9. d: array [0..3] of integer = (1, 16, 265, 4096);
10. var
11. i, j: Integer;
12. begin
13. Result := 0;
14. for i := 0 to Length(h)-1 do begin
15. j := pos(h[Length(h)-i], c) - 1;
16. Result := Result + j * d[i];
17. end;
18. end;
19.
20. procedure Test;
21. var
22. t,t1,t2,t3: String;
23. i: Integer;
24. begin
25. for t1 in ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'] do
26. for t2 in ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'] do
27. for t3 in ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'] do
28. begin
29. t := t1+t2+t3;
30. i := Hex2Int(t);
31. WriteLn('$'+t, ' = ', i);
32. if i <> StrToInt('$'+t) then
33. exit;
34. end;
35. end;
36.
37. begin
38. Test;
39. readln;
40. end.

53Blaise Pascal Magazine 116 2023

ARTICLE PAGE 2 / 6

It should have run up to $FFF, but our Hex2Int returned the wrong value for $100.
Simply setting a breakpoint in Hex2Int will require us to continue 256 times before we get to that
value. So we need some other approach. The sample app of course is very simple, and we could
just start the loop at the value we need. But in a real life app, we may not have that option. So lets
pretend we have to run through all the iterations before we can debug the issue.
Following are 3 examples showing different ways to stop only in the buggy iteration. Each uses a
different property of the breakpoint. The properties can all be set in the following dialog:

The dialog itself can be opened from the context menu of each breakpoint in the editor, or from
the toolbar of the breakpoint window.

54Blaise Pascal Magazine 116 2023

ARTICLE PAGE 3 / 6

Option 1: Hit Count
In the example we can make use of the knowledge that it will happen in the 257th iteration. (For
cases were this isn’t known upfront, see the paragraph on “pass count” to find out how to get that number)
We will set a breakpoint at the start of Hex2Int on line 13. Then we go to the properties and set
“Hit Count” to 257.

This will skip the first 256 hits of the breakpoint, skipping the calculation for the values 0 to 255. Running the
application will take us to the breakpoint, we can evaluate “h” to see it contains the hex string `100`.

Now, we can fallback to the methods we have used in some of the previous articles.
Using stepping and watches we will find that it works fine for the lower 2 digits (both zero) at the end,
but then multiplies the “1” with 265. A simple typographical error, easy to fix. It should be 256.

9. d: array [0..3] of integer = (1, 16, 256, 4096);
After that, the application runs to the end, as it should.
 NOTE: For backends other than FpDebug the hit-count may be zero or one-based. It may need
 to be adjusted accordingly. Hit-Count is handled directly by the backend (gdb, lldb or FpDebug).

Option 2: Condition
An alternative approach is to use a condition in the breakpoint. Then we don’t need to know how
often it may be hit. All we need to have is the value of some variable or expression. In our case we
know that “h” must be ‘100’. We enter this in the properties:

Running the application with this breakpoint will take us to the same call of “Hex2Int”, with the
parameter “h” = ‘100’.

NOTE: Conditions in breakpoint may work different depending on the debugger backend.
 With FpDebug any Pascal expression should work. With other backends (gdb or lldb) the
 condition needs to be supported by each of those backends.
 Comparing strings does not work with either of them.
 Also depending on the backend, if an expression can not be computed, or does not return a
 boolean value, the debugger may either always stop (ignore the expression), or never stop
 (treat it as false). FpDebug will ignore such expressions.

In our case, all we needed was the condition. We reached the code in the state we were
interested in, on the very first hit for which the condition was true. In other cases conditions may
only test some aspect of the required state, and the breakpoint may still stop a couple of times
before the bug is reached. For this, conditions and hit-count can be combined.
Under FpDebug the hit count will be applied only against hits for which the condition was true.
So you could check if the first last in “h” was ‘0’ by setting the condition: h[3]=’0’ and the
Hit-Count=17, which would stop the 17th time that “h” ends with a ‘0’.

THE LAZARUS DEBUGGER
PART 6: BREAKPOINTS – TO BREAK OR NOT TO BREAK

55Blaise Pascal Magazine 116 2023

ARTICLE PAGE 4 / 6

Option 3: Let the caller decide
Sometimes, we don’t have a good condition to test for when the issue will arise. But we may know
it always happens when certain criteria are met in the caller or in some other code that is run
before the bug manifests. In such a case we need a breakpoint in that other code (in this example
in the caller) to evaluate the condition.

For this we need 2 breakpoints. The first one will be on line 13 as before. However, this time we will
set this breakpoint as disabled.

This breakpoint will not have a condition, nor will it have a Hit-Count. But we will assign it to a
group. We will use “h2i” as group name, so we can easily identify it as the group for the function
“Hex2Int”.

The second breakpoint goes into the caller. We will use it to hold the condition, and then to
activate the first breakpoint once the condition is met. That way, the app will eventually stop at
the first breakpoint, yet we can control when that will happen.

In the example we place that breakpoint at line 30.

We need to change a few of its properties. First we need to set a condition. After all it is in the loop,
and we don’t want anything to happen until we got the right data for the call that we want to debug.

And we also need to change what happens when this breakpoint’s condition is met. As already
mentioned, we want it to enable the other breakpoint. For that we check “Enable Groups” and enter
the name of the group we used for the first breakpoint.

But, that is not enough. After all, this is a breakpoint and as soon as the condition is met,
the application will get paused at it. Only we don’t want that, we only want to pause at the other
breakpoint. So we will uncheck the “break” property. This means the debugger will never pause
here, it will only perform any other action that the breakpoint has.

With this setup, we are ready to run the application. And again it will take us into “Hex2Int” and
pause when the arguments will trigger the bug.
 NOTE: Instead of using a condition in the second breakpoint, we could have used the Hit-Count.
 However, there is a bug that prevents this combination from working.
 So as of Lazarus 3.0 using Hit-Count and Enable-Groups together does not yet work.

THE LAZARUS DEBUGGER
PART 6: BREAKPOINTS – TO BREAK OR NOT TO BREAK

56Blaise Pascal Magazine 116 2023

ARTICLE PAGE 5 / 6

More breakpoint properties
As opportunity presents itself, lets take a look at the remaining properties for breakpoints. And also
have a short mention of the breakpoint window, which can be opened from the menu View �
Debug Windows � Breakpoints or using Ctrl-Alt-B

It provides an overview of all your breakpoints, and shows some of the properties you have set.
The image shows the 2 breakpoints from “Let the caller decide”. You can see the first breakpoint
has a group. And the second breakpoint has the “Enable Groups”, but not the “Break” action.
The overview however does not show, which groups it will enable.

The window also provides tool-buttons to access the property dialog, as well as adding, removing,
enabling and disabling breakpoints.

Hit Count and Pass Count
In the Breakpoint window we can see a column “Pass Count”. It is a simple counter how often the
breakpoint was hit. It only counts when the breakpoint is enabled. And depending on the backend,
only if the break-condition is met.

This is the value against which the configured Hit-Count is compared. The breakpoint will act
(that is pause, or perform whatever other action is configured) only if the Hit-Count is greater or
equal than the Pass-Count.

With the Pass-Count you have a simple counter how often a line gets executed. Simply uncheck the
“break” action, and watch the Pass-Count. Though, on very high frequented lines of code, even just
counting may introduce a noticeable slow down.
As an example getting such a count may be useful for the first example. If we hadn’t known how
often the breakpoint needs to be passed before the error happened,
then we could have used the Pass-Count.

“Break” and Auto Continue
The “Break” action we already used in the third example. By default it is set, and the breakpoint will
pause. If a breakpoint is set to perform other actions, then this can be unset. It can also be
unchecked without any other action in place, making the breakpoint a simple counter.

Another effect of unchecking this is that the IDE will not take focus when such a breakpoint is hit.
Together with “Take Snapshot” below, this can help debugging focus sensitive code.

“Auto continue” is similar, it will enter a pause state, but it wont transfer focus to the IDE.
It will wait the specified number of milliseconds and then continue with “run” (as if F9 was pressed).

Since “Auto continue” uses “run”, it will not work well, if you are stepping over a function,
and hit an “Auto continue” breakpoint in this function. It will turn the “Step Over” into “Run”.
Unchecking “Break” will not interfere with stepping.

On the other hand “Auto continue” waits a moment. So you could look at Watches, Locals or other
Windows that you have opened. And during the wait time you can also decide to hit the pause
button, which will stop the counter and pause the app until you continue it yourself.

THE LAZARUS DEBUGGER
PART 6: BREAKPOINTS – TO BREAK OR NOT TO BREAK

Enable and Disable Groups
Picking up from the earlier example, there are a few more details of interest.
In the example we placed the breakpoint with the “Enable-Groups” in the caller, but that isn’t a must.
Any breakpoint can enable or disable any other. So whenever your code does something that may
affect other code, you can enable or disable breakpoints in the affected places.

Most often, this is either done as a one-off enable, or enabling, disabling breakpoints exist in pairs.
Another helpful option is, that a breakpoint can disable itself. This may be useful if you have a breakpoint that
does log something or takes a snapshot. You might enable it from some other breakpoint, then it gets hit while
enabled, and disables itself. So the logging only happens once after each time that the code passed through
one of the breakpoints that will enable it.

You can have more than one breakpoint in each group, and a breakpoint can enable or disable several
groups. And breakpoints that are in a group can at the same time enable or disable other breakpoints. So
you can set up chains of enabling breakpoints.

Generally spoken, any breakpoint in a group is no different to any non-grouped breakpoints.
Whenever it is enabled, it can have conditions, Hit-Count and all else.

Eval Expression, Log Message, Log CallStack
Those 3 actions will log data to the Event-log. “Eval Expression” will interpret its input as watch.
“Log Message” will log the literal text.
You can find the event log in the menu View � Debug Windows � Event log or open it by pressing Ctrl-Alt-V.
The event log shows a variety of messages about the debugged process. Which messages are shown can be
decided in the options available via the context menu of the window. To see the log data from the
breakpoints you need to enable “Breakpoints” in the checklist-box of the options.

Take Snapshot
This option will add a “snapshot” (permanent) entry into the debug history. If a breakpoints doesn’t have this
option, then when it pauses the application (“break” enabled), it will add a non-permanent entry. With this
option the entry will be added to the list of permanent entries. And with this option, even a breakpoint that has
“break” disabled will record a snapshot. This is an important feature, if you need to debug anything that is
focus sensitive, or anything that would change behaviour if the IDE interrupted it for to long. (Mind, when
taking a snapshot, the application will still run slower, since the debugger needs some time to take the snapshot).

A snapshot contains: The thread window, the stack window with the top five stack-frames, the watches and
the locals window for the top stack frame of the current thread. It can contain more stack frames, if the stack
window is open and set to display more frames. But it will still only take watches and locals for the top frame.

We could have debugged our initial issue using this feature. If we had set breakpoints in the function Hex2Int
and collected snapshots without pausing, then once the application would have stopped with the wrong result,
we could have looked through the snapshots and would have seen what happened.

DEBUG HISTORY
Whenever the debugger pauses the application it displays information such as the stack, watches and locals,
and also a list of threads that the application has. The debug history keeps a copy of the data for the last 25
times the application paused.

Those entries are listed in the history window accessible from the menu View � Debug Windows � History
or via Ctrl-Alt-H. Selecting an entry in the window will make the Watches, Locals, Stack and Thread
window display the values from that entry instead of the current value.

If you need an entry to survive the 25 entry limit, you can press the “Add Snapshot” button. The entry will
then be kept until you either delete it or you finished debugging and start a new debug session.
The breakpoint option “Take snapshot” also adds such a permanent entry.

This allows to collect data and analyse it later. Some examples were this can be useful are:

● Debugging of focus sensitive applications, or apps that have a global mouse or keyboard hook and
 would behave differently if you would send key or mouse input to the IDE.
● Collecting data until an error happens. Then to go back and analyse what happened before the error.
● Saving collected debug data and send it to a co-worker for feedback.
 (The debug history window has an import/export function)
● Having some one else running your app in the debugger on their system. You would send them a
 project, with pre-configured breakpoints (taking snapshots, but not “break”-ing).
 And they would sent back the collected history.

57Blaise Pascal Magazine 116 2023

ARTICLE PAGE 6 / 6THE LAZARUS DEBUGGER
PART 6: BREAKPOINTS – TO BREAK OR NOT TO BREAK

BACKGROUND
In the realm of precision metalworking, the ability to accurately model and reproduce intricate
shapes and curves from a set of data points is crucial.
This challenge was presented to us when a client required software capable of driving a
metalworking machine to produce smooth, accurate curves based on sampled points.
It had to produce an output which was a smooth curve, based on a set of sampled points.
Having worked on similar problems before, I had a rough idea of how this should work
mathematically, but as is usually the case when developing software,
I was sure that someone else would have already solved this particular problem.

REQUIREMENTS
The primary goal was to develop software capable of generating a curve that closely fits a given set
of points. This task involved not only finding the best-fit curve but also enhancing its resolution.
This was achieved by introducing additional points, ensuring a high degree of smoothness.
For instance, transforming an input of 400 points into an output comprising 5,000 points that lie
precisely on the calculated curve.
This requirement is fundamental in applications where precision directly influences the final
product's quality, such as in metalworking.

Beginner Expert

ARTICLE PAGE 1 / 4CURVE FIT ON METAL
BY JAMES GOODGER

58Blaise Pascal Magazine 116 2023

RESEARCH
A quick Google search identified some possible Delphi solutions to this problem.
The one that looked most promising was the least squares curve fit unit by David Taylor:
https://www.satsignal.eu/software/components.html#CurveFit
This was a single Delphi unit that did not depend on third-party components and simply used the
System.Math unit.
The routine was written in Delphi 5, but the test project compiled in the latest version of Delphi
without any issues, as one would expect with a purely mathematical library.
The main procedure is listed o the next page : Article Page 2/5

https://www.satsignal.eu/software/components.html#CurveFit

ARTICLE PAGE 2 / 4

59Blaise Pascal Magazine 116 2023

procedure PolyFit (const x, y: array of real;
var coefs: array of real;
var correl_coef: real;
const npoints, nterms: Integer);

var
error: boolean;
i, j: integer;
xi, yi, yc, srs, sum_y,sum_y2: real;
xmatr: matrix; // Data matrix
a: matrix;
g: array of real; // Constant vector

begin
if nterms < 1 then
Raise EMathError.Create ('PolyFit called with less than one term');

if npoints < 2 then
Raise EMathError.Create ('PolyFit called with less than two points');

SetLength (g, nterms);
SetLength (a, nterms, nterms);
SetLength (xmatr, npoints, nterms);

for i := 0 to npoints - 1 do
begin { setup x matrix }
xi := x [i];
xmatr [i, 0] := 1.0; { first column }
for j := 1 to nterms - 1 do
xmatr [i, j] := xmatr [i, j - 1] * xi;

end;

square (xmatr, y, a, g, npoints, nterms);
GaussJordan (a, g, coefs, nterms, error);
sum_y := 0.0;
sum_y2 := 0.0;
srs := 0.0;

for i := 0 to npoints - 1 do
begin
yi := y [i];
yc := 0.0;
for j := 0 to nterms - 1 do

 yc := yc + coefs [j] * xmatr [i, j];
srs := srs + sqr (yc - yi);
sum_y := sum_y + yi;
sum_y2 := sum_y2 + yi * yi

end;

// If all Y values are the same, avoid dividing by zero
correl_coef := sum_y2 - sqr (sum_y) / npoints;
// Either return 0 or the correct value of correlation coefficient
if correl_coef <> 0 then correl_coef := srs / correl_coef;
if correl_coef >= 1
then correl_coef := 0.0
else correl_coef := sqrt (1.0 - correl_coef);

g := nil;
a := nil;
xmatr := nil;

end;

CURVE FIT ON METAL

ARTICLE PAGE 3 / 4

60Blaise Pascal Magazine 116 2023

USING THE LIBRARY
The core function of the selected library required inputs in the form of arrays of X and Y values,
along with a specification of the number of terms (degree of the polynomial) to use.
This aspect is critical as it determines the complexity and accuracy of the resulting curve.
A single term would generate a simple horizontal line, while increasing the terms introduces higher
degrees of polynomials, offering a more precise fit at the cost of computational complexity.

INPUTS
The main function accepts:

● An array of floating-point X values.

● An array of floating-point Y values.

● The number of terms to use.

The number of terms relates to the degree of the polynomial formula which will be used.
A single term equates to a horizontal line on a graph, e.g. y = 2
The use of two terms equates to a straight line on a graph, e.g. y = 3x + 2
Using three terms equates to a quadratic equation, e.g. y = 4x² + 3x + 2

OUTPUTS
The calculation function will populate an array of floating-point values which correspond to the
coefficients of the equation. For example, if we want to use three terms (a quadratic equation),
we can pass an array of three floating-point numbers. In the quadratic example above,
the coefficients would be 2, 3, and 4, respectively.
The calculation also returns a correlation coefficient, which tells us how closely the curve correlates
with the input points provided. The closer this coefficient is to 1, the more accurate the fit.

RESULTS
When using the library, unit tests were written using a set of test points provided by our customer.
The points provided were typical of the samples they would be using in production.

With these sample points, the most accurate curve was produced when calling the function with six
terms. This equates to a polynomial function of the fifth degree.

When using more than six terms, occasional floating-point overflow errors were produced,
presumably because the calculated coefficients were too small to be represented in a Double type
in Delphi.

When using fewer than six terms, the routine still calculated a curve of best fit, but of course,
the fit was not as accurate. With fewer terms, the correlation coefficient was lower.

With six terms, we received six coefficients back in the array provided to the function.

Once we have the coefficients, we can calculate the Y value for any value of X.
To achieve the desired curve, an array of 5,000 evenly spaced X points was calculated,
bounded by the maximum and minimum X values of the sample.

CURVE FIT ON METAL

function CalculateY(const X: Double; const Coefficients: TArray<Double>): Double;
begin
var yc := 0.0;
var xc := 1.0;

for var i := Low(Coefficients) to High(Coefficients) do
begin
yc := yc + Coefficients[i] * xc;
xc := xc * X;

end;

Result := yc;
end;

ARTICLE PAGE 4 / 4

61Blaise Pascal Magazine 116 2023

Here is a sample of some of the input points:

In the software, the resulting best-fit curve is calculated and overlaid over the points as follows:

CURVE FIT ON METAL

IMPLEMENTATION
The function uses a least-squares curve fitting algorithm using Gauss-Jordan elimination.
This is a well-known algorithm for finding a best-fit polynomial curve for a set of points.

CONCLUSION
We have seen that a mathematical library originally written in Turbo Pascal and early versions of
Delphi can be used in the latest versions of Delphi without modification.
This library can produce accurate and smooth curves for the best fit of a set of data points.
The higher the number of terms and hence the degree of the polynomial, the more accurate the fit.

62Blaise Pascal Magazine 116 2023

maXboxmaXbox

63Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 17
BY MICHAEL VAN CANNEYT

Starter Expert

ABSTRACT
Sending a message to a smartphone or a web application is part of many applications.
Usually these messages are sent by a background service. Free Pascal contains units with which
you can send Push notifications. A closer look.

❶ INTRODUCTION
There are times when you may wish to send a message to people in your community,
or your users, to notify them of an interesting or relevant event or a piece of news.

For the browser, there is a standard called ’WebPush’ which allows you to send messages to a
browser.
The browser keeps a background process (so-called service workers) running which listens for such
messages, and displays them when they arrive.

Smartphones have their own version of the messaging protocol:
depending on the OS (Android or iOS), the API is different.

Regardless of the platform, the mode of operation is the same:
The process starts by asking the user permission to show him or her notifications.
Once the permission is granted, the OS or the browser can subscribe to the push message service,
which returns a unique token that can be used to send messages to the device on which the user
granted permission. The token is valid till the user retracts his permission.

Google offers a service which allows you to use such a token to send a message, regardless of the
platform which issued the token: Firebase Cloud Messaging (FCM).
It allows you to send messages, and provides you with statistics on how the users reacted on your
messages.
This service can be accessed using a simple REST API.
Thanks to some generous sponsoring, Free Pascal contains a unit which allows you to use this API
without the need to worry about the details of the API.
In what follows, we’ll examine this unit.

❷ PREREQUISITES
Before we dive into the API, some preparations must be made. FCM is not a free service, and if you
plan to send a lot of messages, you will need to pay.
It should not come as a surprise that Google requires you to register the application that you wish
to use to send messages.
If you have not done this before, then you need to start by creating a Firebase project in the Google
Firebase console: (See page 2.of this article)
https://console.firebase.google.com/

PUSH NOTIFICATION SUPPORT
IN FREE PASCAL�

1

You will of course need to have a google account to log in to this service. Any valid Google account
can be used. The project dropdown contains a menu item to create a new project.
A complete walk through of the creation of a project is outside the scope of this article,
but the process is simple and well-documented elsewhere (although the details of the screens
change regularly).

When done, you should end up with something like figure 1 on page 2 of this article.

The next step is to register the application that will access the Google Firebase service.
Multiple applications can use the same Firebase Cloud Messaging project, and you should register
them separately:
On the page shown in figure 1 on page 2 of this article you can see a button with which you can
create a new application.

Figure 1: A finished firebase project

64Blaise Pascal Magazine 116 2023

ARTICLE PAGE 2 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL�

❷ PREREQUISITES

The application definition is important: when the application is created, you can download a JSON
application configuration file which you need to use when accessing the Google FCM APIs:
among other things it contains a unique project identifier.
The file contents will look something like this:

{ apiKey: "XYZ",
 authDomain: "fpc-fcm-demo.firebaseapp.com",
 projectId: "fpc-fcm-demo",
 storageBucket: "fpc-fcm-demo.appspot.com",
 messagingSenderId: "123",
 appId: "1:123" }

Figure 2: Cloud Messaging page with VAPID Key

65Blaise Pascal Magazine 116 2023

ARTICLE PAGE 3 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL�

❷ PREREQUISITES

66Blaise Pascal Magazine 116 2023

ARTICLE PAGE 4 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

If you wish to send messages to users in the browser, you will need a VAPID key.
This is a special key identifying your browser application, and is required by the WebPush protocol
that is used by Firebase to send messages to the browser.

When your Firebase project is created, you can get a VAPID key from the project page on the
’Cloud Messaging’ page (see figure 2 on page 3), below ’Web Push Certificates’.

The public key needs to be copied, as it will have to be used in the browser.

The last step is to create a Service Account:
The service account is needed to actually send messages. This account is used to get an access token
for authenticating the requests to the Firebase HTTP send REST APIs. You can get the service account private
key on the ’Service accounts’ page from your project, shown in figure 3 on page 5 of this article.

Just like the application info configuration file, you need to download the service account info file,
and save it somewhere on your harddisk. It should look something like the following:

When all these steps are completed, you have all information to get started.

❸ THE MESSAGE OBJECT
To send a message to the Firebase Cloud Messaging APIs means to send a JSON object.
The following page describes the message that can be sent:

The fpfcmtypes unit contains an Object Pascal class definition that offers you all the fields present
in the specification. This has the advantage that you can use code completion.

https://firebase.google.com/docs/reference/fcm/rest/v1/projects.messages#resource:-message

TNotificationMessage = class(TJSONPersist)
public
 procedure ToJSON(aObj : TJSONObject);
 function Encode : string;
 procedure Clear;
 // toplevel properties, valid for all platforms.
 // Notification data.
 Property Recipient : String;
 Property RecipientType : TRecipientType;
 property Data: TStrings;
 property Title: string;
 property Body: string;
 property Image: string;
 // available in Apple and Android, not in web.
 Property Options: TMessageOptions;
 Property SendOptions : TNotificationSendOptions;
 // Apple specific
 Property AppleConfig : TAppleConfig;
// Android specific
 Property AndroidConfig : TAndroidConfig;
// Web specific
 Property WebPushConfig : TWebPushConfig;
// FCM options
 Property FCMOptions : TFCMOptions;
end;

{ "type": "service_account",
 "project_id" : "fpc-fcm-demo",
 "private_key_id": "123456789",
 "private_key" : "XXXYYYZZZ",
 "client_email" : "firebase-adminsdk@gserviceaccount.com",
 "client_id" : "987654321",
 "auth_uri" : "https://accounts.google.com/o/oauth2/auth",
 "token_uri" : "https://oauth2.googleapis.com/token",
 "auth_provider_x509_cert_url":
 "https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "https://www.googleapis.com/",
 "universe_domain": "googleapis.com" }

�
❷ PREREQUISITES

67Blaise Pascal Magazine 116 2023

ARTICLE PAGE 5 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

Figure 3: The service account info page

The meaning of the Recipient, Title , body and Image properties should be intuitively clear.
The RecipientType property is of type TRecipientType and can be one of
rtToken, rtTopic, rtCondition:
you can send messages to one person, or multiple persons.

The AppleConfig, AndroidConfig, WebPushConfig and FCMOptions contain specific
configuration options which FCM will use when sending the message to one of these platforms.

For day-to-day use you will probably not need to set these, but they are all detailed in the
webpage above:
the properties of these objects reflect the properties specified in the specification.

�
❸ THE MESSAGE
 OBJECT

68Blaise Pascal Magazine 116 2023

ARTICLE PAGE 6 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

The SendOptions property is a set which tells the message object which of these optional
configuration parts it should include in the JSON message.

Once you have filled the object properties, the Encode function will return a string that contains
the JSON message to send to the FCM server. The Clear method will clear all properties.

So, to send the same message to multiple users, you fill the message properties,
and in a loop set the recipient, retrieve the JSON and send the JSON to the FCM server.

❹ THE CLIENT OBJECT
The fpfcmclient unit contains the TFCMClient object. This class is the client used
to communicate with the FCM server. It takes care of authentication and sending
the message. The class does not have a lot of methods or properties:

TFCMClient = class(TComponent)
Public
 Procedure InitServiceAccount(const aFileName: string;

aRoot: TJSONStringType);
 Procedure InitServiceAccount(const aJSON : TJSONObject);
 function Send(aMsg : TNotificationMessage; aRecipient : UTF8String) : Boolean;
 function Send(aMsg : TNotificationMessage; aRecipients :

Array of UTF8String) : Boolean;
 Property WebClient : TAbstractWebClient;
 Property BearerToken: TBearerToken;
 Property ServiceAccount: TServiceAccountData;
 Property LogFile: String;
 Property OnError: TFCMErrorEvent;
 Property OnNewBearerToken : TFCMBearerTokenEvent;
 Property OnResponse: TFCMResponseEvent;
end;

The properties are quite simple:

WebClient
 This can be set to an instance of an abstract TWebClient class.
 This class abstracts away the details of the HTTP protocol, we’ll show how to use this.
 If you don’t set it, then the TFCMClient class will create a default instance.

BearerToken
 The bearer Authentication token to be used in the next HTTP request.
 You can set this if you stored it somewhere. If none was set or the token is expired,
 a bearer token will be fetched as needed using the service account details.

ServiceAccount
 This property provides read-only access to the Service account data.
 This property must be initialized with the InitServiceAccount method.

LogFile
 Set this property to the name of a file if you want a log of the HTTP communications with
 google FCM servers: all headers and bodies of request and response will be written to this file.

The following events are fully optional:

OnError
 You can set this event if you wish to handle errors yourself. If not set, an exception is raised on error.

OnNewBearerToken
 as mentioned before, a bearer token will be fetched as needed using the service account details.
 This event is called when a new access token was received. You can use it to store it for the next call.

OnResponse
 this event is called with the send response: you can store the response in a database if you so desire.

�
❸ THE MESSAGE
 OBJECT

69Blaise Pascal Magazine 116 2023

ARTICLE PAGE 7 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

The class has only 2 public methods:
InitServiceAccount You can call this with the name of a file and an optional path to a root
element. This will initialize the ServiceAccount data. The file to provide is the service account
configuration file you downloaded when you set up the service account. You can also obtain the
JSON data by some other means and directly provide the JSON data.
Send This will send the message to the the FCM server using the HTTP REST Api. You can specify
one or multiple recipients. The Recipient field of the message will be filled with each of the
specified recipients, and the message will be sent. The function returns True if the message was
sent successfully (if you don’t handle errors using OnError, an exception is raised when something
goes wrong.)

Armed with this class, how can we send a push notification ? Quite simply.
To demonstrate this, We create a console application based on TCustomApplication. In its
DoRun method, we enter the following code:

Recip :=GetOptionValue(’r’,’recipient’);
Msg :=nil;
Client :=TFCMClient.Create(Self);
Try
 ConfigureClient(Client);
 Msg :=TNotificationMessage.Create;
 ConfigureMessage(Msg);
 Client.Send(Msg,Recip);
Finally
 Msg.Free;
 Client.Free;
end;

The most work happens in the ConfigureClient and ConfigureMessage calls:
To configure the client, we need several items, all of which will be provided through the
command-line options of our program. The first thing is to initialize the service account.
The file with the service account information can be specified using the -s command-line option,
but a default filename is used if it was not specified:

procedure TFCMApplication.ConfigureClient(aClient : TFCMClient);
const Err = ’No service account configuration file found: %s’;
var CfgFile : string;

begin
 // Service account info
 CfgFile:=GetOptionValue(’s’,’service-account’);
 if CfgFile=’’ then
 CfgFile:=ChangeFileExt(ParamStr(0),’-service-account.json’);
 if not FileExists(CfgFile) then
 Raise EInOutError.CreateFmt(Err,[CfgFile]);
 aClient.InitServiceAccount(CfgFile,’’);
 // Access token reuse
 if HasOption(’a’,’access-token’) then
 begin
 FAccessTokenFile:=GetOptionValue(’a’,’access-token’);
 // Load initial token
 if FileExists(FAccessTokenFile) then
 aClient.BearerToken.LoadFromFile(FAccessTokenFile);
 // Set handler so we save the token when it was fetched.
 aClient.OnNewBearerToken:=@DoHandleNewToken;
 end;
 // Log file
 if HasOption(’l’,’log’) then
 aClient.LogFile:=GetOptionValue(’l’,’log’);
end;

�
❹ THE CLIENT OBJECT

70Blaise Pascal Magazine 116 2023

ARTICLE PAGE 8 / 17

As you can see, the message file is a simple JSON file with 3 keys: title, body and image.
With that, the client is almost ready to be used. There is one small detail to take care of:
the WebClient property is not set anywhere. The TFCMClient class will then create a default
webclient. The default webclient needs to be configured, and this can be done by adding the
following units to the uses clause:

PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

Using the -a option you can specify the bearer token:
the bearer token record has a method to load the token from file, or to save it to file. you can use
these methods to reuse the same token. Normally a token has a life time of about 1 hour, after
which a new token must be fetched. Lastly the log file can be set using the -l option.
The DoHandleNewToken method is called when a new token is requested. In this
method, the token can be saved to file:

procedure TFCMApplication.DoHandleNewToken(Sender: TObject;
 const aToken: TBearerToken);

begin
 aToken.SaveToFile(FAccessTokenFile);
end;

The ConfigureMessage method sets the properties of the notification message.
You can specify a JSON file to load the message from (using the -m option).
Or you can specify the message body, title and image with the -b, -t -i options, respectively.

procedure TFCMApplication.ConfigureMessage(Msg : TNotificationMessage);
begin
 if HasOption(’m’,’message’) then
 LoadMessageFromFile(Msg,GetOptionValue(’m’,’message’));
 if HasOption(’t’,’title’) then
 Msg.Title :=GetoptionValue(’t’,’title’);
 if HasOption(’b’,’body’) then
 Msg.Body :=GetoptionValue(’b’,’body’);
 if HasOption(’i’,’image’) then
 Msg.Body :=GetoptionValue(’i’,’image’);
end;

The LoadMessageFromFile is again quite simple:

procedure TFCMApplication.LoadMessageFromFile(Msg : TNotificationMessage;
const aFileName : string);

Var
 F : TFileStream;
 D : TJSONData;
 Obj : TJSONObject absolute D;

begin
 D:=Nil;
 F:=TFileStream.Create(aFileName,fmOpenRead or fmShareDenyWrite);
 try
 D:=GetJSON(F);
 if not (D is TJSONObject) then
 Raise EFCM.CreateFmt(’Invalid JSON data in message file %s’,[aFileName]);
 Msg.Title :=Obj.Get(’title’,Msg.Title);
 Msg.Body :=Obj.Get(’body’,Msg.Body);
 Msg.Image :=Obj.Get(’image’,Msg.Image);
 finally
 D.Free;
 F.Free;
 end;
end;

�
❹ THE CLIENT OBJECT

71Blaise Pascal Magazine 116 2023

ARTICLE PAGE 9 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

fphttpwebclient
 this sets the default web client to a class based on TFPHTTPClient;
opensslsockets
 this enables support for HTTPS for TFPHTTPClient. HTTPS is needed to communicate
 with the FCM services.

Additionally, in the program start code, we need to add the following line:

DefaultWebClientClass:=TFPHTTPWebClient;

This will instruct the TFCMClient class to use the TFPHTTPWebClient class when
creating a TWebClient instance.

With this code in place
(plus some helper code to show a usage message and some checks for the command-line options),
the program can be executed from the command-line as follows:
sendmsg -m message.json -s service.json -a token.json -r TOKEN

Here TOKEN needs to be replaced with a token obtained by asking the user for
permission to send him (or her) a message. The service account data will be loaded
from file service.json (which you should have downloaded using the FCM project
console).

The message is specified in the file message.json:

{

"title" : "A nice message",

"body" : "With a nice body",

"image" : "https://www.freepascal.org/favicon.png"

}

If you specify the command several times with different recipient tokens, you’ll see that the token is
saved in the token.json file and reused for the next calls.

❺ OBTAINING A TOKEN USING A WEBSITE
In the above, we have not shown how to get a token for sending a message to a user, we assumed
it was available. In practice, this token must be obtained from the user by asking his permission to
send him messages. This is a function that is available in mobile operating systems and in the browser.

We’ll use PAS2JS to demonstrate how to get such a token and use it to send a message to the browser.
The browser has a simple interface to show notifications, which is - unsurprisingly - called Notification
and which is detailed here:

https://developer.mozilla.org/en-US/docs/Web/API/notification

The method to request permission to show notifications is
- can it be more simple? - called requestPermission.

When called, the browser will pop up a message asking for your permission to show you your notifications.
The return value is a Promise, which will be fulfilled when the user has granted (or denied) the permission.
After obtaining permission, you can get the token that you can use to send messages.
To do this, the Push manager can be used:

https://developer.mozilla.org/en-US/docs/Web/API/PushManager

The subscribe call will result in a subscription, which can be converted to a token.
The developers of Firebase have created a little API layer around this call, and we will follow their
guidelines to get and use a token. This is a simple precaution: in fact it is not clear from the Firebase
documentation whether Firebase simply uses the raw token obtained from the browser or adds
some information to it which it needs to deliver the message.

The Firebase Cloud Messaging API has been made available in the firebaseapp unit.
We will use it to get a token, and we’ll send this token to a small HTTP server application, which will
use it to send a Push notification using the TFCMClient component presented above.

�
❹ THE CLIENT OBJECT

72Blaise Pascal Magazine 116 2023

ARTICLE PAGE 10 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

So, to this end, we create a new ”Web Browser Application” project in Lazarus.
This will create a HTML page and a program file. In the HTML page, some files need to be added to
be able to use the firebase API:

<script src="firebase-app-compat.js"></script>
<script src="firebase-messaging-compat.js"></script>

These files can be downloaded from the firebase site, as described under:

https://firebase.google.com/docs/web/alt-setup

We’re using the compatibility layer (because that is what is described in the firebaseapp unit),
but it would also be possible to use the modular API.

To initialize a Firebase application, the application configuration file which you created and
downloaded when you defined your project in the Firebase console needs to be used.
You can include the JSON object definition in the application code, but you can also put it in a file
on your HTTP server:

var firebaseConfig = {
authDomain: "fpc-fcm-demo.firebaseapp.com",
projectId: "fpc-fcm-demo",
storageBucket: "fpc-fcm-demo.appspot.com",
messagingSenderId: "123",
appId: "1:123"
};

You can then include this file (we’ll name it config.js) in the main HTML File of your project
together with the include of your project file:
<script src="config.js"></script>
<script src="webclient.js"></script>

The rest of the HTML is quite simple:
we add 1 edit control (edtMessage) and 2 buttons (btnSend and btnRegister) to the HTML,
plus some DIV tags to display the token and some output of the program.

<div class="container">
 <div class="box">
 <h3 class="title is-3">FCM Push notification demo</h3>
 <div class="field">
 <label class="label">Message to send:</label>
 <div class="control">
 <input id="edtMessage" class="input" type="text" placeholder="Message to send">
 </div>
 </div> <!-- .field -->

 <div class="field is-grouped">
 <div class="control">
 <button id="btnSend" class="button is-link" disabled>Send</button>
 </div>
 <div class="control">
 <button id="btnRegister" class="button is-link is-light">Register</button>
 </div>
 </div> <!-- .field -->
 </div> <!-- .box -->
 <div id="pnlToken" class="box is-hidden">
 <p>Your token: ? <p>
 </div> <!-- .box -->
</div> <!-- .container -->
<script>
rtl.run();
</script>
<div id="pasjsconsole"></div>

❺ OBTAINING A TOKEN
 USING A WEBSITE

The pasjsconsole element is where WriteLn feedback will be displayed.
The application code is in a TDemoApp class, a descendent of the TBrowserApplication
class that comes standard with Pas2JS. When the application starts, the DoRun
method is called. In it, the following code is executed to initialize some fields representing
the various div HTML elements and the buttons. For the latter it also sets the click callbacks:

�

73Blaise Pascal Magazine 116 2023

ARTICLE PAGE 11 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

var config : TJSObject; external name ’firebaseConfig’;
procedure TDemoApp.DoRun;
begin
 RPCModule :=TRPCModule.Create(Self);
 pnlToken :=GetHTMLElement(’pnlToken’);
 lblToken :=GetHTMLElement(’lblToken’);
 edtMessage :=TJSHTMLInputElement(GetHTMLElement(’edtMessage’));
 btnSend :=TJSHTMLButtonElement(GetHTMLElement(’btnSend’));
 btnSend.addEventListener(’click’,@HandleSend);
 btnRegister :=TJSHTMLButtonElement(GetHTMLElement(’btnRegister’));
 btnRegister.addEventListener(’click’,@HandleRegister);
 Writeln(’Initializing application...’);
 App:=Firebase.initializeApp(config);
 App.messaging.onMessage(@HandleReceivedMessage);
 RegisterServiceWorker;
end;
The last lines initialize the Firebase API using the config object from our config.js file, and sets the
OnMessage event handler of the firebird messaging API. The OnMessage event can be used to react
to messages. Here we’ll just display the notification message by creating a TJSNotification instance:

procedure TDemoApp.HandleReceivedMessage(aMessage: TJSObject);
var
 Notif : TJSObject;
 Opts : TJSNotificationOptions;
begin
 if assigned(aMessage) then
 console.debug(’Message received: ’,aMessage);
 Notif :=TJSObject(aMessage[’notification’]);
 Opts :=TJSNotificationOptions.new;
 Opts.body :=string(Notif[’body’]);
 Opts.image :=string(Notif[’image’]);
 TJSNotification.new(string(Notif[’title’]),opts);
end;
We can do this because we requested permission from the user to display notifications.
Note that when the webpage is not loaded and focused, the service worker will display the message
(also using the Notification API of the browser).
The last step when initializing the application is to register a service worker script:

procedure TDemoApp.RegisterServiceWorker;
begin
 Window.Navigator.serviceWorker.register(’firebase-messaging-sw.js’).
 _ then(function (js : JSValue) :JSValue

begin
 reg:=weborworker.TJSServiceWorkerRegistration(js);
 if assigned(Reg) then
 Writeln(’Registered service worker...’)
 end,function (js : JSValue) :JSValue
 begin
 Writeln(’Unable to register service worker’)
 end);
end;
In the above code, the service worker script is called ”firebase-messaging-sw.js”, it can be
downloaded from the Firebase documentation pages. The register method returns a promise,
which resolves to a service worker registration object. Here we just save the registration in the reg
field for later use, and display a message to show whether the service worker was successfully registered or not.

For more elaborate web pages, more things can be done once the service worker is registered,
such as establishing a message channel between the service worker and the main web page.
For our current example, this is not needed. A service worker is a small service, maintained by the
browser: It will run in the background, and one thing it can do is to listen for incoming messages -
exactly what it needs to do for our demo.

The service worker script does not do much, except initializing the firebase messaging application:

❺ OBTAINING A TOKEN
 USING A WEBSITE

�

74Blaise Pascal Magazine 116 2023

ARTICLE PAGE 12 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

importScripts(’https://www.gstatic.com/firebasejs/9.2.0/firebase-app-compat.js’);
importScripts(’https://www.gstatic.com/firebasejs/9.2.0/firebase-messaging-compat.js’);
importScripts(’config.js’);
firebase.initializeApp(firebaseConfig);

With all this, the browser application is ready to receive push messages.
To get a Firebase messaging token, the user must click the ’Register’ button. In the ’click’ handler of
the register button (HandleRegister), the service worker registration which we saved earlier is
passed on to the getToken call of the Firebase messaging API to get a Firebase messaging token.

The TMessagingGetTokenOptions object has a serviceworkerRegistration field:
When set, the firebase API knows which service worker will be handling the receipt of messages.
Additionally, the vapidkey field must be set to the VAPID key you created when the Firebase
project was created. The VAPIDKey constant (not shown here) contains this key.

TFirebaseMessaging = class external name ’firebase.messaging.Messaging’ (TJSObject)
function getToken (options : TMessagingGetTokenOptions): string; async;
end;

procedure TDemoApp.HandleRegister(event: TJSEvent);
var
 Token : string;
 opt : TMessagingGetTokenOptions;
begin
 opt:=TMessagingGetTokenOptions.New;
 opt.serviceworkerRegistration:=self.Reg;
 opt.vapidKey:=TheVAPIDKey;
 Token:=Await(App.messaging.getToken(opt));
 if (token=’’) then
 RequestPermission
 else
 HaveToken(token);
end;
The GetToken call is an Async call, so it returns a promise. Using the Await builtin, we can
transform it to an actual token string. If the token string is empty, the firebase API does not yet
have a token, and we must request the user his or her permission to show notifications. If a non-
empty token is returned, we can send it to the server. This is done using the RequestPermission
and HaveToken calls, respectively:

procedure TDemoApp.requestPermission;
 function onpermission (permission : jsvalue) : jsvalue;
 var
 token : string;
 begin
 if (permission=’granted’) then
 begin
 writeln(’Notification permission granted.’);
 handleregister(nil);
 end;
 end;
begin
 Writeln(’Requesting permission...’);
 TJSNotification.requestPermission()._then(@OnPermission)
end;

The RequestPermission class method of TJSNotification is a method of the browser.
Since the request for permission can take a while, the result of the call is a promise:
When the user reacted to the prompt for permission to send messages, the promise resolves to a
string that contains the decision of the user: permission is granted or denied.
When permission is granted, the HandleRegister method is again called: in that case,
the Firebase messaging API’s getToken method will succeed and the token will be sent to the
HaveToken call. This call shows the token in the HTML, and sends the token to our application
server:

❺ OBTAINING A TOKEN
 USING A WEBSITE

�

75Blaise Pascal Magazine 116 2023

ARTICLE PAGE 13 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

procedure TDemoApp.HaveToken(aToken : string);
begin
 Showtoken(aToken);
 Sendtoken(aToken);
 btnSend.disabled:=False;
 btnRegister.disabled:=False;
end;
The ShowToken is easy, it sets the inner text of the DIV element with id lblToken:
procedure TDemoApp.ShowToken(aToken : string);
begin
 pnlToken.classlist.remove(’is-hidden’);
 lblToken.innerText:=aToken;
 Writeln(’Received token: ’,aToken);
end;

The SendToken uses a JSON-RPC call RegisterSubscription to send the token to our application server :

procedure TDemoApp.SendToken(aToken : string);
 procedure DoOK(aResult: JSValue);
 begin
 Writeln(’Registered token on server’);
 end;
 procedure DoFail(Sender: TObject; const aError: TRPCError);
 begin
 Writeln(’Failed to register token on server: ’+aError.Message);
 end;

 begin
 Writeln(’Sending token to server: ’,aToken);
 RPCModule.Service.RegisterSubscription(aToken,@DoOK,@DoFail);
 end;

❺ OBTAINING A TOKEN
 USING A WEBSITE

The result of this code can be seen in figure 4 on page 14 of this article.
Once the token has been obtained and was successfully sent to the server, the user can use the
Send button to send a message to himself. In a real application, the messages will of course be sent
by the server in response to some external event. The event handler of the Send button is
HandleSend: This method constructs a small JSON object with the data for the message.

�

Figure 4: Obtaining and registering the token

76Blaise Pascal Magazine 116 2023

ARTICLE PAGE 14 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

procedure TDemoApp.handlesend(event: TJSEvent);

 procedure DoOK(aResult: JSValue);
 begin
 Writeln(’Message transferred to server for sending’);
 end;
 procedure DoFail(Sender: TObject; const aError: TRPCError);
 begin
 Writeln(’Failed to transfer message to server for sending: ’+aError.Message);
 end;
var Msg : TJSObject;
begin
 Msg:=New([
 ’title’,’Free Pascal FCM demo’,
 ’body’,edtMessage.Value,
 ’image’,’https://www.freepascal.org/favicon.png’
]);
 Writeln(’Sending message : ’,TJSJSON.stringify(Msg));
 RPCModule.Service.SendNotification(Msg,@DoOK,@DoFail);
end;

�
NOTE that the format of the message object is the same as the one we used to send a message
using the command-line utility presented earlier. When the message object is constructed,
the handler uses the SendNotification JSON-RPC call to send the message to our application server:

This concludes the interactive part of the application.
The application server exposes a small JSON-RPC service. As shown in previous articles about
PAS2JS and its support for JSON-RPC, a unit with the proxy object for this JSON-RPC server can be
generated automatically (the unit is called service.messagingserver).
The generated proxy object has the following declaration:

TMessagingService = Class(TRPCCustomService)
Protected
 Function RPCClassName : string; override;
Public
 Function SendNotification (Message : TJSObject;
 aOnSuccess : TJSValueResultHandler = Nil;
 aOnFailure : TRPCFailureCallBack = Nil) : NativeInt;
 Function RegisterSubscription (Token : String;
 aOnSuccess : TJSValueResultHandler = Nil;
 aOnFailure : TRPCFailureCallBack = Nil) : NativeInt;
end;
An instance of this proxy object is created on a RPCModule datamodule, which is
implemented in the module.messagingservice unit:

TRPCModule = class(TDataModule)
 Client: TPas2jsRPCClient;
 procedure DataModuleCreate(Sender: TObject);
private
 FService: TMessagingService;
public
 Property Service : TMessagingService Read FService;
end;

The data module has a TPas2JSRPCClient component on it, and the proxy object is created in
the OnCreate event of the RPCModule datamodule, and connected to the RPCClient object:

procedure TRPCModule.DataModuleCreate(Sender: TObject);
begin
 FService:=TMessagingService.Create(Self);
 FService.RPCClient:=Client;
end;

With that, our web application is finished.

❺ OBTAINING A TOKEN
 USING A WEBSITE

77Blaise Pascal Magazine 116 2023

ARTICLE PAGE 15 / 17

❻ SENDING A MESSAGE FROM AN APPLICATION SERVER
In the above, we created a web page that is set up to receive and display push notifications.
The actual notifications are sent by a HTTP application server:
The demonstration application server is a simple HTTP application. It exposes a JSON-RPC service,
which is implemented in a unit module.rpc. The actual handling of the RPC calls is implemented in
the module.messaging unit, by 2 TJSONRPCHandler objects called RegisterSubscription
and SendNotification.
The OnExecute event handler of the RegisterSubscription object is quite simple:
it extracts the token from the JSON data passed from the browser:

procedure TdmMessaging.RegisterSubscriptionExecute(Sender: TObject;
 const Params: TJSONData;
 out Res: TJSONData);
var
 Parms: TJSONArray absolute params;
 aToken : UTF8String;

begin
 If Parms.Count<>1 then
 Raise Exception.Create(’Invalid param count’);
 If Parms[0].JSONType<>JTString then
 Raise Exception.Create(’Invalid param type for token’);
 aToken:=Parms[0].AsString
 SaveToken(aToken);
 Res:=TJSONBoolean.Create(True);
end;

When the call to the Savetoken method returns, a result is sent back to the browser.
The SaveToken method uses a simple stringlist, which it loads from file, adds the token to and
saves again in the file:

procedure TdmMessaging.SaveToken(const aToken : UTF8String);
var
 L : TStrings;
 FN : String;
begin
 FN:=DeviceTokensFileName;
 L:=TStringList.Create;
 try
 if FileExists(FN) then
 L.LoadFromFile(FN);
 L.Add(aToken);
 L.SaveToFile(FN);
 finally
 L.Free;
 end;
end;

The DeviceTokensFileName function returns the name of the file in which tokens
must be saved, the details of this function are in the source code of this application.
The handling of the SendNotification message does something similar: it extracts
the data from the JSON object passed from the client to fill the TNotificationMessage
object:

PUSH NOTIFICATION SUPPORT
IN FREE PASCAL�

78Blaise Pascal Magazine 116 2023

ARTICLE PAGE 16 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL

procedure TdmMessaging.SendNotificationExecute(Sender: TObject;
 const Params: TJSONData;
 out Res: TJSONData);
var
 Parms : TJSONArray absolute params;
 Obj : TJSONObject;
 Msg : TNotificationMessage;

begin
 If Parms.Count<>1 then
 Raise Exception.Create(’Invalid param count’);
 If Parms[0].JSONType<>jtObject then
 Raise Exception.Create(’Invalid notification’);
 Obj:=Parms.Objects[0];
 Msg:=TNotificationMessage.Create;
 try
 Msg.Title :=Obj.Get(’title’,Msg.Title);
 Msg.Body :=Obj.Get(’body’,Msg.Body);
 Msg.Image :=Obj.Get(’image’,Msg.Image);
 SendMessage(Msg);
 Res:=TJSONBoolean.Create(True);
 finally
 Msg.Free;
 end;
end;

When the message object is filled with the data from the webpage, it is passed on
to the SendMessage method, and a result is sent back to the browser.
The SendMessage method does the actual work of sending the push notification
message with the TFCMClient class. It starts by loading the last token from the
token file created by the RegisterSubscription call:

procedure TdmMessaging.SendMessage(Msg : TNotificationmessage);
var
 Sender : TFCMClient;
 aConfig, aToken : String;

begin
 aToken:=LoadLastToken;
 Sender:=TFCMClient.Create(Self);
 try
 aConfig:=GetServiceAccountFileName;
 Sender.LogFile:=GetLogFileName;
 Sender.InitServiceAccount(aConfig,’’);
 Sender.OnNewBearerToken:=@HandleNewAccessToken;
 if FileExists(AccessTokenFile) then
 Sender.BearerToken.LoadFromFile(AccessTokenFile);
 Sender.Send(Msg,aToken);
 finally
 Sender.Free;
 end;
end;

The HandleNewAccessToken method (used to save the access token) is identical to the one in
our command-line utility.
All that remains to be done is to add the units that set the default WebClient class to use.

After that, our application is finished.
It should be clear that other than saving and loading the token from a file, this application server
code is not substantially different from the code in the command-line utility we constructed earlier.

❻ SENDING A
 MESSAGE FROM AN
 APPLICATION
 SERVER

�

79Blaise Pascal Magazine 116 2023

ARTICLE PAGE 17 / 17PUSH NOTIFICATION SUPPORT
IN FREE PASCAL�

To run this example, you must follow the following steps:

● Make sure the service account file is located next to the HTTP server program (messageserver)
 with the correct name: messagserver-serviceaccount.json.

● Start the messageserver HTTP server program.

● Make sure the config.js file is properly set up as described above, as well as
 the firebase Javascript files.
● Start the web-based client program in the browser.
 To do so, for example in Lazarus, just press F9 to run it, and it should open in the browser.

● In the Firefox browser, make sure the developer tools console is opened (press F12), and set the
 ’Enable service workers over HTTP (when toolbox is open)’ in the toolbox settings.
 This step is only necessary for testing:
 if you host the page on a HTTPS website, then service workers will automatically be allowed.

● Press the register button in the website.
 You should see a confirmation message as in figure 4 on page 16 of this article.

● Type some nice message and press ’Send’.

The result should look like figure 5 on page 17. Note that due to the particular desktop manager of
the author, the icon is not shown in the picture. If you noted the token, you should also be able to
send a message to the same browser using the command-line tool.

❻ SENDING A MESSAGE
FROM AN APPLICATION
SERVER

Figure 5: Receiving the message

❼ CONCLUSION
In this article we showed that sending push notifications to a user is not so difficult to do. In
fact, more time is spent on setting up all the necessary files and configuring the project on
firebase, than on actually coding the application. The sending of messages made use of FCM -
Firebase Cloud Messaging. It is possible to do the same without Firebase, by using the WebPush
protocol built-in in the browser. We’ll leave the discussion of that to a future contribution.

80Blaise Pascal Magazine 116 2023

ARTICLE PAGE 1 / 10

INTRODUCTION
14 well-known European computing and research institutes have joined forces to create an open
internet search infrastructure in Europe.
The project contributes to Europe's digital sovereignty and can protect the world's freedom values -
especially in Europe - and promote an open, people-centric search engine market.

In September 2022, partners including computing centres and universities launched the EU
OpenWebSearch.eu project. This is the first project funded by the European Union to get the
future web search engine off the ground.

At this point, the OpenWebSearch.eu initiative was officially launched, funded by the EU to enable
web search.
Concerns about the imbalance in the search engine market formed the basis for the project:
Google's web indexes, such as the Start page, or Bing's Start pages, used by DuckDuckGo, Ecosia,
MetaGer, Neeva, Qwant and You.com.
In practice, the answer results are limited to these names and the world is therefore incomplete.
This increases distrust in society.
Besides the two US search indexes, there are only two other comparable providers worldwide after
Yahoo's acquisition by Bing (Microsoft), which are Yandex from Russia and Baidu from China.
The latter two are clearly less important for Europe, mainly because of their language differences
and unclear presentation of facts.

Information as a public good, with free, unbiased and transparent access, is no longer under public
control with them. This lack of an open search environment jeopardises our freedom and
impoverishes the innovative power of societies, technology, research institutes and the economy.

The opening session was kicked off by greetings from Dieter Kranzmüller (BADW-LRZ), Uwe Heitmann from DLR-PT, and Jorge Gasos and Stergios Tsiafoulis
from DG CONNETC. OpenWebSearch.EU has kicked-off with a consortium meeting in Berlin. 46 participants got together in a hybrid meeting format to
exchange ideas and make plans for the successful execution of the project. The meeting was hosted by DLR-PT in a new building in Berlin-Südkreuz.

BY DETLEF OVERBEEK

81Blaise Pascal Magazine 116 2023

ARTICLE PAGE 2 /10

OBJECTIVE
Over the next few years, researchers will seek to develop the core of a European Open Web Index
(OWI) as the basis for a new Internet Search Mechanism in Europe.

It will also lay the foundations for an open and extensible European Open Web Search and Analysis
Infrastructure (OWSAI), based on European values, principles, legislation and standards.

● It could thus be a large - freely accessible to the public - Home Page.
 In practice, it appears that the public uses the sites mainly as search engines.
 Which is what they originally were: search engines.

● There will then no longer be the Search engine Manipulation Effect:

● The fear of (large-scale) manipulation of data and realities (fake news),
 turning results and reports into misinformation, or false truths.
 Opinion formation can be influenced by this, which only serves the interests of dictators and
 undemocratic miscreants. And that, in turn, affects democracy and our freedom.
 Very important, then.

The intention is to develop a web index containing half of all texts published on the internet.
The partners involved expect a storage requirement of about five petabytes (five million gigabytes).
Compared to Google or Bing's indexes, this is a smaller database.
The established competition each has hundreds of petabytes of texts, image files, multimedia,
usage data and log files from the internet.

Under no circumstances should it become a repeat of the Google concept or making it a
European Google, according to Michael Granitzer, professor of Data Science University of Passau,
who is coordinating the OpenWebSearch project.

The project involves setting up an infrastructure
with which search engines and other services can work.

A set-up like Google's is certainly not the intention.
Rather, it will have to grow like, for example, Wikipedia, which contained a small core and then
quickly grew in size.
Currently, a total of 14 project partners are developing crawling techniques.

LIST OF PROJECT PARTNERS
1. University of Passau, Germany (uni-passau.de)
2. Leibniz Supercomputing Centre of Bavarian Academy of Sciences and Humanities, Germany (lrz.
de)
3. Stichting Radboud Universiteit, Netherlands (ru.nl)
4. Leipzig University, Germany (uni-leipzig.de)
5. Graz University of Technology, Austria (tugraz.at)
6. Deutsches Zentrum für Luft- und Raumfahrt, Germany (dlr.de)
7. VSB – Technical University of Ostrava, IT4Innovations, Czech Republic (www.vsb.cz)
8. European Organization for Nuclear Research – CERN, Switzerland (home.cern)
9. Open Search Foundation, Germany (opensearchfoundation.org)
10. A1 Slovenĳa, telekomunikacĳske storitve, d. d., Slovenia (a1.si)
11. CSC-Tieteen Tietotekniikan Keskus Oy, Finland (csc.fi)
12. Stichting Nlnet, Netherlands (nlnet.nl)
13. Bauhaus-Universität Weimar, Germany (uni-weimar.de)
14. SUMA-EV – Association for Free Access to Knowledge, Germany (suma-ev.de)

82Blaise Pascal Magazine 116 2023

ARTICLE PAGE 3 / 10

83Blaise Pascal Magazine 116 2023

ARTICLE PAGE 4 / 10

84Blaise Pascal Magazine 116 2023

ARTICLE PAGE 5 / 10

Technically:
crawling focuses on collecting content from a web page, while indexing has a different function.
Indexing namely focuses on storing and organising the content.
During this process, its relevance to certain searches is determined.

These partners - where you can find the addresses logos in this article - select metadata* that the
index should contain and thus design a decentralised distribution of the OWI across different
servers and locations in Europe.
(Metadata are defined as the data that provide information about one or more aspects of the data;
they are used to summarise basic information about data that can make tracking and working with
specific data easier. Some examples are: Mode of creation of the data. Purpose of the data. Time
and date of creation.)

PARTICIPANTS (PARTNERS):
Infrastructure partners participating include
the Leibniz Supercomputing Centre in Munich,
the CSC in Espoo, Finland, which operates Europe's largest supercomputer,
the Czech National Supercomputing Centre IT4Innovations and
CERN near Geneva. Other partners include the
Dutch Radboud University Foundation and
Stichting Nlnet.

85Blaise Pascal Magazine 116 2023

ARTICLE PAGE 6 / 10

DATA COLLECTION
By targeting the data orchestrated through this index page, you could yourself innovate in this area
by, for example, diversifying the use of the mechanism - as all problems should be solved - make
them smaller:

by using various categories of search engines that are much better and faster at providing incisive
answers and even unsolicited predictions in their own areas.
If it turns out that there are a large number of bird flu infections on the web, if they then also turn
out to be transmissible (preferably collected through scientific knowledge) then as a society you can
respond very quickly.
That AI can be involved in this, seems obvious, but it must be done under strict control.
And Europe is ready for that.

Moreover, it is possible to develop new language facets using an extensive index based mainly on
European sources. In particular, smaller languages or language combinations such as Lithuanian,
Basque and Frisian, which are quickly ignored by globally-oriented services, can benefit.

Many new possibilities loom large:
take stock of the actual inflow of people outside Europe and give it a stage through this,
allowing for better control of the spread and, above all, checking which individuals we need,
so that we have a much clearer truth finding, all because this is an index related to Europe.
I see an infinite number of benefits.

86Blaise Pascal Magazine 116 2023

ARTICLE PAGE 7 / 10

POLITE CRAWLERS:
The web crawlers used are expected to be 'neat and above all respectful'.
This has a good reason.
According to Stefan Voigt, the chairman of the Open Search Foundation that introduced the
OpenWebSearch project, web crawling accounts for about 30 to 40 per cent of the total network
load, if streaming* is not included.

(*Streaming media is multimedia that can be played with an offline or online media player.
Technically, the stream is delivered and consumed in a continuous manner by a client, with little or
no intermediate storage in network elements. Streaming refers to the delivery method of content
rather than the content itself. It consumes lots of energy).

This is a significant cost for web hosts.
Moreover, a website is easily overloaded if all HTML pages are retrieved in parallel (simultaneously)
with multiple servers.
Due to an implementation error, this happened when researchers at the project crawled Bank of
America's pages. The bank misunderstood that as a denial-of-service attack and blocked the
servers involved.

With so-called Crawling Politeness Rules, such misunderstandings should in principle be avoided.
For example, never more than one request per second should be started and the page restrictions
of the operator's robots.txt file should of course be observed.

This allows website operators to ask 'bots' not to visit certain parts of their website.
Analyzing the crawls already reveals another drawback compared to the Google-dominated index:
the robust editing and partitioning of HTML files is a problem that cannot simply be solved
technically, but only in collaboration with website operators.

Google offers them the Google Search Console for that, an analytics tool that allows them to
perform search engine optimization (SEO) on their own and thus adapt their pages specifically to
the Google bot.

There, webmasters can, for example, see at a glance whether the main text of a webpage is where
Google expects it to be.

Does the analysis produce a complete parse-tree?
What keywords does the Google bot recognise on web pages?

Most website owners have pages that contain opinions and can lead to language Al's with bias:
(Bias is a disproportionate weight in favour or against an idea or thing, usually in a way that is
inaccurate, closed, biased or inappropriate).

In time, a public, transparently built web index could completely change the SEO landscape.
These days, almost every entrepreneur is trying to optimize their website for a high ranking on
search results with Google.

If a large number of specialised search services replaced that monopoly,
the situation would change fundamentally.
The best thing would be if website owners and web users concentrate on creating their site's
content.

When web search is no longer dominated by a monopolist,
all that matters is preparing content in the most structured way possible
and supporting it with meaningful metadata.

87Blaise Pascal Magazine 116 2023

ARTICLE PAGE 8 / 10

Most website owners have pages that contain opinions and can lead to language Al's with bias:
(Bias is a disproportionate weight in favour or against an idea or thing, usually in a way that is
inaccurate, closed, biased or inappropriate).
In time, a public, transparently built web index could completely change the SEO landscape.
These days, almost every entrepreneur is trying to optimize their website for a high ranking on
search results with Google.
If a large number of specialised search services replaced that monopoly, the situation would
change fundamentally. The best thing would be if website owners and web users concentrate on
creating their site's content.
When web search is no longer dominated by a monopolist, all that matters is preparing content in
the most structured way possible and supporting it with meaningful metadata.

THERE IS NO USER ANALYSIS
The selection of search factors to be included in the new web index is still open and under intense discussion.
Besides content usage rights, the partners mainly discuss content factors such as content quality,
genres and a page rank weighting of link structures (URLs).

There are also technical factors such as response times.
Exciting research projects concern the idea of georeferencing, (indicating location via coordinates,
for example) that enables web services for individual cities or communities.
However, the spatial classification of web links requires proper analysis first, as America lies not just
in the Netherlands.

A VERY IMPORTANT DIFFERENCE FROM CURRENT LARGE INDEXES:
user-clicks and other user analytics do not reach the OWI.
This is hardly possible, because the project partners do not intend to operate search engines
themselves and thus collect user data.
'Web services that build on the OWI can of course always record the search term and user behaviour
on their platform,' explains the technical adviser to the non-profit organisation Suma, which
operates the MetaGer metasearch engine.
*(MetaGer is a metasearch engine focused on protecting users' privacy. Based in Germany, and
hosted as a cooperation between the German NGO 'SUMA-EV - Association for Free Access to
Knowledge' and the University of Hannover, the system is built on 24 small-scale web crawlers
under MetaGer's own control. In September 2013, MetaGer launched MetaGer.net, an English-
language version of their search engine).
To some extent, this is even necessary, for instance to be able to block mass searches from
spammers or to analyse and improve its own service.
But always, users will be free to decide to whom they entrust their usage data.

SECURELY DISTRIBUTED
Because of the critical infrastructure for Europe, it is planned to distribute the OWI across several
countries. That way, like national libraries, the OWI could be housed in different data centres.
Indexes could be developed in different countries with a regional focus, e.g. by language of origin.

Moreover, different organizations could take on the maintenance of different sub-indexes and host
them, e.g. an index for geosciences or an index for financial markets, for green distribution and
planting and water flow. One of the problems in most countries is a poor or absent overview of all
pipeline data lying three-dimensionally in the soil (would be a huge advance for urban planning, as
financial and social damage can be anticipated and prevented).

88Blaise Pascal Magazine 116 2023

ARTICLE PAGE 9 / 10

CERN, for example, has already expressed interest in compiling and managing all information on
particle physics. The project will not remain solely in scientific hands.
There are project funds and people need economic players.
It is not only necessary to have a researcher's mind; you also need to be entrepreneurial and have
business ideas to create, for example, new search engines and services based on the OWI.
Because the medium-term growth of the web index is only possible if the licensing revenue pays
for the infrastructure costs.

POOL FOR LANGUAGE MODELS (LLCs and real languages)

Right at the start of the project and thus even before the hype around ChatGPT,
the partners considered the Open Web Index, with its focus on European content and languages,
to be a data pool for specialised language models.
New search engines could also immediately use those models as an interface for searches.

That speaks in favour of using chatbots.

The search engine Bing, with its ChatGPT interface, and Google, with its Gemini, seem poised to
overtake that approach on the right.
Project coordinator Granitzer also sees the search engine You.com as a successful example of how
an Al chat bot can capture search queries and describe result links.

However, one cannot rely on Al's answers at the moment.
Moreover, studies on the cost and scalability of such systems are yet to be done.

Language models as an interface will have to be integrated into search engines in the future.
because this technology provides a way to process search queries in natural language or like a chat
bot and summarize the results.
Therefore, they are the better interface for starting an overview.

Users are usually not looking for links,
but for answers to their questions
or even suggestions for solutions.

89Blaise Pascal Magazine 116 2023

ARTICLE PAGE 10 / 10

NEW SERVICES ON THE INTERNET
The OpenWebSearch project is looking for new partners to add their expertise.
There are already discussions with specialised services such as a vocabulary lexicon,
which recognizes new word creations, metaphors and idioms automatically and live using an
up-to-date, freely accessible web index.

Another project, Europe Media Monitor, examines trending topics, current events and
developments on the internet.

New services could, for example, list the pros and cons of controversial topics instead of showing
search results as Google and its competitors do.
This is already the case on the Args.me website.(very hard to reach!)
Moreover, the OWI could form the basis for search services specific to a particular topic.

Even the creation of dedicated search engines for mobile phones could be the result of the search
index limitation.
As a result,
users could search locally without access to the internet
and they would only have to reveal their user data on their mobile device.

You can imagine yourself as a search engine hub near the OWI one day.
The user chooses his areas of interest and can use a number of features, such as full-text search.
He limits the results to sources that are particularly credible or popular.
In the end, he receives a search engine configured according to his preferences after he submits his
form.

CRUCIAL INFRASTRUCTURES
The EU's OpenWebSearch project will initially last until September 2025.
In between, the partners aim to build the five petabyte base index.
After that, the focus will be on sustainable infrastructure funding,
probably through additional EU funding.

CONCLUSION
The Open Web Index is an essential infrastructure for Europe's digital sovereignty.
It is expected by the project partners to create transparent structures on the internet.
The envisaged European Web Index is intended to create more diversity and is likely to be
particularly useful for those who want to offer only the best and most reliable information on
their websites.

The content of this article has been composed by articles originating from these addresses:
https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24818 /
https://openwebsearch.eu / https://openwebsearch.eu/community/3rdparty-calls/call3/
https://open-console.eu/ https://zenodo.org/communities/owseu/records?
q=&l=list&p=1&s=10&sort=newest /
https://openwebsearch.eu/partners/ as well as other articles not mentioned here.

https://knowledge4policy.ec.europa.eu/online-resource/europe-media-monitor-emm_en

90Blaise Pascal Magazine 116 2023

EX VAT AND SHIPPING PRICE: € 75,00

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /

Blaise Pascal

BLAISE PASCAL MAGAZINE 114/115
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

https://www.blaisepascalmagazine.eu/product-category/books/

ADVERTISEMENT

LAZARUS HANDBOOK POCKET+PDF+
DOWNLOAD MAGAZINE SUBSCRIPTION

https://www.blaisepascalmagazine.eu/product-category/books

91Blaise Pascal Magazine 116 2023
COMPONENTS

DEVELOPERS4

COMPONENTS
DEVELOPERS4

D11

Donate for Ukraine and get a free license at:
https://components4developers.blog/2022/02/26/

donate-to-ukraine-humanitarian-aid/

Multi platform /Object Pascal / Internet / JavaScript / Web Assembly / Pas2Js /
Databases / CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Blaise Pascal

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

If you are from Ukrainian origin you can get a free Subscription for Blaise Pascal
Magazine, we will also give you a free pdf version of the Lazarus Handbook. You need to
send us your Ukrainian Name and Ukrainian email address (that still works for you), so
that it proofs you are real Ukrainian. please send it to editor@blaisepascal.eu and
you will receive your book and subscription

92Blaise Pascal Magazine 116 2023

 RAD Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OS X client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralised and distributed load
 balancing and fail-over
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multi thread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronounceable password generators.
● High performance LZ4 and J peg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, J SON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

D U :onat e f o r kr ai ne and get a f r ee l i cense at
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

5.23.00 is a release with containing new stuff, refinements and bugfixes, o p en SSL v3 sup p o rt,
WebSo cket sup p o rt, further imp ro vements to SmartB ind , new high p erfo rmance hashing algo rithms,
imp ro ved Remo teD esk to p samp le and much mo re.
This release req uires the use o f v. 7. 9 8 .0 0 o r newer.kbmMemTab le

kbmMemTable is the fastest and most feature rich in memory table
 for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping
 range selection features
● Advanced indexing features for extreme performance

COMPONENTS
DEVELOPERS4

kbmMW Professional and Enterprise
NEW EDITION V. 5.23
kbmMemTable
NEW EDITION V. 7.99.00
Standard and Professional Edition

● New: full Web-socket support.
 The next release of kbmMW Enterprise Edition will
 include several new things and improvements.
 One of them is full Web-socket support.
● New I18N context sensitive internationalisation framework to
 make your applications multilingual.
● New ORM LINQ support for Delete and Update.
 Comments support in YAML.
● New StreamSec TLS v4 support (by StreamSec)
 Many other feature improvements and fixes.

Please visit http://www.components4developers.com
for more information about kbmMW

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP, XML, RTMP from
 web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

ADVERTISEMENT

	HUMOR:
	EISSING:
	FLEX:
	CODE SNIPPETS:
	NAN:
	BILLION:
	Extended RTTI:
	CURVE:
	DEBUG:
	OWI:
	Editor:

