
Blaise Pascal

Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases
CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE 80

No Gui? From Shell to Hell? HellShell!
RAD Studio Roadmap May 2019

The SQLdb Framework under Lazarus
Installing Lazarus on the Mac

REST easy with kbmMW #25 – XML-RPC and JSON-RPC
SmartBinding with kbmMW #1
kbmSQLiteMan v. 1.80 released

CONTENT

2Blaise Pascal MagazineIssue No: 2 2019

ADVERTISERS
TMS WEBCore Page 5
TMS Business 10 Page Page 10
Delphi Company Page 15
Barnsten Page 44
Components 4 Developer Page 60

ARTICLES

Blaise Pascal

Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases
CSS Styles / Progressive Web Apps

Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE 80BLAISE PASCAL MAGAZINE 80BLAISE PASCAL MAGAZINE 80

Cover page: polination of the brain

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed in 1968–69
and published in 1970, as a small, efficient language intended to encourage good programming practices
using structured programming and data structuring. A derivative known as Object Pascal designed for
object-oriented programming was developed in 1985. The language name was chosen to honour the
Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal

Niklaus Wirth DX PAS
2 JS

HTML

Editorial Page 4
No Gui? From Shell to Hell? HellShell! Page 6
By Max Kleiner
RAD Studio Roadmap May 2019 Page 11
By Marco Cantu
The SQLdb Framework under Lazarus Page16
By John Kuiper / Howard Page Clark
Installing Lazarus on the Mac Page 30
By Detlef Overbeek
REST easy with kbmMW #25 – XML-RPC and JSON-RPC Page 42
By Kim Madsen
SmartBinding with kbmMW #1 Page 45
By Kim Madsen
kbmSQLiteMan v. 1.80 released Page 54
By Kim Madsen

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact @ intricad.com

Peter van der Sman
sman @ prisman.nl

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info @ rompelsoft.de

Kim Madsen
www.component4developers

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Peter Johnson
http://delphidabbler.com
delphidabbler @ gmail.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

Primož Gabrijelčič
www.primoz @ gabrijelcic.org

David Dirkse
www.davdata.nl

Benno Evers
b.evers
@ everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Peter Bijlsma -Editor
peter @ blaisepascal.eu

Holger Flick
holger @ flixments.com

Contributors

Robert Welland
support @ objectpascal.org

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may
not be copied, distributed or republished without written permission. Authors agree that code associated with their articles will be made
available to subscribers after publication by placing it on the website of the PGG for download, and that articles and code will be placed on
distributable data storage media. Use of program listings by subscribers for research and study purposes is allowed, but not for commercial
purposes. Commercial use of program listings and code is prohibited without the written permission of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2019 prices)

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department
Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: +31 (0)30 890.66.44 / Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Internat.
excl. VAT

Internat.
incl. 9% VAT Shipment

WIKIPEDIAMember and donator of

Printed Issue
±60 pages

Printed Issue inside Holland (Netherlands)
±60 pages

Electronic Download Issue
60 pages

€ 250

€ 200

€ 261,60

€ 65,40 € 60

€ 85,00

€ 40,00

3Blaise Pascal MagazineIssue No: 2 2019

4Blaise Pascal MagazineIssue No: 1 2019

Its interesting to see how our community evolves
and what kind questions are raised.

One of the most intriguing is of course what is
the future of Delphi. Having asked this question
many times, here it was al of the sudden.
Embarcadero, by the name of our well-known
Italian Delphi Master Marco Cantu came up with
the latest new plans for the Future.
I thought it was so important that we would
publish them so all of our readers would be able to
take a good look at it.

Conclusions?
Difficult to make yet. Even though there are no
real big new items to find, all necessary stuff.
Some great news for Firemonkey lovers: support
for iOs and Android and Android native controls.
Mac iOs 64 bit support and maybe in 2020
(under consideration) support for Raspberry Pi
windows ARM.

For the long term: later this year the 10.4 version -
probably September or so.
I see nor real improvements that we all had hoped
for: something like the IOT support ore internet
support at all. The new roadmap of Delphi you
can find it at page: 11.

I am glad that there is a company like TMS that is
developing the WEB Core. Updated to 1.2 just
now and we will publish the first tests in the next
issue. It promises great improvements...

Lots of news about Pas2JS and Lazarus.
I finally found the time to do something that has
been asked for many times: an article installing
Lazarus under Mac.

We will show a number of applications ready made
for Lazarus as well Delphi, while we try do things
that are also interesting for starter's and
experienced developers. The Puzzle suddenly seem
to have quite a lot of problems so we need to solve
that first. But there is more we will show some
spcialties which are embedde in an application:
free for use ofcourse.

Lazarus is coming very close towards the
abilities of Delphi. We are working on the very
last hurdles.
At the moment we are implementing in FPC (the
compiler for Lazarus) three main Items that have
been sponsored by a number of companies and
the community: Anonymous Functions, Attributes
and RTTI.

Generics for Pas2JS are also started by Mattias
Gaertner and we will try to get them done asap.

We need funding for that!
If you want to sponsor us - please let us know.
We will come up with some special actions for this.
Goals for you: a guaranteed free IDE for Pascal,
capable of almost anything you wish for even the
internet is included.
And development is fully native.

That should be worth something to you.
Especially the fact that you can now get
professional help for your projects through
the Lazarus Factory. We have the best developers
available. Think of a project and we will build it for
you, here you can get information:
professionals@lazarusfactory.org

Think of the fact that you will have an IDE that is
free! You will not have to pay license costs so you
can spend your money on the components you
need. So help us please!

We also work on Web Assembly which will
become available in the last part of the year.

About the Lazarus handbook
- I will add the new finalized chapters for Lazarus:
Installing under Windows / Linux and Mac, and
then start on the ide explanations. The book will
contain something like 850 pages!

We now are at 650. So the end of this enormous
task is in sight...

For details please have a look at our site.

NEW update for TMS WEB Core v1.2 Padua BETA
We are nearing TMS WEB Core v1.2 Padua release and the new beta update available now is likely
to be the last beta update before release.
Your help and your feedback is invaluable in ensuring that the quality of the release is as high as
possible. We invite you to share all your comments via email and very much appreciate it.

TMS WEB Core v1.2 brings the following new features:
· New support for Electron application development
· New 3D web client controls for scenes, charts, math surface graphs
· New syntax highlighting memo control
· New IndexedDB support with an IndexedDB dataset component
· New HTML treeview component
· New HTML accordion component
· New responsive grid panel component
· New file picker control for easy access to local system files and improved TWebFileUpload component
· New web camera, bar & QR code scanner & media recorder component
· Latest pas2js compiler with anonymous method, class helper, advanced records support
· Extensions to grid and DB grid to allow checkboxes, buttons, non-DB columns in grid, sorting, record indicator
· Extensions for easier relative control rendering
· Extended documentation (PDF developer guide)
· Numerous improvements to IDE integration and framework
This beta version is available for TMS ALL-ACCESS, TMS WEB Core registered users and TMS WEB
Core trial users!

For TMS ALL-ACCESS users, simply use the TMS Subscription Manager and from there, you can
download and install TMS WEB Core v1.2 Padua beta version.

The v1.2 beta full version for registered users, can be download after login on our website under
?Account / My Products / TMS WEB Core beta?.

For trial users, the v1.2 beta trial can be downloaded from:
https://www.tmssoftware.com/site/tmswebcore.asp

Note: first manually uninstall previous version!

Share your experiences:
We take our time and listen very closely to your feedback as it helps enormously steering the
product, documentation and demos updates.
· Is the scope of the demos clear?
· Is there any something you want to see covered with a demo that is not there yet?
· Did you also test the FNC web-enabled components?
· Is there some functionality or feature you?re missing?
· Do you have any other comment, feedback, issues to report?

5Blaise Pascal MagazineIssue No: 2 2019

maXbox Starter 70

maXbox

NoGUI

How to redirect a form to a shell

From Shell to Hell? HellShell!

This tutor explains a solution to attach a console to
your app. Basically we want an app to have two
modes, a GUI mode and a non-GUI mode for any
humans and robots.
A NoGUI app provides a mechanism for storage
and retrieval of data and functions in means other
than the normal GUI used in operating systems.
From everything you've read this is supposed to
work if we use AttachConsole().

First we generate the declaration of the 2 DLL's:
It attaches the calling process to the console of the

 (:): ;function AttachConsole dwProcessID Integer Boolean
 ;external 'AttachConsole@kernel32.dll stdcall'

 (): ;function FreeConsole Boolean
 ;external 'FreeConsole@kernel32.dll stdcall'

 (): ;function StringGetParentProcessName

 This function needs another DLL from the lib PsAPI:

 (: ; : ;function GetModuleFileNameEx Handle THandle pid THandle
 : ; :): ;ppath Pchar buffsize DWORD DWORD
 ;external 'GetModuleFileNameExA@psapi.dll stdcall'

specified process and if the function
succeeds, the return value is nonzero.
A process or app can use the
FreeConsole() function to detach
itself from its console. If other processes
share the console, the console is not
destroyed, but the same process that
called FreeConsole() cannot refer
to it.
Next we have a function to get the parent
process name:

This allows me
to run my GUI app from a command prompt and display
output to the same console where my app was launched.
Otherwise, it will run the full GUI part of the app and
shows the window as a win- or webform.
The GetParentProcessName() asks the command prompt
(powershell or cmd):

C:\Windows\System32\
WindowsPowerShell\v1.0\powershell.exe

C:\Windows\SysWOW64\cmd.exe

There's no reliable way for a GUI subsystem application to
attach to the console of its parent process. If you try to do
so you’ll end up with two active processes sharing the
same console and only one is running:

Be careful with this
GetModuleFileNameEx().
In Win 7, it shows up in the lib kernel32.dll,
so you might want to code to check for this
and load dynamically as I do with
GetModuleFileNameExA().
The main part is as follow:

 := (());ParentName strlower GetParentProcessName
 := ();ParentName PathExtractName ParentName
 ()Set_ReportMemoryLeaksOnShutdown false

 (=) (=) if orParentName ParentName'cmd.exe' 'powershell.exe'
 then begin

 (-);AttachConsole 1
 ();NativeWriteln 'Start with maXbox4 Console Output--->'

 := () for to do if thenit IsPrime it1 50
 (()+);NativeWriteln IntToStr it ' is prime'
 (); NativeWriteln '-----end-----'

 ();FreeConsole

Figure2: See readable size next page
Figure1: Two modes-command prompt and Graphic

Page 1/4

6Blaise Pascal MagazineIssue No: 2 2019

Figure2: Task Manager

Figure3: Console (CommandPrompt)

NoGUI From Shell to Hell? HellShell!
Page 2/4 maXbox

maXbox 7Blaise Pascal MagazineIssue No: 2 2019

This is is just fine if you are just wanting to display output into the command line. But operations like
redirecting output into a file for example are not working e.g.: start /wait Checker.exe > out.txt
would still output into console and not into file=out.txt. Different solution exists for the PowerShell:

If you are lost into the source code then you could easily add parameters to your app to write output to a file
instead of the console: -o out.txt, since it's your tool doing the writing, you can write wherever you want for

example to start out of the shell and get output to
the shell and in the end plot an image to

NoGUI From Shell to Hell? HellShell!
Page 3/4 maXbox

Figure 4: several sloutions for PoweShell

Figure 5: several sloutions for PoweShell

maXbox 8Blaise Pascal MagazineIssue No: 2 2019

maXbox

another file output as a png-graphic like below:
We believe the best option is to create two
separate executables or scripts. One for the GUI
subsystem, and one for the shell subsystem.
This is the approach also taken by:

Java: java.exe, javaw.exe.
Python: python.exe, pythonw.exe.
Visual Studio: devenv.com,
devenv.exe.

A console is closed when the last process attached
to it terminates or calls FreeConsole. After a
process calls FreeConsole, it can call the
AllocConsole function to create a new console or
AttachConsole to attach to another console.
Call the script from the shell with

function String (): ;GetParentProcessName
var
 : ;HandleSnapShot THandle
 : ;EntryParentProc TProcessEntry32
 : ;CurrentProcessId THandle
 : ;HParentProc THandle
 : ;ParentProcessId THandle
 : ;ParentProcessFound Boolean
 : ;ParentProcPath String
begin
 := ;ParentProcessFound False
 := (,);HandleSnapShot CreateToolhelp32Snapshot TH32CS_SNAPPROCESS 0
 <> if thenHandleSnapShot INVALID_HANDLE_VALUE
 begin
 . := ();EntryParentProc dwSize SizeOf EntryParentProc
 (,) if thenProcess32First HandleSnapShot EntryParentProc
 begin
 := ();CurrentProcessId GetCurrentProcessId
 repeat
 . = if then beginEntryParentProc th32ProcessID CurrentProcessId
 := . ;ParentProcessId EntryParentProc th32ParentProcessID
 := (HParentProc OpenProcess PROCESS_QUERY_INFORMATION or
 , ,);PROCESS_VM_READ False ParentProcessId
 <> if then beginHparentProc 0
 := ;ParentProcessFound True
 (,);SetLength ParentProcPath BufferSize
 (, , (),);GetModuleFileNameEx HParentProc PChar ParentProcPath BufferSize0
 := ();ParentProcPath PChar ParentProcPath
 ();CloseHandle HParentProc
 ;end
 ;Break
 ;end
 (,);until Process32Next HandleSnapShot EntryParentProcnot
 ;end
 ();CloseHandle HandleSnapShot
 ;end
 := if thenParentProcessFound Result ParentProcPath
 := ;else Result ''
end;

>>> . from geopy geocoders import Nominatim
>>> = ()geolocator Nominatim 'maxbox-app'

>>> ,(,) = . (" ")place lat lng geolocator geocode Breitenrainplatz Bern2
>>> ("% : %. , %. " % (, ,))print s f f place lat lng5 5

The script can be found:

http://www.softwareschule.ch/
examples/866_native_console.txt

Author: Max Kleiner

NoGUI From Shell to Hell? HellShell!
Page 4/4 maXbox

maXbox 9Blaise Pascal MagazineIssue No: 2 2019

RAD STUDIO ROADMAP MAY 2019 PAGE 1/4

Marco Cantu 23 May2019

With this article, the RAD Studio PM team is introducing an updated roadmap for Delphi,
C ++Builder and RAD Studio. This May 2019 roadmap includes plans for the next 12 months. Alongside, we
have also published a May 2019 Roadmap PM Commentary blog post, with more details and information.

These plans and roadmap represent our intentions as of this date, but our development plans and priorities
are subject to change.
Accordingly, we can't offer any commitments or other forms of assurance that we'll ultimately release any or
all of the described products on the schedule or in the order described, or at all. These general indications of
development schedules or "product roadmaps" should not be interpreted or construed as any form of a
commitment, and our customers' rights to upgrades, updates, enhancements and other maintenance releases
will be set forth only in the applicable software license agreement.

SAFE HARBOR STATEMENT

RAD Studio Today
Key features delivered in recent months:

● IDE Productivity Tools including Bookmark and Navigator
● Expanded support for iOS 12 and iPhone X series devices
● Custom VCL Windows and FMX Styles
● HTTP and SOAP Client Library Enhancements on Windows
● RAD Server Console UI redesign and migration to the Ext JS framework
● Enhanced FireDAC support for Firebird 3.0.4 and Firebird embedded
● C++ 17 Win32 Support
● Delphi language enhancements Improved IDE UX

10.3.1 was released in February 2019

RAD Studio Personas
Focus Areas for CY 2019 / 2020
Windows Desktop Devs Multi-Device Developers Enterprise Developers
● IDE and VCL ● Support for latest versions of ● Support for the latest
 Enhancements iOS and Android database drivers in
● Delphi Language Features ● Android 64-bit FireDAC
● Continued Windows 10 Android Native Controls ● RAD Server configuration,
 platform support ● Re-architected Android Firebase deployment, and
 Enhanced IDE Code Push support management tools
 Tooling ● macOS 64-bit ● IDE code tooling
● RTL optimization ● New multi-device styles improvements for large
● Clang/LLVM upgrade codebases
 (C++17) for Win 64
·

 Features are not committed until completed and GA released

11Blaise Pascal MagazineIssue No: 2 2019

RAD Studio Roadmap RAD Studio CY 2019 / CY 2020 Timeline**

RAD Studio 10.3.2 RAD Studio 10.4 RAD Studio 10.4.x
mid 2019 late 2019 2020
Platform Enhancements Platform Enhancements Platform Enhancements
Enhanced RAD Server Tooling Metal 2 GPU driver support (macOS/iOS) Consolidate muttiple debuggers,
 Enhanced Windows Theming focusing on LLDB tech
 Additional RAD Server Tooling FireMonkey quality improvements
 Enhancements MSIX app packaging format support
 Android Push Notifications and
 Google Play Services re-architecture
 LiveBindings Performance
 Enhancements

Delphi Delphi Delphi
macOS 64-bit platfonn support Android 64-bit platform support iOS 13 Simulator support
 Language Server Protocol for Delphi
 Language Enhancements
 Unified memory management across
 all platforms

User Experience User Experience User Experience
FireMonkey UI Templates Further IDE UI/UX Improvements High OPI IOE Support
Further IDE UI/UX improvements Getlt Package Manager
 Enhancements
 VCL High DPI Styles Support
 VCL Per Control Styling
 Unified Installer for Online & Offllne
 Installations

 Additional Quality Focus Areas Additional Quality Focus Areas

C++ C++ C++
Windows 64-bit C++17 support Expand C ++ Iibraries support IOE Language Tooling with Visual
Enhanced C++ LSP support Toolchain perfonnance and quality Assist support for C++
 improvements CMake extended support with IOE
Quality Focus Areas Unified memory management across integration
VCLHigh DPI all platforms
FireMonkey Platform
RTL Perfonnance
C++17 Win32 Compiler
IDE Code Tooling

RAD Studio 10.3.2
Native 64-bit macOS platform toolchain for Delphi, C++ language modernization for 32-bit and 64-bit Windows
RAD Studio {all lDEs)
● Further IDE UI/UX improvements refine and improve the user experience introduced in 10.3
● Develop cross-platform apps faster with new FireMonkey UI Templates
● Simplify RAD Server development and deployment with enhanced RAD Server Wizards and Installers
● Support the latest Google standard for Android Push Notification with Firebase support
● New Downloads/Licensing Portal makes discovering your products and license keys much simpler and easier

Delphi
● Address the Apple App Store and macOS platform requirement with 64-bit macOS platform support,
 including the entire development, deployment, and debugging experience
 œ New macOS 64-bit compiler and macOS runtime library updated for 64-bit support
 œ Database support and FireDAC drivers
 œ HTTP client libraries, including cloud and RAD Server clients
 œ Full support for the FireMonkey UI library and platform integration
 œ App Store deployment support
 œ macOS app notarization support

RAD STUDIO ROADMAP MAY 2019 PAGE 2/4

 Features are not committed until completed and GA released

12Blaise Pascal MagazineIssue No: 2 2019

RAD Studio 10.4 Features are not committed until completed and GA released
Platform Enhancements
● Address new Apple platform requirements for GPU drivers by adding Delphi Metal 2 support
● Enhanced RAD Server Development Experience with additional Enterprise capabilities
● Android Firebase Push Notifications and Google Play Services re-architecture for Android and iOS
 to simplify development of multi-device apps
● Redesign of the LiveBindings architecture to improve performance and capabilities

User Experience
● Additional Getlt Package Manager capabilities for providing unique content to Subscription customers
● VCL High DPI Styles Support, including updated styles and VCL per-control styling, improves the look
 and feel of your applications and their behaviour on modern displays
● A Unified Online/Offline Installer using Getlt gives you the same swift, efficient installer when you are
 not connected online

RAD Studio 10.4 Features are not committed until completed and GA released
Delphi Android 64-bit support, improved code tooling, language enhancements, and more

Delphi
● Address the Google Play Store requirement for Android 64-bit platform support (compilers, IDE tooling,
 RTL, database support, FireMonkey)
● Add Managed Records support to the Delphi language to offer additional memory management options
 and help modernize existing codebases
● Improved in-lDE language tooling using a Delphi LSP server giving performance enhancements through
 asynchronous, out-of-process processing, and more accurate results for code completion, error insight,
 and related tools
● Unified memory management across all platforms (disabling ARC on mobile)

C++
● Expand out-of-box C++Builder support for popular C++ libraries in Getlt,
 to leverage existing libraries & improve development speed
● Toolchain performance and quality improvements assist you in more reliable development behaviour and
 upgrading from the classic compiler
● Unified memory management, ie removal of ARC, simplifies code behaviour and allows you to rely on
 canonical C++ memory management mechanisms, like smart pointers
● Improved DLL and package symbol import/export behaviour to assist with common issues using multiple
 libraries, plus linker quality for larger projects

RAD Studio 10.4.x Features are not committed until completed and GA released
New C++ code tooling, 64-bit iOS Simulator support, High DPI IDE

Platform Enhancements
● Consolidate multiple debuggers, focusing on LLDB technology, for unified full-featured debugging
 on all platforms
● Improve FireMonkey quality on all platforms for better multi-device development experience
● Support the MSIX App Packaging format for Desktop Bridge and Windows Store
● Metal GPU driver support for the iOS platform to improve apps performance

Delphi
● iOS 13 Simulator support (64-bit) for targeting the latest iOS Simulator devices
C++
● Integrated Whole Tomato Visual Assist support for C++ provides best-of-class code tooling, beyond that
provided in other C++ IDEs

User Experience
● High DPI IDE Support allows you to use RAD Studio on a high-res display with crisp text and images

RAD STUDIO ROADMAP MAY 2019 PAGE 3/4

13Blaise Pascal MagazineIssue No: 2 2019

RAD server Features are not committed until completed and GA released
REST API for microservice architectures

Development
● Add new IDE Wizard to streamline development of database driven RAD Server applications
● Extensions to the Swagger API for better REST API documentation support
● Code simplification for better development and maintenance of RAD Server extensions
● Additional Enterprise-level features

Research
● Further work on web capabilities and Ext JS library integration

Deployment
● Ready-to-use installers to deploy the production engine on Windows and Linux servers
● Tools to help with configuration and management of RAD Server installations
● Cloud VMs and container based (Docker) deployment support, to simplify use of RAD Server REST APls
 on modern architectures

● Platforms
œ BitCode support and other LLVM-related improvements
œ Target ARM loT platforms (Raspberry Pl, Windows ARM)
œ Deeper Win RT UI integration with VCL and FireMonkey

● Under Consideration
œ FireMonkey Linux GUI support
œ Cloud based RAD Studio projects continuous integration
œ Further FMX native controls (additional controls; macOS)

● Previous Research Areas, now on Roadmap or Completed *
œ Unified installation experience with combined Web and offline installer {10.4)
œ Integrating Whole Tomato's Visual Assist for C++Builder (10.4.1)
œ Language Server Protocol support for Delphi {10.4)
œ FMX Native Controls for Android (completed in 10.3)

Research Areas Features are not committed until completed and GA released
Getting ready for future platforms and technologies

RAD STUDIO ROADMAP MAY 2019 PAGE 4/4

14Blaise Pascal MagazineIssue No: 2 2019

The SQLdb unit defines four principal data-
handling classes applicable to all popular SQL-
based databases. In what follows you gain
experience in using the first three:
TSQLConnection

² TSQLConnection
represents the connection to the database.
You must set the properties of your
connection instance appropriately according
to the particular connection you want to
establish: the database, the server, the user
name and password. is TSQLConnection
an abstract class, which is never used directly.
Rather you use a descendant according to
database type (MS SQL, SYBASE,

POSTGRES, ORACLE, MYSQL, SQLITE3,

INTERBASE (FIREBIRD) OR ODBC) such
as or TOracleConnection
TSQLite3Connection.
Note that non-SQL-enabled legacy
databases such as dBase and Foxpro
are not supported by SQLdb.

² TSQLTransaction
represents the transaction in which an SQL
command is running. SQLdb supports multiple
simultaneous transactions in a database
connection. For databases that do not support
this functionality natively, SQLdb simulates
this by maintaining multiple connections to
the database.
A transaction is a hidden object
interposed between the local data and the
database. When the user inserts a new record,
or modifies an existing record, the

TSQLTransaction instance holds the
modified data. This data
change is propagated to the database itself by
calling TSQLTransaction.Commit,
or the data change can be thrown away by
calling TSQLTransaction.Rollback.
Transaction components have a very important
`Action` property which specifies how query
execution will affect the database.
`Action` can take one of 5 possible values:

ª caNone:
 no change is made to the
 database, and the developer has
 to set the transaction manually.
ª caCommit:
 after the query is executed,
 changes are sent to
 the database automatically and
 the transaction is closed.
ª caCommitRetaining:
 after the query is executed
 changes are sent to the database
 automatically and the transaction
 remains open.
ª caRollback:
 after the query is executed,
 no changes are sent to the
 database, and the transaction is
 closed.
ª caRollbackRetaining:
 after the query is executed,
 no changes are sent to the
 database and the transaction
 remains open.

² TSQLQuery
is a component descending from the
FCL’s which can be used to view TDataSet
and manipulate the result of an
SQL select query.
It can also be used to execute all kinds
of other SQL statements
– it is not restricted to .SQL SELECT

² TSQLScript
can be used when you need to execute
numerous SQL commands against a database -
for example when creating a database.

THE SQLDB FRAMEWORK UNDER LAZARUS PAGE 1/14

INTRODUCTION
Many Pascal programmers install the ZEOS
database framework, thinking it is needed to connect their
database to an application.
While that is a well-tried route for many Delphi
programmers, for Lazarus and FPC users ZEOS is not
necessary (though it is certainly a good alternative to the
framework that is the subject of this article).
For many years Lazarus has included the SQLdb framework
as a package installed by default in the IDE. The following
two links give you lots of information about the SQLdb
framework:
http://wiki.freepascal.org/
SQLdb_Programming_Reference#Documenta
tion

https://www.freepascal.org/docs-
html/fcl/sqldb/usingsqldb.html

expertstarter

16Blaise Pascal MagazineIssue No: 2 2019

THE RAD PRINCIPLE
SQLdb has been designed to facilitate making
database connections with only a few clicks. In the
Lazarus IDE the SQLdb components are found on
the Component Palette page named SQLdb (see
Figure 1).

SQLdb works with third-party client libraries in
order to establish the best connection to the
databases it supports.
Most well-known databases are supported:

Firebird, MS SQL, Postgres, MySQL, SQLite,
Sybase and Oracle.
No other databases are supported directly, but
provided the database has an ODBC driver then
SQLdb can connect using its ODBC connection.
For instance, you can connect to Access
databases using SQLdb via Microsoft’s Access
library.

STARTING TO USE SQLDB
To begin using SQLdb you need a connection to a
database which can be either a client-server
database or an embedded database (such as
Firebird embedded, MySQL or SQLite).
This article develops an example application using
SQLite since it is such a widely available back-end
and ideal for an initial single-user example.
The example project has a main form containing
the principal GUI, built using the LCL's data-aware
components located on the Data Controls page.
The example then adds a second form with data-
aware controls to demonstrate how SQL JOIN
statements work, and how to edit and update
joined tables.
The example concludes by getting you to develop
a single consolidated editing form that has similar
functionality, introducing a lookup data-aware
control to make implicit JOINs as needed.

A FEW NECESSARY PRELIMINARIES
While you can just unpack the source code
provided and try it out (see the closing paragraph
of the article for instructions), you will learn more
by following along and developing the SQLdb
example application for yourself. You will also
benefit by learning to use a database browser to
create and edit databases quickly.

A SQLite browser such as SQLiteStudio
(an open source tool with versions for Windows,
Linux and Mac OSX) is fairly easy to use. You can
find this tool at
https://sqlitestudio.pl/index.rvt
if you don't already have it installed.
First, create a new directory where you have full
permissions, which you should name sqldb.
With the help of the SQLiteStudio tool create a
database named in this new authors.db3
sqldb directory.

This is a beginner's convenience, since it is also
possible, of course, to create a SQLite database at
runtime in code. We don't do that here since it
merely complicates learning SQL for a beginner.
To begin with, it is simpler to start with a ready-
built database. The first table in our new
authors.db3 database will be named
authors and should have columns defined by the
following SQL DDL statement:

A countrycode (rather than a) ‘country’
column has been introduced here because this
article will shortly explain how to write JOIN
queries. This field and its data, unused to begin
with, is designed for use in a future query. JOIN
You must also have the correct SQLite3 library on
your development system (sqlite3.dll on
Windows, sqlite3.so on Linux which is often a
symlink to libsqlite3.so.0).
This must be installed in the system path or in the
same directory as the executable (Windows) or
installed in the library path (Linux, Mac OSX).
This applies both to your development machine,
and any computer where the released application
will run. Windows database developers often
include the installation of sqlite3.dll alongside their
application .exe file when deploying the released
application. The required library is installed by
default on most popular Linux distributions, but
this is not guaranteed.
If the required client library is missing, attempting

Figure 1: the Component Palette SQLdb

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 2/14

17Blaise Pascal MagazineIssue No: 2 2019

CREATE TABLE authors (
id INTEGER PRIMARY KEY
AUTOINCREMENT NOT NULL,
lastname VARCHAR (30) NOT NULL,
firstname VARCHAR (30),
countrycode VARCHAR (3));

to run your database executable will give an
immediate error (see Figure 2).

Next, create a new Lazarus project
(Project è New Project... Application, OK) in the
sqldb directory, and save it with the name
authors.lpi. Save the project's main form in a
unit named main.pas (or main.pp), and leave the
name of the form variable as Form1. Although
SQLdb components can be dropped on a form,
it is preferable to have a non-visual container for
them in the form of a data module. So create a
data module via File è New... Data Module, OK.
The default name DataModule1 for the module
variable is fine. Save the data module unit with the
name DataModule.pas.
After saving, the DataModule unit needs to be
added to the uses section at the top of the main
form’s unit in the interface section. Or you could
create a new uses section just under the keyword
implementation and add DataModule there:

implementation
 uses DataModule;

Now you can drop three SQLdb components on
DataModule1:

a (it has a feather icon), TSQLite3Connection
a and a TSQLTransaction TSQLQuery

component. You can leave their default names as
SQLite3Connection1 SQLTransaction1,
and SQLQuery1.

Your data module should now look something like
Figure 3.

CONNECTING TO A DATABASE
The properties of the SQLdb components must
now be set correctly.

 u : SQLite3Connection1

 DatabaseName - Click the ellipsis
 button of the DatabaseName property
 editor to locate the authors.db3
 database file you created earlier.
 (Remote databases usually require a
 username and password, for which
 the UserName and Password
 properties are provided.
 A further option usually required for
 security is a login prompt, so that when
 any user attempts to connect to the
 database, a dialog will first be shown
 requiring entry of a valid username and
 password.
 You enable this feature by setting the
 property to True. LoginPrompt
 These property values control the
 login phase, which is not needed for
 this example).
 Transaction
 - set this property to
 (select this from SQLTransaction1
 the dropdown).
 HostName
 - this property is not
 required for file-based embedded
 databases such as SQLite. Whereas if
 the database is on a server, the host
 name or an IP-address is required to
 find the database.

 v SQLTransaction:
 Action - set this to
 caCommitRetaining.
 - this will already be set toDataBase
 from your SQLite3Connection1
 earlier setting of
 SQLite3Connection1.Transaction.

 w SQLQuery1:
 Database - set this to

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 3/14

18Blaise Pascal MagazineIssue No: 2 2019

Figure 2: can not load sqlite.dll

Figure 3: the three components on the Datamodule

setting the SQLiteConnection1.Connected
property to True. Now when the
SQLQuery1.Active property is set to True,
this causes fresh communication between the
database and client, and the query result is put into
a dataset. Rather than get the user to set these
properties explicitly, our example will open and
close the database connection, and activate and
deactivate the query in the main form's OnShow
and OnClose events. Select the main form in the
object inspector, and on its Events page, double-
click on the event to generate a new OnShow
handler in the code editor where you need to type
the following lines of code:

To close the database connection at the program’s
end, double-click the `OnClose ` event, and type
these lines in the `OnClose` event handler:

 (select from the SQLiteConnection1
 dropdown).
 SQL - click the ellipsis button to open
 an editor where you should type
 SELECT * FROM authors
 Options - for fully automated
 execution check the following to
 include their values in the
 Options set:
 sqoKeepOpenOnCommit,
 sqoAutoApplyUpdates, and
 sqoAutoCommit`.

Once the initial connection properties are set
correctly, the user can connect to the database by

DISPLAYING AND EDITING
DATABASE DATA
To provide visual access to the data in the
database you must add three data-aware
components to the main form in order to
view the table data (see Figure 4).

Drop a TDataSource component from the Data
Access palette page, and a TDBGrid and
TDBNavigator from the Data Controls palette page
on to the main form.
You can leave their default names unchanged. The
main form should now look like Figure 4.

These three components offer the
following functionalities:
 • provides a data link DataSource1:
 between the SQLdb components and
 the data-aware GUI components.
 Set its `DataSet` property to
 DataModule1.SQLiteConnection1
 (use the dropdown editor provided to
 do this).
 • shows data from the queryDBGrid1:
 laid out in rows and columns. Set its
 DataSource property to
 DataSource1.

 • offers buttons to`DBNavigator1:
 navigate through the dataset,
 and to insert new data and edit
 existing data. Sets its DataSource
 property to DataSource1.

DataModule1 SQLite3Connection1 Open. . ;
DataModule1 SQLQuery1 Active True. . := ;

 . . := ;DataModule1 SQLQuery1 Active False
DataModule1 SQLite3Connection1 Close. . ;

Figure 4: three data aware components

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 4/14

19Blaise Pascal MagazineIssue No: 2 2019 19Blaise Pascal MagazineIssue No: 2 2019

Figure 5: Countrycode

Now when you compile and run the application
the main form displays an empty DBGrid. To insert
a new record, click on the + button in the
navigator. Don’t fill the first column id since this is
an auto-increment field which will be completed
by the database when the new record is posted.
However, complete the cells in the other columns
(the column header indicates the corresponding
field in the authors table). Then post the record by
clicking the check button on the DBNavigator to
save the record. In this way complete a few entries
for further author names. If you now close and
restart the application, you should see the records
you have recently added.The SQLdb framework
performs all the data communication, and
SQLQuery1 creates an insert / update query to
send new or altered data to the database.

IMPROVING THE USER'S EDITING EXPERIENCE.
When the record is saved, a new record id is auto-
created by the database, which is visible by default
in the DBGrid. However, the user
should not be able to see this housekeeping
field (it’s irrelevant to them), and indeed it
should be impossible for a user to edit its value).

To ensure that three fields (lastname, firstname
and countrycode) are displayable and editable in
the DBGrid, and that the id is not shown or
editable you have at least two possibilities:
u On ensure thatDataModule1
 isSQLite3Connection1.Connected
 and that True, SQLQuery1.Active

 is True.
 Right-click the DBGrid on the main
 form and select Edit Columns...
 Click the + Add Fields button to add
 all the database fields.
 Select only the id field, and click the
 - Delete button (it has a blue minus
 icon). The grid display in the Designer
 will immediately lose the id column
 and its data.
 When you run the application there
 is no display of the column. id
 When you add a new record, a new
 id value gets auto-generated when the
 record is posted,
 but the user is unaware of this,
 since it cannot be seen.

v Right-click the DBGrid on the main
 form and choose Edit Columns... from
 the context menu.
 If any fields are shown, click the

 - Delete All button. Then for each of
 the three fields you want displayed
 click the + Add button.
 In the object inspector find the
 FieldName property for each new
 field, and choose the appropriate field
 name from the dropdown.
 The grid display will be updated
 immediately at design time. Close the
 application to save the changes.

By default Lazarus sets each DBGrid column's
Width property to 64.
Lazarus recalculates each column Width when
the application begins to run, and usually the auto-
width setting is too wide. Provided your data is
reasonably consistent in length it is better to set
the column to a suitable value that differs Width
from the default. When you do this, the
application has a better appearance

SQL UPDATES
There are three ways to use SQL statements to
make updates to the database, corresponding to
the three possible values of
SQLQuery1.UpdateMode:

� upWhereAll
 This option uses all the query field’s
 old values to update data in the
 database. In addition to the key fields,
 the statement contains all old WHERE
 field values for fields that have
 pfInWhere set in their Provider Flags
 property. This ensures that if another
 user has simultaneously changed any
 part of the record, the update
 statement will fail.

‚ upWhereChanged
 In addition to the key fields, the
 WHERE statement contains only the old
 values of all changed fields which
 have set in their pfInWhere
 ProviderFlags property.
 This ensures that if another user
 changed any of these changed
 fields, the update will fail, and the
 other user’s changes are safe.

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 5/14

20Blaise Pascal MagazineIssue No: 2 2019

UPDATE authors
SET lastname = 'lastname'
WHERE id = old_value_id
AND lastname = old_value_lastname
AND firstname = old_value_firstname
AND countrycode = old_value_countrycode;

ƒ upWhereKeyOnly
 Only the key field(s) are used in the
 clause to determine whichWHERE
 record(s) to update.

The third option is (upWhereKeyOnly)
selected by default and is the logical way to save
data to the database in this single-user case.
If the table is configured correctly, the id will be
found very quickly in the database so that data
changes are applied to the correct record.

ADDING A FURTHER DATABASE TABLE
Small, coded fields such as countrycode are
beneficial in databases since they reduce the
application’s memory footprint, enabling well-
normalized data to be added, and greatly reducing
the possibility of storing duplicate, redundant
data.

You can either use an integer field or a character
field as a code such as countrycode. We used fairly
self-explanatory codes in the countrycode values
seen in Figure 5 above, but more often the code is
an integer which has no self-explanatory meaning.
Users often want to see a data column that has an
immediate meaning, rather than a code (which is
a programming convenience adopted to minimise
database size, and provide a means of joining
related fields together for display). To translate
the countrycode data into a more meaningful
country name we need to create a new table using
SQLiteStudio:

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 6/14

CREATE TABLE countries (
 id INTEGER PRIMARY KEYAUTOINCREMENT,
 countrycode VARCHAR (4) UNIQUE NOT NULL,
 countryname VARCHAR (30));

Select in the designer, and drop DataModule1
on it a further component. TSQLQuery
Name this SQLCountries.

Set to SQLCountries.Database SQLite3Connection1.

SQLCountries.Transaction SQLTransaction1.Set to

SQLCountries.UpdateMode upWhereKeyOnly.Set to

SQLCountries.UsePrimaryKeyAsKey True.Set to

Set to SQLCountries.Options sqoKeepOpenOnCommit,
 sqoAutoApplyUpdates, sqoAutoCommit

Set to SQLCountries.SQL
SELECT * FROM countries ORDER BY countryname.

Name the new form unit and in uCountries,
the Object Inspector give the form the Name
FrmCountries.
Drop a a and a TDBNavigator, TDBGrid
TDataSource on it as you did for the main form,
leaving the components with their default names.

u Set to DBNavigator1.DataSource
 DataSource1.

v Set to DBGrid1.DataSource
 DataSource1.
w Next add to the uses clause DataModule

 of uCountries
 (either in the interface, or in the
 implementation section).
� Set to DataSource1.DataSet

 DataModule1.SQLCountries.
� On ensure that DataModule1

 SQLCountries.Active
 True. is set to
‘ Right-click the DBGrid on FrmCountries

 and choose Edit Columns...
 from the context menu.
’ Click the + Add Fields toolbutton in the

 column editor to add the three columns
 defined in the countries table.
“ Select the first line () and click 0 - id

 the - Delete toolbutton to remove it from the
 grid display, so it cannot be seen or
 edited by the user.
 ” In the object inspector adjust the
 Width property of the
 remaining two fields to give a
 good display.
• On return to DataModule1

 SQLCountries and set
 toSQLCountries.Active
 False, since we will add code
 shortly to edit this property at runtime.

We now need a GUI to aid data entry into this new
table. Create a new form in the example
application by choosing File è ÚNew Form.

21Blaise Pascal MagazineIssue No: 2 2019

UPDATE authors
SET lastname = ‘lastname’
WHERE lastname = old_value_lastname;

UPDATE authors
SET lastname = :lastname
WHERE id = old_value_id;

Figure 6: adding a MainMenu

`FrmCountries.ShowModal;`

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 7/14

22Blaise Pascal MagazineIssue No: 2 2019

Double-click the sub-menu to generate an event
handler, and complete the generated handler with
this line:

Then select FrmCountries in the Object Inspector
and add an OnShow and an OnClose handler for
the countries form, as you did for the main
form.The OnShow handler should contain the line:

 DataModule1.SQLCountries.Active := True;

The OnClose handler should contain the line:

 DataModule1.SQLCountries.Active := False;

Compile the whole project again and run it.
Select the Countries menu item, which opens the
new form where you can add new country records.
Complete new records appropriate to the data in
your authors table. If you have used data as in
Figure 5 you would add a UK United Kingdom
record, and a US United States of America record
(see Figure 7).

Figure 7: Adding records

JOINING TABLES USING SQL

We now have two tables which can be joined
together in a relation based on the countrycode
field present in each table, a relation which is
called a join or a joined query. We do this by
adapting the SQL entered in SQLQuery1.
Select DataModule1 and edit the SQLQuery1.SQL
property to read as follows:

SELECT
authors.id, authors.lastname,
authors.firstname, countries.countryname
FROM authors
OUTER LEFT JOIN countries
ON countries.countrycode =
authors.countrycode;

If you recompile and run the application you should
see country names rather than the crude country
code abbreviations in the last column, and the
name of the last DBGrid column has changed from
countrycode to countryname.

In order to fill the countries table we need access
to the new form just added.
On the main form (Form1) add uCountries to the
uses clause.
Drop a TMainMenu on the main form and use
the menu editor to add a main menu item
captioned Forms and below it add a submenu item
captioned Countries .

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 8/14

23Blaise Pascal MagazineIssue No: 2 2019

A DISCUSSION OF SQL SYNTAX POSSIBILITIES
Let’s explain the SQL query syntax given above a
little more.
Combining the table name and field name using
dotted notation (e.g. authors.id) specifies the
origin of the data unambiguously by identifying a
specific field in a particular table.
If the SQL query does NOT identify the required
field unambiguously, you will get an error (such as
when an identically named field is present in
several tables, which are not distinguished).
Optionally, you can use table aliases when working
with similarly named fields found in several tables.
An alias is simply a short form substituting for the
full table name, perhaps the initial character of the
table name. If you use aliases you have to show
which alias marks which table.
For instance the above SQL query statement could
be rewritten using aliases like this:

SELECT a.id, a.lastname, a.firstname,
c.countryname
FROM authors a
OUTER LEFT JOIN countries c
ON c.countrycode = a.countrycode;

The query is shorter and perhaps to some eyes also
less easily readable.
If the query has many
joins you have to search
to discover which fields are
a part of the table.
I prefer the alias syntax, because it gives a shorter
query statement, and, if a table name ever
changes, aliases mean that editing the SQL
statement can be done with less typing.

OUTER LEFT JOIN tells the database to search for
the referenced data in the specified table, and the
search begins.
When a match is found, the requested field from
table c (c.countryname) is then shown along with
the specified table a fields.

Another way to search for the referenced data is
using an INNER JOIN. This has the disadvantage
that should the table c data not be found, then the
entire record will not be shown (the existing table
a). fields are not shown

LEFT OUTER JOIN queries always show all records,
returning a NULL value if the referenced data is
missing from the joined table being searched.
The user usually sees this as a blank field, rather
than the display registering an error.

When you run the application the DBGrid shows
the query with full country names.
But the GUI has changed, and the Insert / Edit /
Delete buttons on the DBNavigator are now
disabled. The dataset appears to be read only. This
is because the SQLQuery1 doesn’t yet understand
which table(s) must be INSERTED / UPDATED
in this changed JOIN situation. To remedy this
lack we need to create an INSERT and an
UPDATE query to instruct SQLdb about which
table to use. Make sure that
SQLite3Connection.Connected is False,
and then select SQLQuery1 in the Object Inspector
and edit the SQLQuery1.UpdateSQL property
(which has been blank so far) to read as follows:

UPDATE authors
SET
lastname = :lastname,
firstname = :firstname,
countrycode = :countrycode
WHERE id = :id

Edit the SQLQuery1.InsertSQL property to
read as follows:

INSERT INTO authors (id,lastname,firstname,countrycode)
VALUES (:id,:lastname,:firstname,:countrycode)

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 9/14

24Blaise Pascal MagazineIssue No: 2 2019

As you can see these queries work with
parameters. Parameters are constructed by
prefixing a field name with the ‘:’ colon character.
SQLdb parses the parameter to know which field
each parameter specifies.With those changes, if
you now run the application you should see that
the Insert and Post buttons in the DBNavigator are
now enabled, letting the user both insert and
update table data ().See Figure 9

Figure 9: Insert and Post available

A DBGrid is an inconvenient way to edit and
manage your data.
It would be better to let the grid be a display-only
viewer.
You can then remove the countrycode column
from the grid, which improves the display.
Also, this is a good moment to adjust the
`DBGrid1.Options` property.
Set dgRowSelect to True, and dgTabs to False.
Additionally, let’s remove the DBNavigator and
create a custom toolbar of our own with only the
buttons you want.

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 10/14

25Blaise Pascal MagazineIssue No: 2 2019

BETTER DATA MANAGEMENT
We will create a new form to handle inserting and
updating the data, and leave the DBGrid on the
main form as a data viewer, and use a lookup
control to handle the table JOIN for us. Drop a
further `TSQLQuery` on `DataModule1` and
name it `SQLAuthorsEdit`, giving it the same
properties as `SQLQuery1`, except for the `SQL`
property in which you should type this value:

SELECT * FROM authors
WHERE id = :id`

— Create a new form (File è New Form) and
 save the unit as uAuthorEdit.pas.
— Name the new form variable FrmAuthorEdit,

 and drop on it a TLabel (LblLastName) and
 TDBEdit (DBEditLastName).
— Below them drop a TLabel (LblFirstName)

 and a TDBEdit (DBEditFirstName).
— Below them drop a TLabel

 (LblCountryName) and a
 TDBLookupComboBox (named
 DBLookupCountry - it is approximately the
 middle icon on the Data Controls palette
 page).
 This will enable the user to look up the
 country name in full, yet insert only a
 country code in the database.
 TDBLookupComboBox offers much the same
 functionality as the `JOIN` query given
 above.
— Below the DBComboBox drop a TButton

 (BtnPost) with the Caption "Post". Drop a
 TDataSource (DataSource1) on the form.

Add `DataModule` to the uses clause of the new
editing form.

 — Add DataModule to the uses clause of the new editing form.
 — Set DataSource1.DataSet to DataModule1.SQLAuthorEdit.
 — Set DBEditLastName.DataSource to DataSource1.
 — Set DBEditFirstName.DataSource to DataSource1.
 — Set DBLookupCountry.DataSource to DataSource1.
 — Set DBEditLastName.DataField to lastname.
 — Set DBEditFirstName.DataField to firstname.
 — Set DBLookupCountry.DataField to countrycode.

Other properties of `DBLookupCountry` can be
filled automatically if we introduce a further
TSQLQuery.
Drop a further TSQLQuery on DataModule1 and
give it the name L_Countries. For its `SQL` property
type the following:

SELECT countrycode,
countryname
FROM countries
ORDER BY countryname;`

Figure 10: three data aware

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 11/14

26Blaise Pascal MagazineIssue No: 2 2019

Only the two fields countrycode and countryname
are needed for our purposes.To use L_Countries
we have to drop another TDataSource on
FrmAuthorEdit. Name this datasource listSource,
and set its DataSet property to point to
L_Countries.
Your form should look something like Figure 10.

Set DBLookupCountry.ListSource to listSource.
Set DBLookupCountry.KeyField to countrycode.
Set DBLookupCountry.ListField to countryname.

This property setting is very important, informing
the application that the name shown in the
countryname column is directly related to the value
in the countrycode field for that record.
Thus when edited, the corresponding countrycode
value will be saved in the database.
Double-click BtnPost to generate an OnClick
handler, and complete it thus:

MANAGING THE DISPLAY OF
THE EDITING FORM
When should FrmAuthorEdit be shown?
By default Lazarus assumes that every form you
add to your application should be created
automatically.
This is unhelpful for most forms with database
connections, because this leads to activation of
all the dataset(s) associated with all the forms (in
the absence of any other approach).
However, you don't necessarily want every table
in your databases opened at the outset, at form
creation. Some databases like Firebird use a kind
of locking which means that a record cannot be
used to make a change to another record when
the record is locked.
We need to manage the creation of our
application forms more carefully.

This is easy to do via the Project Options. Open the
Project Options dialog (Project è Project Options)
and select the Forms node which opens a page
with two listboxes on the right (1). see Figure 1DataModule1.SQLAuthorsEdit.Post;

procedure const . (:);TForm1 StartScreen aID Integer
var
 : ;frm TFrmAuthorEdit
begin
 := . ();frm TFrmAuthorEdit Create Nil
 try
 . := ;frm FID aID
 . ;frm ShowModal
 finally
 . ;frm Free
 . . ;DataModule1 SQLQuery1 Refresh
 ;end
end;

Figure 11:

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 12/14

27Blaise Pascal MagazineIssue No: 2 2019

The left listbox lists all auto-created forms.
Select FrmAuthorEdit (which contains the
TDBLookupComboBox) and click the right-arrow
toolbutton to move the form to the listbox on the
right which means it will NOT now be auto-created
at application start-up, but is an "available" form,
i.e. it is declared, but not created.
Click the OK button to accept this setting and
close the Project Options dialog. Now we need to
adapt the main form so we can show
FrmAuthorEdit via a toolbutton click, or via a
double-click on the DBGrid viewer.
A simple way to achieve this is to write a
StartScreen method that takes a single
integer parameter indicating whether an insert-
new-record or an edit-existing-record scenario
applies. Add uAuthorEdit to the uses clause of
main.
Add a public FID: Integer; field variable to
the TFrmAuthorEdit class in uAuthorsEdit.
Add a private StartScreen(const aID:
Integer) procedure to the TForm1 class in the
main unit.In the implementation of the unit
complete the StartScreen method as follows:

Figure 14:

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 13/14

28Blaise Pascal MagazineIssue No: 2 2019

The `aID` parameter indicates whether a record is
located in the table. Giving the parameter a value
of -1 indicates that the fields in the edit form are
empty and can be filled as a new record (see
Figure 12). Inserting a NEW record:
`StartScreen(-1);`

Figure 12:

Editing an existing record:
`StartScreen(Datamodule1.SQLQuery1
.FieldByName('id').AsInteger);`
Here the editing form should be filled with the
existing record values (see Figure 13).

Figure 13:

Two toolbuttons must be provided on the main form
for inserting or updating records.
We also want to provide the functionality that
double-clicking the DBGrid should open the editing
form too. Drop a TToolbar on Form and add two
tool buttons to the toolbar, ButtonNew and
ButtonEdit.Set ToolBar1.ShowCaptions
to True.
Set ButtonNew.Caption to New.
Double-click ButtonNew to generate an OnClick
handler for it which should contain this line of code:
StartScreen(-1);

Set ButtonEdit.Caption to Edit.
Double-click `ButtonEdit` to generate an
OnClick handler for it which should contain this
line of code:
StartScreen(DataModule1.SQLQuery1.
FieldByName('id').AsInteger);

Generate an OnDblClick handler for DBGrid1
and insert the same code given above for
ButtonEditClick.StartScreen enables
both the toolbutton OnClick events and a
double-click on the DBGrid to show the edit form.
Now we have a small demo where we can run a
SQLite database with SQLdb.
It’s easy to change the database to Firebird, MySQL
or another supported database in Lazarus.

A future article will extend the present example
with detail tables, and offer other tools to make
SQLdb work well for you.

THE SQLdb FRAMEWORK UNDER LAZARUS PAGE 14/14

29Blaise Pascal MagazineIssue No: 2 2019

Some time ago a helper component for SQLdb was
introduced to assist in finding the required client
library. This is helpful when deploying your
application away from the development set-up,
since database applications depend on the
presence of a specific library.
The helper is called TSQLDBLibraryLoader.
When dropped on a form or data module it allows
you to connect the appropriate client library to the
database.
It is a component that searches for the chosen
library firstly in the Lazarus installation path.
If the library is not found there, the system library
path is searched (on Windows this is the system
directory).
If the required library remains unfound, no
connection is established, then an error message is
shown.In order to use TSQLDBLibraryLoader with
SQLite as in the above example, sqlite3.dll (or the
equivalent Linux library) must be present.
Provided this client library is installed in the correct
directory, the database can be connected. SQLdb
has several connection components which make
connecting to specific databases possible:

 • TMSSQLConnection (Microsoft SQL Server)
 • TSybaseConnection (Sybase)
 • TPQConnection (Postgres)
 • TOracleConnection (Oracle)
 • TODBConnection (Various databases with ODBC support)
 • TMySQL<version>Connection (MySQL database. <version> = releases from 4.0 to 5.7)
 • TSQLite3Connection (SQLite)

These components all descend from
TSQLConnection, but the ConnectorType
property is not available. In the example above if
you used TSQLDBLibraryLoader you would
set the library loader’s ConnectionType property to
SQLite3, and you would need to set its LibraryName
property to the full path and filename of the
required library.
Setting its `Enabled` property to True, sends a
message to the TSQLite3Connection instance
to ensure it uses this specific library, enabling a
connection to be established to the database.
A word of warning: before the Lazarus 1.8 release
there was a bug which caused the library to be
loaded too soon. This resulted in an error and could
cause problems like a restart of the IDE when your
application files are loaded. If you still use such an
old version of Lazarus you’ll need this workaround:
(http://wiki.freepascal.org/TSQLDBL
ibraryLoader)

TSQLDBLIBRARYLOADER`: OPTIONAL
DATABASE LIBRARY SELECTION

RUNNING THIS ARTICLE'S SOURCE CODE

In order to compile and run the source code
supplied you need to unpack it in a new directory.
Then open the authors project in the Lazarus IDE.
Open the DataModule unit, and select
SQLite3Connection1.
In the Object Inspector click the ellipsis button to
open the DatabaseName property editor, and
locate the local SQLite database file distributed
with the source.
It is called authors.db3. Once the absolute path
and filename of this database is correctly entered
for your local set-up, you should be able to
compile the project without errors.

INSTALLING LAZARUS 2.02 ON MAC PAGE 1/12

INTRODUCTION
This article is divided in to two main sections. The
first section is about Apple and its future. The
second part is about installing.

GENERAL ABOUT APPLE
POLICY FOR THE FUTURE:
The future of the Mac might be [Apple-designed
CPUs](https://www.macworld.com/arti
cle/3315097/macs/macbook-a-series-
chip-2020.html), but the present of the Mac
is Intel. Apple is increasingly in charge of its own
destiny, adding features like the T2 chip to Macs to
handle as much of the system’s security,
encryption, and other miscellaneous tasks as it
can. Still, we expect Apple to ship most or all of its
laptops and desktops this year with Intel inside.

The chip giant hasn’t yet announced the specific
processors it will ship this year, but it has delivered
a few sneak peaks at its roadmap. Here’s what we
know about what Intel is cooking up for 2019, and
how it might impact the Mac. Apple has finally
sent out invitations for its semi-annual fall event,
that expects to be loaded with new products:
an all-new iPad Pro with USB-C, slim bezels, and

Face ID. We may also see a new Mac mini allegedly
geared at pro users, refreshed iMacs, and a new
low-priced MacBook.

I'm most intrigued by the MacBook. Not since the
days of the polycarbonate iBook G4 and original
MacBook has Apple sold a true budget notebook.
The current MacBook Air costs $999, but there are a
lot of compromises there: a non-retina screen,
outdated processor, and aging ports. And above
that is the plain MacBook, which is hardly a bargain
with its $1,300 starting price.

Macs
Apple finally updated the iMac in March 2019, and
added some new upgrade options to the iMac Pro
at the same time. But there are still some Macs that
are due for some love.

MAC PRO
Apple announced a new Mac Pro on stage at
WWDC 2019. It returns the look of Apple's most
powerful computer to the look of the 'cheese
grater' first generation Mac Pro after the second
generation 'trash can' version that has just been
retired.

expertstarter

30Blaise Pascal MagazineIssue No: 2 2019

place three apps that iPhone users will be familiar
with from iOS: Music, the TV app, and Podcasts.
As for how you will manage syncing if you wish to
sync with your Mac, this will be done via the Finder.
Apple also hopes that developers will be bringing
their iOS apps to Catalina.
Other apps getting a look in this time round as
Photos, Safari, Mail, Reminders, and ScreenTime.
Apple had confirmed at WWDC 2018 that it would
be making it easier to port apps from one OS to the
other in 2019.

INSTALLING LAZARUS ON A MAC
installing LAZARUS on a MAC is not particularly
difficult but it is critical that you do the install in the
correct order. Skipping steps will almost certainly
lead to disappointment. In brief, here is what you
can do. The detailed instructions assume a recent
version of macOS on you MAC, a recent version of
XCode from Apple and recent version of Lazarus.

In general, this is about using both the CARBON
and COCOA Widget Set. While Carbon may still be
seen as a little more stable, as of release 2.0.0 the
64bit Cocoa is very close and certainly should be
considered. Carbon is intentionally (by Apple)
limited to 32 bits and we know the next release of
MacOSX will probably not support it.

Available with 8-28 cores and specs that elevate it
above the iMac Pro, the Mac Pro will go on sale
from Autumn.

NEW APPLE DISPLAY
Alongside the new Mac Pro, we expect that Apple
will launch a new display. We don't know much
about what to expect other than it will support
Thunderbolt 3/USB Type-C, and is said to be 6K
and measure 31.6in.

MACBOOK
Apple left out any upgrades for its MacBook
laptop when the covers were pulled off the new
MacBook Air in October 2018. This has led to
questions whether the slimline device will be
discontinued due to the arrival of the Air, which is
more powerful, cheaper, and features a larger
display, while the MacBook is merely a lighter,
low-powered machine.

The most obvious areas of improvement for a
MacBook upgrade would be a move to a newer
generation of processors, most likely Intel Amber
Lake Y-series, the introduction of Thunderbolt 3,
and a price drop to bring it down to the €1.000
that would differentiate it from the MacBook Air.

Unfortunately it seems that moving to the third
generation of Apple’s controversial
Butterfly keyboard wasn't enough to stop
the keyboard problems many users
experienced with the first and second
versions, Apple has since extended the
program whereby they will fix Macs with
faulty keyboards. Maybe Apple will
update the MacBook with a new
keyboard, but it seems unlikely given that
the MacBook Pro update in May 2019
didn't do much to fix the problem.

NEW MACOS CATALINA:
RELEASE DATE AND FEATURES
Apple's update to macOS for 2019 will be
known as CATALINA and it will include a
way for developers to port their iOS apps
to the Mac, as well as lots of other
exciting features. Apple has announced
the details of the next version of MacOS
including its name: Catalina, and when it
will be released: the autumn.

Catalina will bring the demise of iTunes, in its
31

Xcode.app

Figure1: The Application overview Find the Xcode.app

31Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 2/12

1. DOWNLOAD AND INSTALL XCODE.

http://wiki.lazarus.freepascal.org/In
stalling_Lazarus_on_MacOS_X

You need the Apple Developer tools, which are a
part of the Xcode development environment.
They can be installed from the original macOS
installation disks, in which case you will have to
update it. Or a copy downloaded from the APPLE
DEVELOPER CONNECTION (ADC), which
requires free registration:
http://developer.apple.com
Download the XCode file, it will end up in your
Downloads directory as a zip file. Right click it.
It is unarchived into your Downloads directory.
You may be happy with it there but maybe not.
Other users will see the path to it but be unable to
use it. And it is untidy there, so move it and then
tell xcode-select where it is moved to (in a
terminal).
mv Downloads/Xcode-beta.app
/Developer/
sudo xcode-select -s/Developer/
Xcode-beta.app/Contents/Developer
But if you are new to this maybe you best leave the
original way of placing it in to downloads.Then
you do not make the last step.

1.1 INSTALL THE GLOBAL COMMAND LINE
TOOLS FOR XCODE.
This is shown here as a separate step because it is
a different separate step in addition to Step 1.
Don't confuse this with the internal XCode
command line tools that the XCode GUI will
tell you are already installed. Lazarus cannot
use those XCode internal command line tools, so

do the following. Open up a terminal:
Open Finder --> Applications--> Utilities
There you will find the terminal: type
xcode-select --install
you need to install the SDK headers as well:
open
/Library/Developer/CommandLineTool
s/Packages/macOS_SDK_headers_for_m
acOS_10.14.pkg
Once you have installed all this you can start with
the next step:

2 INSTALL FREE PASCAL COMPILER, FPC
SOURCE AND LAZARUS

Get and install FPC and FPC Source. A compatible
fpc (and source) **must be installed before you
install Lazarus**. Download Freepascal. This will
come in an precompiled version. So wont have to
that.
You need to download and install all three
packages fpc, fpc-src and lazarus.

[fpc-3.0.4.intel-macosx.dmg
[fpc-src-3.0.4-macosx.dmg
[lazarus-2.0.2-i686-macosx.dmg

fpc
- the Compiler, some command line tools, base
units and non visual components like database
access
fpcsrc
- the sources of fpc and its packages, needed for
code browsing
lazarus
- the IDE, visual components and help files. After
that you will have to do the followings steps.

Figure 2: The files that are downloaded overview

32Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 3/12

Figure 3: The files can be mouted to disk so by the default Disk Image Mounter

Figure 4: After that they can be installed

33Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 4/12

Figure 5: Accept and open

Figure 6: Read carefully

34Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 5/12

Figure 7,8: Just continue

35Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 6/12

Figure 9: Agree

Figure 10: Enter your password

36Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 7/12

Figure 11:
Lazarus becomes visible in the Applications Group
You have to repeat this with each installation of
the mentioned files. Then its done: You will see
Lazarus as installed App.

37Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 8/12

Uninstalling Lazarus and FPC
from the Mac
To uninstall Lazarus there is no macro or uninstall
file that does it. It can best be done by hand. You
do not need a special app that will do it for you.

If you want to uninstall the following 10 easy
steps are needed:

A
Use this only if you want to delete everything
of your installation for Lazarus. If you have
several installations you need to do that
differently.

1. Go to finder open new Finder window.
 See Figure 12

Figure 12: If you click somewhere in your desktop of the Mac the
information file tab will change. This is normal behaviour for a Mac.

Figure 13: Type in Lazarus and This mac becomes an option.

38Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 9/12

2. Select: list view at the top to have a
 better overview.
 The window gives an enhanced overview of
 the way you can show your files.
 Try and use what ever you like, here we used
 a list view.

3. Make sure you select This Mac at the left
 top Colum.
 This Mac is only the name of the Machine.

4. After adding the name
 in the search box you will see that for
 searching special selections come available.
 Since we want to remove all the files
 belonging to the installation of Lazarus,
 type Lazarus.

5. After that select the second item:
 „This Mac“ where you want to be searched.
 It could also be an other name like My Mac.
 The list appears is a drop down list: choose
 System Files.

Figure 14: Listbox with the selection Kind becomes available.

6. At the right edge there are two small
 buttons, (figure 15).
 a button with Save as caption and an other
 button having a small plus (+) sign. If you
 press the +sign it will reveal some extra
 options that are important. A new line will
 appear that has the option button Kind.

Figure 16: See the changes, Kind becomes System files
and those aren't included

Figure 15: The Kind has been set.

7. If you click on Kind it you will get the
 options list to select System Files.
 Then it changes to that setting.

8. The window now will change
 and tell you: aren't included.

Figure 17: are included

39Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 10/12

9. Change that position to:
 are included by clicking that option.
 You have now all the files gathered that are
 used with Lazarus in one big overview.
 (If you select all Files it normally does not
 include system files). Be careful with this,
 because removing items can damage files on
 your machine. That is why you will have to
 give by deleting your password.
 (Move to Trash)

10. Select them all and delete them by
 right clicking.
 A dropdown list becomes available.
 By pressing command + 4 (⌘+4) you can
 select them all and then delete them.
 (Move to Trash) Using this command means
 you will have to give your Password.

Figure 18: Lazarus working in a project on a Mac

Use this only if you want to
delete everything of your

installation for Lazarus. If you
have several installations you

need to do that differently.

40Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 11/12

B
This is to uninstall only the version you
had last installed if you have it installed
under the name Lazarus.

Open a console like you did before and then type:
sudo rm /Developer/lazarus.

41

Utilities

If you go to
Applications è Utilities è Terminal App
you will find the Icon for the console.

rm stands for remove.

After this your Lazarus has been uninstalled.
At this end we show you the Mac Keyboard
Symbols:

- ⌘ is the **Command** key.
- ⌃ is the **Control** key.
- ⌥ is the **Option** (alt) key.
- ⇧ is the **Shift** key.
- ⇪ is the **Caps Lock** key.
- fn is the **Function** key.

There is something else very interesting for you:
Commands that will allow you to create pictures
without installing a special App. See figure 7

Figure 19: Finding the Terminal

Figure 20: The Terminal is once opened White, not like the icon

Figure 21: The Terminal and code to remove Lazarus

41Blaise Pascal MagazineIssue No: 2 2019

INSTALLING LAZARUS 2.02 ON MAC PAGE 12/12

expertstarter DX

REST EASY WITH KBMMW #24 – XML, JSON OR YAML TO OBJECT CONVERSION PAGE 1 / 2
BY KIM BO MADSEN

I’m always happy to get input from users of kbmMW
about features they would like kbmMW to support.

A short while ago, a user sent an email, stating that he
was being asked to provide XML-RPC and possibly
JSON-RPC support for some of his clients.

XML-RPC is a fairly old standard made by an employee
at Microsoft back in late 80’s. I have not spent much
time actually considering supporting it until now,
because I have assumed it to be practically out of use,
beaten mostly by REST these days.

However digging into it a bit, I find many scenarios
where XML-RPC is being used, so of course kbmMW
should support it

XML-RPC is fairly easy to implement as it supports only
a very few well defined datatypes and that it is using
positional arguments, which makes it integrate nicely
with kbmMW’s own RPC style.

One datatype XML-RPC supports which, at least in the
old days before kbmMW v5, did not really play well
with kbmMW, is a key/value style datatype.
However v5 comes to the rescue, since it is way more
clever regarding what can be used as arguments and
results.
Now not only simple types can be handled but just
about any type, including the nifty Object Notation
ones, including , TkbmMWONArray
TkbmMWONObject and TkbmMWONNative. In this
case XML-RPC will forward the key/value data as a
TkbmMWONObject instance.

Similarly one can return instances TkbmMWONObject
from the methods called and it will be understood
correctly as a key/value response datatype.

Another Remote Procedure Call method is called JSON-
RPC. As the name implies, JSON-RPC use JSON instead
of XML as the container format. That also means that
anything that can be expressed as JSON can be used as
arguments or results in JSON-RPC. Fortunately again
the kbmMW Object Notation framework fits in nicely.

Let us define an XML-RPC server.

It is as easy as adding a TCP based server
request/response transport like
TkbmMWTCPIPIndyServerTransport,
and setting its StreamFormat property to
XMLRPC and include
kbmMWXMLRPCTransStream in the main
units uses clause.Now the server will accept
requests like this:

 :POST http //127.0.0.1/smartdemo

< >methodCall
 < > </ >methodName addnumbers methodName
 < >params
 < >param
 < >< > </ ></ >value i4 i4 value11
 </ >param
 < >param
 < >< > </ ></ >value i4 i4 value2
 </ >param
 </ >params
</ >methodCall

which will result in responses like this:
 < >methodResponse
 < >params
 < >param
 < >value
 < > </ >double double13
 </ >value
 </ >param
 </ >params
</ >methodResponse

Remember that the request must be given with
the mimetype/Content-type text/xml to be valid.
kbmMW supports both UTF-16 and UTF-8
charset setting.

The last part of the URL (after the last /) must be
the name of the service optionally with a dot (.)
and the version of the service.

Hence SmartService.1.0 is valid as a way to call
the service named SmartService version 1.0
If the dot is omitted, the default version will be
used, as is normal for kbmMW

If you instead set StreamFormat property to
JSONRPC and include
kbmMWJSONRPCTransStream in the main
unit uses clause, you will have asked kbmMW to
understand JSON-RPC v2.0. kbmMW is almost
100% compatible with JSON-RPC except that it
currently will not accept batch statements
(multiple calls grouped in a JSON array).
Let us look at the same request in JSON-RPC
format.

COMPONENTS
DEVELOPERS4 42Blaise Pascal MagazineIssue No: 2 2019

REST EASY WITH KBMMW #24 – XML, JSON OR YAML TO OBJECT CONVERSION PAGE 1 / 2

 POST http://127.0.0.1/smartdemo

{"jsonrpc": "2.0", "method": "addnumbers",
"params": [42, 23], "id": 1}

{"jsonrpc":"2.0","id":1,"result":65}

Which will result in this response

JSON-RPC supports named arguments where the
arguments would be provided as a JSON object
(key/value list) instead as an array of values.
kbmMW will forward this as a TkbmMWONObject
to the method being called. So in this case the
method must be defined to only receive one
argument.

Eg.

POST http://127.0.0.1/smartdemo

{"jsonrpc": "2.0", "method": "addnumbers", "params": {"val1":42, "val2":23}, "id": 1}

The method will have to work like this to get access
to the named arguments:

function const . (:): ;TMyService AddNumbers Arg variant integer
var
 : ;co TkbmMWONCustomObject
 : ;o TkbmMWONObject
begin
 . (,) if thenTkbmMWRTTI GetkbmMWONCustomObject Arg co
 begin
 . if thenco IsObject
 begin
 := ();o TkbmMWONObject co
 := . [];i1 o AsInt32 'val1'
 := . [];i2 o AsInt32 'val2'
...
 ;end
 ;end
end;

The class TkbmMWRTTI contains a couple of other
nice methods that makes it easy to extract other
complex values from the variant arguments:

function var . (: ; :):TkbmMWRTTI GetkbmMWDateTime AVariant variant ADateTime TkbmMWDateTime boolean

function var . (: ; : ; TkbmMWRTTI GetkbmMWNullable AVariant variant AIsNull boolean
var :):AVariant variant boolean

The later will return the value of a kbmMWNullable
contained in a variant, and if the value is actually
null.
You can return a complex value like this:

 := . ();Result Use AsResult akbmMWOnObject

kbmMW will take care of freeing the object when
it is no longer needed.

All this will be available in the upcoming kbmMW
release.

You can read more about XML-RPC here:
https://www.tutorialspoint.com/
xml-rpc/index.htm

and JSON-RPC here:
https://www.jsonrpc.org/
specification

If you like what you see, please share the word.

and

COMPONENTS
DEVELOPERS4 43Blaise Pascal MagazineIssue No: 2 2019

barnsten • development tools • training
• consultancy • hands-on workshops
• components • support

Be the First to Get 10.3.2 and Save 15%! Also, get Enterprise
connectors when you buy Enterprise or Architect (€ 1.057,-Value).
Expand FireDAC & SQL to connect to Enterprise data sources
spanning Accounting, CRM, Marketing, NoSQL, eCommerce, Social
Networking and more.

Get Ready for 10.3.2! We're offering you a pre-release discount on RAD Studio, Delphi and C++Builder. Buy

10.3.1 now at 15% off and get the 10.3.2 upgrade upon release. Use this early bird special to get all

upcoming product releases (including 10.3.2).

We cannot tell you everything about 10.3.2, but we are confident you will love what's coming. Lock in your

savings now and enjoy 12 months of update subscription (That means you get all new releases that come out

in the first year)!

Purchase Enterprise or Architect and maximize your productivity with Enterprise Connectors. Seamlessly

connect your application to over 70 enterprise apps (€ 1.057,- value). Enterprise and Architect editions offer

significant value over the Professional edition and your 15% discount can be combined with the free Enterprise

Connectors offer.

https://www.barnsten.com/default/development-tools/rad-studio/
rad-studio-professional?___from_store=nl

SmartBinding with kbmMW #1 PAGE 1 / 9

controls. It made it very easy, in VCL, to
quickly develop a datadriven GUI, although
from purist views, the end result often ended
up with a mix of view and model parts
intermixed with control parts in the same unit,
in one big spaghetti mashup.

Firemonkey is really cool
When Firemonkey came along, Embarcadero
decided to no longer provide the
TDataset/TDatasource based data binding,
but instead provided a much cooler looking
framework called live binding, which have
additional flexibility but at the expense of a more
complicated binding process. Specially in the first
several versions of it, binding stuff were quite
complicated, because various classes had to be
instantiated, somewhat confusing properties set
and all the stuff linked together by hand.

It led to lenghty explanations and posts attempting
to explain the inner workings of live binding.

Later versions introduced a very nice (at least on
the surface) live binding designtime editor,
which made it fairly easy to link objects and
properties together. Behind the scenes it however
continued to rely on complex class instantiations,
property settings and object hierarchies to work.
But it was much nicer and easier to use…. at least
for fairly simple forms with not too many controls
in play.

I prefer making new apps using Firemonkey,
simply because it has some design abilities that
makes for a more modern looking application,
and it also opens up executing those apps on
various platforms, which in my belief has a life
extending potential for the apps. In practice
Firemonkey turned out fairly well, and gave nice
sideeffects, where some platforms availability
suddenly broadened the potential use cases for my
applications. One application could sometimes
work very well on both mobile platforms and as
kiosk mode like Windows applications.

Although my workdays often exceeds 15 hours,
I’m actually lazy by nature (), just ask my wife!
and I absolutely despise having to make the same
work twice. Hence Firemonkey came as a tool to
enable my future laziness by being able to reuse
with little extra effort.

Live binding problem #1
What I however discovered, was that although live
binding seems beautiful on the surface, it quickly
turned out to be quite ugly. The designtime
drag/drop designer became exponentially slower and
slower in use, making it unbearable to use for more
complex forms typical in applications where
business style grid like data is to be presented in a
non grid way, hence requiring separate controls
and such.

The binding is still fairly easy to do at designtime,
it is just very very slow reacting and it is with a
larger number of controls getting unusable in
practice.Having a larger number of controls also
impairs the overview in the designer, even though
it does support some layer management. But it’s
just slow to use.

Live binding problem #2
The problems with live binding unfortunately do
not stop there.
In a program where one want to separate view
from model from control, it is virtually impossible
to code in a nice way that enables speedy
refreshing of data, while not having live binding
affecting performance greatly.

For example, if using a TDataset, doing
EnableControls DisableControls and
have absolutely no effect on live bound controls.
If your TDataset originally contained say 3000
rows, and you want to refresh those 3000 rows
from a database or an application server, then due
to the way live binding works, it will cause your
poor to run 9.000.000 TDataset’s Post
record navigations due to Resync being called by
Post, while large buffers has been allocated for
TDatalink’s which are the actual glue
between the TDataset and the DB live binding
source classes.

It makes an otherwise speedy interface crumble to
an almost complete halt by several orders of
magnitude.

So how to avoid that? Well one would think
DisableControls would do the trick… alas it
doesn’t.

PREFACE
One of Delphi’s
forces (and
weaknesses) has
been the ability to
do data binding
between a
TDataset and
specially designed
data aware

COMPONENTS
DEVELOPERS4 45Blaise Pascal MagazineIssue No: 2 2019

the way back to how live binding was used from
day 1…. having to remember and instantiate the
correct object hierarchies, set the correct
somewhat obfuscated properties … and pray.
Making accessing and viewing the data much more
cumbersome than I like.
I just frigging want to focus on the actual business
aspects () of the visual, algorithms and data
application, not to have it drown in all sorts of stuff
draining my mental capabilities, and in fact
hindering my way towards delivering something
stable, speedy and business wise feature rich to the
customers.

Livebinding problem #4
Live binding is event oriented. That means, each
and every time something sneezes in your app,
it might trigger live binding code that may result in
another part of your apps controls or data getting
updated which in turn may trigger yet more events
being fired. Most Delphi coders probably have tried
the simple circular never ending event loop having
one enter data into another TEdit.OnChange
TEdit.Text which in turn also have an
OnChange event handler, which is supposed to
update the first Text property. It is an TEdits
easy way to spend all your computers CPU power
on one core and does not make for a nice GUI for
your end users.

The idea about binding data to visual controls
should IMO handle this issue, to ensure that it is
easy to get your data presented, and to handle
user input. Unfortunately using an event based
setup, makes it very likely that you will end up in
circular event trains which you again have to code
your way out of to handle. Again taking time away
from actually making business code.

“Well Kim, you have done nothing except
complain. Do something about it then if you
are so damned negative about live binding,
grumpy ol’ man!’

SmartBinding comes to the rescue
And so I did. I realised about a year ago, the above
issues that affects my productivity in a negative
way, and started to brainstorm and prototype a bit
to see if I could find some solution. At first I was
thinking about improving live binding, because it is
already there… but I soon came to the conclusion
that the design in itself was wrong, and there
would never be a fix that solved all 4 above
problems.

So you could stop using TDataset’s! Yes… but
TDataset’s are actually very nice containers
for storing data and the history of the data,
specially when using kbmMemTable (used by
kbmMW) as the storage. It makes for a very easy
way to figure out what to insert, update,
delete etc. when the time comes to that in the
data’s visual life time.
But there must be a way? Yes. I did find one…..
Completely disconnect the from the TDataset
TBindSourceDB before the refresh operation,
and reconnect it after. The problem with that,
is that you now in most cases will have to make
your model/control part that handles your data
access to the database or application server, aware
about the existence of a TBindSourceDB,
so it can be disconnected and reconnected at the
right moments.

Perhaps one can “handle” this “nicely” with some
callback IoC techniques, but I really don’t want to
have to remember to circumvent structural design
issues in code, every single time I’m going to write
a new application. So it is in my opinion a
mitigation of a problem, not a solution, one you
have to remember to mitigate each and every time
new data is going to be worked on.

What about avoiding the Resync?
Unfortunately that is not an option at all. It’s part
of TDataset’s way of working.

Livebinding problem #3
Ok… I have to make the applications work, and
the end users don’t really care how it is working
behind the scenes, as long as it works and looks
pretty. So I bite the bullet and mitigate problem
#2. But remember there is really no nice mitigation
for problem #1 without entering attempting live
binding between separate TFrame and other
such stuff, that even more removes focus on the
actual functionality of the application, to be able
to handle all the plumbing to make live binding
work seamlessly.

But then enters problem #3. What if I want to
refactor the visual controls? What happens
with the live binding? If your controls are
deleted/moved to another form, your live binding
disappears, and you will have to manually
remember all the bindings you made at design
time, and redo them later on after the refactoring.
It makes refactoring the G.U.I a true P.I.T.A.
But then don’t use the designer… make the
binding in code! That would be a typical answer to
both problem #1 and #3… and that takes us all

SmartBinding with kbmMW #1 PAGE 2 / 9

COMPONENTS
DEVELOPERS4 46Blaise Pascal MagazineIssue No: 2 2019

It needed a new thinking… a new approach. After
some tinkering, I had the basic structure in place
for what is now called kbmMW SmartBinding and
which will be included as beta code in the
upcoming kbmMW release.

The design goals for SmartBinding was:
— Must be easy to use
— Must minimise or completely remove boiler

 plate code.(do you see the trend here?…
 kbmMW has since v5 been all about making
 things easier!)
— Must have good performance
— Must have a low CPU, memory and size

 footprint
— Must not result in endless circular event

 trains
— Should work with all sorts of data and

 controls
— Should be flexible and extendable
— Must be near real time
— Must be easily refactor-able
— Should play well with kbmMW’s other

 features
— Should be usable even without using

 kbmMW’s other features
All those goals has now been achieved in the
current beta version.

SmartBinding is based on a poll/update strategy
rather than a strict event oriented code bound
methodology. Done right it fits well with the
above requirements.

Let’s see some action then!
Example – Simple property binding

 We start out gently…
Assume we have
these controls on a
form. We want to be
able to type stuff in
Edit1 (TEdit)
and have it reflected
in Edit2
(TEdit),
Button1 and
Label1, and we

want to be able to type stuff in Edit2 and have it
reflected in Edit1 (which in turn further reflects to
Button1 and Label1 as already mentioned).
A simple binding case.. but fairly complex in an
event driven binding context.
This is the code needed to bind:

Binding Bind Edit1 Label1. (, , ,);'Text' 'Caption'
Binding Bind Edit1 Button1. (, , ,);'Text' 'Caption'
Binding Bind Edit1 Edit2 mwboTwoWay. (, , , ,[]);'Text' 'Text'

I mean… that’s ALL that is needed to bind those
controls together!
The first 2 arguments are the source instance and
property name, and the next 2 are the destination
instance and property name.

What about the Binding instance…where does
that come from? kbmMW SmartBinding default
comes with an instantiated singleton
Binding:TkbmMWBindings which can be
used immediately. See later for more information.
The last line also includes an optional flag, that
indicates that the binding is two ways, so changing
one side will automatically change the other too.

Basically all string, boolean, floating
point, int64 integer and properties can
be easily bound this way with auto conversion
where SmartBinding make sure to automatically
convert data between the different types as
needed.
Other types of data can be bound too,
but the source and destination properties will then
have to be of same type (there are ways around
that too… see later).

What about thread safety?
kbmMW SmartBinding maintain two pools of
bindings, one where binding polling and updates
can run completely async in a separate thread,
and one where the binding polling and updates
must run in the main GUI thread.
When you bind, SmartBinding automatically
recognise if you are binding to and/or from
TControl‘s, and assign those bindings to the
appropriate binding pool, thus ensuring correct
operation.

It is important to know, that each poll and update
pass will be fully done before a next one will
happen. The async pool will be immeidately started
and run alongside the sync pool, but the complete
pass will have to finish before being considered
done and next update pass will be attempted
according to the scheduled interval. See prologue
for more information about the interval.

Example – Binding to and from record data
kbmMW SmartBinding can also bind to regular
objects or even records of data. Just make sure that
the data is constantly available for as long as the
binding exists. For that reason kbmMW SmartBinding
also contains easy unbind and rebind features.

SmartBinding with kbmMW #1 PAGE 3 / 9

COMPONENTS
DEVELOPERS4 47Blaise Pascal MagazineIssue No: 2 2019

 type
 = TData record
 : ;FData1 string
 ;end

var
 : ;data TData
...
 . (, ,@ , (),);Binding Bind Edit1 data TypeInfo TData'Text' 'FData1'
 . (@ , (), , ,Binding Bind data TypeInfo TData EditN'FData1' '

 type
 = TLine class
 private
 : ;FName string
 : ;FAddress string
 public
 (: ; constructor const string constCreate AName
AAddress:);string
 : ;property Name string read FName write FName
 :property Address
 string ;read FAddress write FAddress
 ;end

 = < >;TLines TObjectList TLine

var
 : ;lines TLines
...
 := . ;lines TLines Create
 . (. (,));lines Add TLine Create 'Hans' 'Hansvej 1'
 . (. (,));lines Add TLine Create 'Jens' 'Jensvej 1'
 . (. (,));lines Add TLine Create 'Frederik' 'Frederikvej 1'

SmartBinding with kbmMW #1 PAGE 4 / 9

 Now let’s bind:
var
 : ;bnd IkbmMWBinding
begin
 . ;Binding Clear
 := . (, , ,);bnd Binding Bind lines Edit1'Name' 'Text'
 . (, , ,);Binding Bind lines Edit2'Address' 'Text'
 . <> if nil thenbnd Navigator
 . . ;bnd Navigator First
end;

 var
 : ;mt TkbmMemTable
 : ;csv TkbmCSVStreamFormat
begin
 := . ();csv TkbmCSVStreamFormat Create nil
 try
 := . ();mt TkbmMemTable Create nil
 . (,);mt LoadFromFileViaFormat csv'biolife.csv'
 finally
 . ;csv Free
 ;end

COMPONENTS
DEVELOPERS4 48Blaise Pascal MagazineIssue No: 2 2019

And let’s make the bindings to the edit controls
()you may be able to guess how it’s done by now

 . ;Binding Clear

bnd Binding Bind mt Edit1 mwboTwoWay:= . (, , , ,[]);'Category' 'Text'
 . (, , , ,[]);Binding Bind mt Edit2 mwboTwoWay'Species Name' 'Text'
 . <> if nil thenbnd Navigator
 . . ;bnd Navigator First

Again exactly same way to bind. In this case we
have told the bindings to be two way, essentially
making and behave the same way Edit1 Edit2
as if it was the old dataware controls. TDBEdit
Again we have optional access to the navigator
and can easily navigate the dataset.

Example – Binding to a list box or combo box
Sometimes one want to use the source list/dataset
() to populate a or or selected parts of it TList
TCombobox (or descendant).

For this example we also want to synchronise the
controls so selecting in one of them is automatically
reflected in the other.

Binding Clear. ;
Binding Bind mt ComboBox1. (, , ,);'Species Name' 'Items'
Binding Bind mt ComboBox1 mwboTwoWay. (, , , ,[]);'@' 'ItemIndex'
bnd Binding Bind mt ListBox2:= . (, , ,);'Common_Name' 'Items'
Binding Bind mt ListBox2 mwboTwoWay. (, , , ,[]);'@' 'ItemIndex'
if nil then . <> . . ;bnd Navigator bnd Navigator First

SmartBinding with kbmMW #1 PAGE 5 / 9

First we bind one field from the dataset mt, to the
items string list of the and we bind TCombobox,
another field to the items string list of the TList.
But what we have also done, is introducing the @
() indicator. When used as the source property, at
we ask to refer to the kbmMW SmartBinding
position of the source list/dataset. So we bind the
position of the source to the ItemIndex

 (position) of the and TList TCombobox.
 Further we have told SmartBinding that we
want it to be two ways. Hence not only does
changing the position in the source navigator
update the position in the and TList
TCombobox, but selecting something in the
controls also automatically updates the source
list/datasets position essentially in this case
ensuring the two controls are in automatic sync
with each other and their source.

COMPONENTS
DEVELOPERS4 49Blaise Pascal MagazineIssue No: 2 2019

In this case we bind the dataset mt from before,
to columns of a grid, and as a little bit of extra
spice, we also bind a to the grid’s TEdit
RowCount property, so we dynamically, at
runtime, can change the number of shown rows.

 . ;Binding Clear
 := . (, , ,);bnd Binding Bind mt StringGrid1'Category' '#1'
 . (, , ,);Binding Bind mt StringGrid1'Species Name' '#2'
 . (, , , ,[]);Binding Bind mt StringGrid1 mwboTwoWay'@' '@'

 // Show position number
 . (, , ,);Binding Bind mt StringGrid1'@' '#0'

 // Bind to rowcount for easy on the fly change at runtime
 . (, , ,);Binding Bind leRowCount StringGrid1'Text' 'RowCount'

 . <> if nil thenbnd Navigator
 . . ;bnd Navigator First

It is still the same way we bind as we are getting
used to, but now a #n syntax is revealed.
It simply refers to the column number (starting
with 0) in the grid, that is bound to.

Using the navigator, the grid will now act almost
exactly as if it was a You can scroll TDBGrid.
through the source dataset, and the grid will
automatically update.
Changing the selected row within the grid will also
automatically update the position of the source
dataset, because we twoway bound the @ of the
source dataset to the @ of the grid.

Changes to the current record will in the source
dataset automatically be reflected in the grid and
had we bound two ways, the data entered into the
current row in the grid would be reflected back to
the source.

SmartBinding with kbmMW #1 PAGE 6 / 9

 Example – Binding to a grid
No SmartBinding without binding a grid…

COMPONENTS
DEVELOPERS4 50Blaise Pascal MagazineIssue No: 2 2019

Example – functions as binding source and/or
destination
Not only objects, data or datasets can act as source
or destination for a binding. Anonymous
functions can also.

 // Show calling function when Edit1.Text is changed.
Binding Bind Edit1 AProxy TkbmMWBindingCustomProxy. (, , (: ; 'Text' function const
var :):AValue TValue boolean
 begin
 Log Debug AValue ToString. (+ .);'Got change from binding to Edit1: '
 := ;Result true
);end

The above example essentially works as a kind of
event handler where the code in the anonymous
function will be called every time a change has
been detected in . It will in this case Edit1.Text
log the situation using the kbmMW logging
framework TkbmMWLog.

Next example is how to use a function as the
source for data.

Binding Bind AProxy TkbmMWBindingCustomProxy AValue TValue boolean. ((: ; :):function const var
begin
 := ();AValue Random 100
 := ;Result true
end, ,);Edit1 'Text'

Now the is repeatedly anonymous function
called. Every time the function returns a new
changed value, t will be updated. Edit1.Tex
How often the function is polled depends on the
setting of the property of UpdateFrequency
the Binding instance which we use to define the
bindings with. Default the frequency is 10 times
per second, but you can always change the
frequency to match your liking.

 . := ;Binding UpdateFrequency 1000

The above line will change the update frequency to
once per second.

Example – Augmenting bindings
What if you want to define a binding that takes a
numerical value from one source, and outputs that
to a label but formatted differently?

You will use the ToDestinationExpression
method available on the resulting interface
returned from the Binding.Bind function.

 // Show calling function to populate Edit1.Text and format its look.
Binding Bind AProxy TkbmMWBindingCustomProxy AValue TValue boolean. ((: ; :):function const var
 begin
 := ();AValue Random 100
 := ;Result true
 , ,)end Edit1 'Text'
 . ();ToDestinationExpression '"Hello "+data'

SmartBinding with kbmMW #1 PAGE 7 / 9

COMPONENTS
DEVELOPERS4 51Blaise Pascal MagazineIssue No: 2 2019

In this case we simply add on to the previous
function binding example, and asks kbmMW
SmartBinding to augment the data, on the way to
the destination according to the string
expression given in the
ToDestinationExpression function. This
example results in containing the Edit1.Text
value ‘Hello ‘ and a random number.
The string expression is quite feature rich,
as it is based on the same expression handling
capabilities that kbmMW is taking advantage of
elsewhere, that originates from kbmMemTables
capable SQL parser and evaluator. In this case, we
however only support the math like expression
part, not the SQL itself. But you can use all regular
operations you would expect to be able to use, including
many nice conversion, regular expression, math,
conditional evaluation and more functions. You can
read more about supported functions and how to
extend the expression parser and evaluator with
your own user defined functions, here:
https://components4developers.blog
/2017/08/20/user-defined-
functions-and-kbmmemsql/

As a binding can be two way, there is a need to
also be able to format or perhaps unformat the
value when it is going back to the source. Hence a
ToSourceExpression function also exists.

 . (, , , ,[])Binding Bind Edit1 Edit2 mwboTwoWay'Text' 'Text'
 . ()ToDestinationExpression '"Hello "+data'
 . ();ToSourceExpression 'Mid(data,7)'

This example grabs what is in and Edit1.Text
puts it into with the text ‘Hello ‘ Edit2.Text
prefixed. However it also recognise changes made
in and moves that text to Edit2.Text
Edit1.Text after first having removed the first
6 characters of it. This type of two way binding
would often make event driven binding go nuts,
because of the potential endless event train
happening in the control by the changes. TEdit
However kbmMW SmartBinding is not affected by
those events, and ensures the updates with
minimum effort.

ENABLING, DISABLING, UNBINDING AND
REBINDING
Sometimes you may want to prevent a binding to
do its job. If the prevention is only supposed to be
temporary, then one way is to disable it.

var
 : ;bnd IkbmMWBinding
begin
 := . (....);bnd Binding Bind
...
 . := ;bnd Disable true
...
 . := ;bnd Disable false
end;

If you want permanently to disable it, you might as
well remove it. For that purpose the Unbind
methods exists.

 . ();Binding UnbindSource Edit1

The above will unbind from being a Edit1
source for any bindings.

 . ();Binding UnbindDestination Edit2

And the above will unbind from being a Edit2
destination for any bindings.

You can also unbind using the IkbmMWBinding
you received when issuing the Bind method.

 var
 : ;MyBinding IkbmMWBinding
begin
 := . (....);MyBinding Binding Bind
...
 . ();Binding Unbind MyBinding

If you are not binding to anonymous functions, you
can also unbind using the exact same arguments as
the bind

 . (, , ,);Binding Bind Edit1 Edit2'Text' 'Text'
...
Binding Unbind Edit1 Edit2. (, , ,);'Text' 'Text'

Finally you may want to rebind. Rebind
essentially makes it possible to modify a binding
from using one source or destination instance to
another. It is specially interesting when binding
to transient records or objects

 . (@ ,@);Binding Rebind data data2

The above changes any bindings which references
the record or memory buffer ‘data‘, and update
those bindings to instead reference the record or
memory buffer ‘data2‘.

Similarly you can rebind a control
 . (,);Binding Rebind Edit1 NewEdit1

All bindings referencing will now instead Edit1
reference NewEdit1.

SmartBinding with kbmMW #1 PAGE 8 / 9

COMPONENTS
DEVELOPERS4 52Blaise Pascal MagazineIssue No: 2 2019

PROLOGUE
As you may now have noticed, the syntax for
runtime binding is consistent and simple, and
makes it easy to refactor bindings when user
interfaces or controls are refactored.

I did earlier on mention that in addition to the
existing thread safe Binding singleton, you
can choose to make your own binding manager
instances. The reason to do that can include that
you want different bindings to be updated at
different intervals of some reason, or that you
want very easy access to drop or recreate all
bindings for for example a frame in one simple go
without affecting all other bindings defined in
other frames, and without having to explicitly
unbind each of them.

var
 : ;myBindingMgr TkbmMWBindings
begin
 := . ();myBindingMgr TkbmMWBindings Create 1000
...
 . ;myBindingMgr Free

The above example creates another binding
manager which only polls every second.
Remember to free your own created binding
managers when you do not need them any longer.

There are many more ideas in my head about
making binding easier and add more features to it,
but this is what will be included as beta code in
next full release of kbmMW Enterprise Edition.

If you like our products and posts, please share the
posts with everyone you know could benefit from
them!

C4D is in it for making coding applications easier,
letting you focus on the business features rather
than the plumbing. Why? Because I hate doing
plumbing when I’m developing end user code. So
I’m actually not developing all this stuff for you,
but selfishly and egoistically for my self, hoping
you will like it too.

SmartBinding with kbmMW #1 PAGE 9 / 9

COMPONENTS
DEVELOPERS4 53Blaise Pascal MagazineIssue No: 2 2019

ANN: KBMSQLITEMAN V. 1.80 RELEASED!

OUR FREE COOL TOOL FOR MANAGING SQLITE
DATABASES HAS BEEN RELEASED IN V. 1.80.
This includes a new local SQL filter capability in
addition to being compiled with latest version of
kbmMW and kbmMemTable.

To download it, login at
https://portal.components4developers.com

and it is readily available for you to download.

If you do not have a login already, you can easily
and for free sign up same place.

The existing filtering capability
kbmSQLiteMan has for a long time had the ability to
locally add an additional filter on result sets
returned from the SQLite database.

MANAGING SQLITE DATABASES FREE TOOL

COMPONENTS
DEVELOPERS4 54Blaise Pascal MagazineIssue No: 2 2019

MANAGING SQLITE DATABASES FREE TOOL PAGE 2 / 4

 In this filter are, a fairly complex expression can be type, ranging from simple SIZE<10 which filters the
result set to only show the 3 records with a SIZE value less than 10. AND, OR, NOT, (), LIKE “P*”
etc. are all supported.

The new local SQL “filtering” capability
The above filtering is fine for simply ensuring some records in the result set are not displayed. However if
you want to do something more complex with the result set, like complex filtering, grouping, calculations
or custom ordering etc, you may want to use the new SQL filtering capability. It internally use
kbmMemTable’s SQL ability which is fairly close to regular SQL.

COMPONENTS
DEVELOPERS4 55Blaise Pascal MagazineIssue No: 2 2019

Here we combine the result set’s NAME and SIZE
column to one column called NAMESIZE. This
simple example could of course just as well have
been handled in the original SQLite SQL
statement, but there may be situations where you
want to keep the original data, but do something
more with it.

kbmMemTable SQL supports SELECT statements
with optional sub select, CASE/WHEN/ELSE,
IN, BETWEEN, LIKE, MOD, DIV, ORDER
BY, GROUP BY, HAVING, LIMIT, OFFSET,
|| (concat), +, -, *, / in addition to a
good number of functions:

SIN(x), COS(x), TAN(x), LOG(x),
LOG2(x), EXP(x), TRUNC(x), FRAC(x),
MOD(x), DIV(x), SQRT(x), SQR(x),
ROOT(x,y), MIN(x,…), MAX(x,…),
AVG(x,…), SUM(x,…), ABS(x),
POW(x,y)

UPPER(x), LOWER(x), TRIM(x),
TRIMLEFT(x), TRIMRIGHT(x),
MID(x,p,n), LEFT(x,n), RIGHT(x,n),
LENGTH(x), LEFTPAD(x,c,n),
RIGHTPAD(x,c,n), CHR(x), POS(sx,x),
REPLACE(x,so,sr [,o1][,o2]),
SPLIT(x,sx, OUT v), REGEXP(re,x
[,OUT v]),

NOW, DATE(x), TIME(x), YEAR(x),
MONTH(x), DAY(x), HOURS(x),
MINUTES(x), SECONDS(x),
DATESTRING(x), TIMESTRING(x)
CASTTODATETIME(x), CASTTOSTRING(x),
CASTTONUMBER(x), CASTTOFLOAT(x),
CASTTOINT(x)
IF(x,te,fe [,ne]), NULLIF(x1,x2),
ISNULL(x), COALESCE(x,…)

x and y = A value (constant, out defined variable, expression or a field). Values are auto converted
between numbers and strings as needed
p = An offset. 1 is first character
n = A number indicating a count
c = A character
sx = A sub string value
so = String to search for
sr = String to replace with
o1 = True/false value. If true, replaces all occurrences
o2 = True/false value. If true, ignores case
v = Name of a variable. The name must start with $. $VAR1 is a valid name
re = Regular expression
te = True expression. Returned if x evaluates to true
fe = False expression. Returned if x evaluates to false
ne = NULL expression. Returned if x evaluates to NULL
x1 = A value. If x1=x2, NULL is returned, else x1.
x2 = A value
fn = A fieldname as a string, to return the value from

MANAGING SQLITE DATABASES FREE TOOL PAGE 3 / 4

COMPONENTS
DEVELOPERS4 56Blaise Pascal MagazineIssue No: 2 2019

The FROM clause must always refer to the virtual table named DATA which represents the
complete original result set.

Examples of valid SQL filter statements

SELECT fld5,MAX(fld1),MAX(fld2) FROM DATA GROUP BY fld5
SELECT DISTINCT * FROM DATA
SELECT FieldValue('fld1') as myfld1,Coalesce(FieldValue('NoField'),"ISNULL")
as NoField FROM DATA
SELECT Coalesce(10) FROM DATA
SELECT Coalesce(Null) FROM DATA
SELECT Coalesce(fld7,99999) FROM DATA
SELECT Coalesce(fld7,Null,99999) FROM DATA
SELECT fld1, (SELECT Max(fld1) FROM DATA) FROM DATA
SELECT fld1 FROM DATA WHERE fld3 IN (SELECT b.fld2 FROM DATA b WHERE b.fld2<4)
SELECT 1, MAX(fld1) FROM DATA GROUP BY 1
SELECT 1 AS 'ID', MAX(fld1) FROM DATA GROUP BY ID
SELECT NULL as fld1, fld2, "ABC" as fld3, 10+20 as fld4 FROM DATA
SELECT RegExp("1\d",fld2), fld2 FROM DATA
SELECT RegExp("^(\d)(\d*)",fld2,OUT $PAR),$PAR,fld2 FROM DATA
SELECT fld1 AS TIME, fld2 FROM DATA WHERE fld1 LIKE „STR1%"
SELECT fld1, fld2 FROM DATA WHERE fld1 LIKE „STR1%"
SELECT fld1, fld2 FROM DATA WHERE NOT fld1 LIKE „STR1%"
SELECT fld1, fld2 FROM DATA WHERE fld1 NOT LIKE „STR1%"
SELECT fld1, fld2 FROM DATA WHERE fld2 LIKE „8%"
SELECT fld1, fld2, CASE WHEN fld2<100 THEN 'LOW' WHEN fld2>=100 AND fld2<200
THEN 'MEDIUM' ELSE 'HIGH' END FROM DATA
SELECT fld1, fld2, CASE fld2 WHEN 10 THEN 99999 WHEN 20 THEN 22222 ELSE -1 END
FROM DATA
SELECT RecNo,RowID,* FROM DATA
SELECT fld1 FROM DATA WHERE fld2 in (10,20,30)
SELECT 1-2-3 FROM DATA LIMIT 1
SELECT LeftPad(fld3,'A',10),RightPad(fld3,'B',12),fld3||'ABC' FROM DATA
SELECT fld2+1 as fld2a FROM DATA ORDER BY fld2a DESC
SELECT fld2+1 as fld2 FROM DATA
SELECT fld1,fld2,fld3,fld6,fld3 AS SomeField1,fld2 AS SomeField2,fld5 FROM
DATA WHERE fld5 IN (5) ORDER BY fld6,SomeField2
SELECT fld2 as Field2, fld3, sum(fld5) as fld5, Sum(fld2) as SomeField1,
Sum(fld3) as SomeField2 FROM DATA GROUP BY Field2, fld3
SELECT fld2 as Field2, fld3, sum(fld5) as SomeField1, Sum(fld2) as
SomeField2, Sum(fld3) as SomeField3 FROM DATA GROUP BY Field2, fld3
SELECT fld5,sum(fld5) as sumoffld5,count(fld5) as countoffld5 FROM DATA GROUP
BY fld5 HAVING count(fld5)>2
SELECT fld2 as somefield, fld3 FROM DATA
SELECT fld5 as somefield,sum(fld5),count(fld5) FROM DATA GROUP BY somefield
HAVING count(fld5)>2
SELECT count(*)+5 FROM DATA
SELECT * FROM DATA LIMIT 10 OFFSET 50
SELECT * FROM DATA LIMIT 10
SELECT * FROM DATA OFFSET 50
SELECT fld2, IF(fld2>10,True,False) AS IsSomething FROM DATA
SELECT SUM(fld5),SUM(fld6),SUM(fld5)+Sum(fld6) AS TotalField FROM DATA
SELECT count(distinct Left(fld1,4)) from DATA
SELECT length(fld1) from DATA
SELECT fld5,sum(if(fld5>5,1,0)),count(fld5) from DATA group by fld5
SELECT
fld1,Min(20,30,10,40),Max(20,30,10,40),Avg(20,30,10,40),Sum(20,30,10,40)
FROM DATA
SELECT fld2 FROM DATA where fld2 xor (fld2 mod 10)
SELECT if(1 xor 1,0,1),fld2 FROM DATA
SELECT if(0 xor 1,0,1),fld2 FROM DATA
SELECT if(10 IN (10,20,30),1,0),fld2 FROM DATA
SELECT if(11 IN (10,20,30),1,0),fld2 FROM DATA
SELECT MAX((SELECT max(b.fld1) FROM DATA b WHERE a.fld2=b.fld2)) FROM DATA a

MANAGING SQLITE DATABASES FREE TOOL PAGE 4 / 4

COMPONENTS
DEVELOPERS4 57Blaise Pascal MagazineIssue No: 2 2019

— Added support for SQL syntax ALTER TABLE <tbl> PRIMARY [KEY] (fld1,…)

UPDATED TO SUPPORT LAZARUS 2.0.2

— Changed to allow only 2 arguments to MID(..) SQL function. If length not given, copies rest.
— Added sfLoadAsUTF16 to CSV stream format.

— Will assume fields are widestring rather than string.
— Improved sub select to operate on derived data based on original data

to ensure seemingly transactional separation
when sub select is running on same table as outer operation.

— Fixed subselect bugs.
— Fixed hints.

— Fixed bug creating index with more than one field using SQL.
— Fixed stack overflow bug when function expression argument cause exception during parse.

kbmMemTable is the premier high performance,
high functionality in memory dataset for Delphi and C++Builder

with kbmMemTable Professional topping the scales as being the worlds fastest!

If you have an up to date Service and Update (SAU) subscription,
then you can immediately visit https://portal.components4developers.com

to download the latest kbmMemTable release.

If not, please visit our shop at http://www.components4developers.com
and extend your SAU with another 12 months.

ANN: kbmMemTable v.
7.82.00

Standard
and

Professional Edition
released

DX

COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4 58Blaise Pascal MagazineIssue No: 2 2019

ANN: kbmMW
Professional

and Enterprise Edition
v. 5.09.00
released!

We are happy to announce v5.09.00
of our popular middleware for Delphi and C++Builder.

Notice that kbmMemTable v. 7.82.00 or newer is a prerequisite to this update.

This is a major release containing major new features,
updates to existing features and bugfixes.

The release includes:

NEW! SmartBinding support for kbmMW Enterprise Edition (BETA!)
NEW! XML-RPC support for kbmMW Enterprise Edition
NEW! JSON-RPC support for kbmMW Enterprise Edition

NEW! Automatically analyse JSON, YAML or XML data and have kbmMW generate Delphi
marshalling classes

Significant improvements in
SmartServices / RTTI / Scheduler / LINQ / Object Notation

XML and JSON marshalling ORM
Important fixes.

Please check the end of this post for a detailed change list.

CodeGear Edition may be available for free,
but only supports a specific Delphi/Win32 SKU, contains a limited feature set and do not

include source.

https://portal.components4developers.com

kbmMW is the premiere n-tier product for Delphi, C++Builder and FPC on .Net, Win32,
Win64, Linux, Java, PHP, Android, IOS, embedded devices, websites, mainframes and more.

Components4Developers is a company established in 1999 with the purpose of providing high quality development tools for
developers and enterprises. The primary focus is on SOA, EAI and systems integration via our flagship product kbmMW.

COMPONENTS
DEVELOPERS4 DX

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping,
 range selection features
● Advanced indexing features for extreme performance

● RAD Studio XE2 to 10.3 Rio supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OSX client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralized and distributed load
 balancing and failover
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multithread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronouncable password generators.
● High performance LZ4 and Jpeg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, JSON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

COMPONENTS
DEVELOPERS4

KBMMW PROFESSIONAL AND ENTERPRISE EDITION
V. 5.09.00 RELEASED!

DX

NEW! SmartBinding support for kbmMW Enterprise Edition (BETA!)
NEW! XML-RPC support for kbmMW Enterprise Edition
NEW! JSON-RPC support for kbmMW Enterprise Edition
NEW! Automatically analyse JSON, YAML or XML data
and have kbmMW generate Delphi marshalling classes

DX

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60

