
BLAISE PASCAL MAGAZINE 91
 Multi Platform / Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases

CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

Maxbox: Fundamentals 5 Code Library
is a big toolbox for Delphi and FreePascal/ By Max Kleiner

News from the future
Rollable Phones and Screens

Lazarus, creating Atom and Visual Studio Code Plugins
A new series / By Michael van Canneyt

BitMap enlargement by interpolation / By David Dirkse
Republished: Cyclic Redundancy Checking

The Crispr Pages
About viruses and Chrisper

Code Snippets 5 / Path & Compile Date
Code Snippets 6 / DB Edit Mask 40 for Delphi
Code Snippets 7 / Recall App settings Lazarus

Pas2JS install forLazarus
How to use it By Mattias Gärtner

Compile Tool installer illustrated for kbmMemTable

Maxbox: Fundamentals 5 Code Library
is a big toolbox for Delphi and FreePascal/ By Max Kleiner

News from the future
Rollable Phones and Screens

Lazarus, creating Atom and Visual Studio Code Plugins
A new series / By Michael van Canneyt

BitMap enlargement by interpolation / By David Dirkse
Republished: Cyclic Redundancy Checking

The Crispr Pages
About viruses and Chrisper

Code Snippets 5 / Path & Compile Date
Code Snippets 6 / DB Edit Mask 40 for Delphi
Code Snippets 7 / Recall App settings Lazarus

Pas2JS install forLazarus
How to use it By Mattias Gärtner

Compile Tool installer illustrated for kbmMemTable

BLAISE PASCAL MAGAZINE 91
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases

CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

ARTICLES

ADVERTISERS

CONTENT

2Blaise Pascal Magazine 91 2021

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal - Netherlands

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left below) in 1968–69
and published in 1970, as a small, efficient language intended to encourage good programming practices using
structured programming and data structuring. A derivative known as Object Pascal designed for object-oriented
programming was developed in 1985. The language name was chosen to honour the Mathematician, Inventor of the
first calculator: Blaise Pascal (see top right).

From your Editor 4
Readers Write 6
Cartoon Jerry King 7
Maxbox: Fundamentals 5 Code Library 9
is a big toolbox for Delphi and FreePascal.
By Max Kleiner
News from the future 16
Rollable Phones and Screens
Lazarus, creating Atom and
Visual Studio Code Plugins 17
By Michael van Canneyt
BitMap enlargement by interpolation 30
By David Dirkse
Republished Cyclic Redundancy Checking 38
The Crispr Pages 44
Code Snippets 5 Path & Compile Date 46
Code Snippets 6 / DB Edit Mask 40 for Delphi 47
Code Snippets 7 / Recall App settings Lazarus 50
By Detlef Overbeek
Lazarus Install For Pas2JS 54
Compile Tool for kbmMemTable 64

The new LIB Stick 5
Lazarus Handbook 29
Blaise Pascal Subscription 36 / 37 / 43 / 61
Barnsten 62 / 63
Components4Developers 71 / 72

Niklaus Wirth

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact @ intricad.com

Peter van der Sman
sman @ prisman.nl

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info @ rompelsoft.de

Kim Madsen
www.component4developers.com

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

Peter Johnson
http://delphidabbler.com
delphidabbler @ gmail.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

Primož Gabrijelčič
www.primoz @ gabrijelcic.org

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Benno Evers
b.evers
@ everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Peter Bijlsma -Editor
peter @ blaisepascal.eu

Holger Flick
holger @ flixments.com

Contributors

Robert Welland
support @ objectpascal.org

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission
of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2019 prices)

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department
Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Internat.
excl. VAT

Internat.
incl. 9% VAT Shipment

WIKIPEDIAMember and donator of
Member of the Royal Dutch Library

Printed Issue
±60 pages

Printed Issue inside Holland (Netherlands)
±60 pages

Electronic Download Issue
60 pages

€ 155,96

€ 240,00

€ 250

€ 70 € 64,20

€ 80,00

€ 70,00

Blaise Pascal Magazine 91 2021 3

From your editor

4Blaise Pascal Magazine 91 2021

Happy New Year!
And it certainly looks like it…
We probably will be freed of Corona and there
are coming some very good developments
from Science, for developers there is the new
rolable screen which we will soon see released
and Smart Phones with enlarging size.

I predicted the Pencil–Smart Phone some
years ago and here are now the first steps
(page 16).
We will probably be forced to develop more
and more for the web, desktop will become a
minor issue. Because of this we now have
great news about Pas2JS, WebCore and
Lazarus for Atom or Visual Studio Code.

In this issue we have several articles about this
all and offer a number of apps that you can
build or run: on the web as well on the
desktop. The basic components you need are
already available.
For Lazarus I can tell you we are developing a
special form (Martin Friebe from the Lazarus
team does that) which is capable of WYSIWYG
(what you see is what you get) so you can
create on your desktop applications that have
already the final looks and feel of the web.
He is building an Object Inspector for this
form which is one with a big difference:
your normal Object Inspector aims at one
component but this one is made for the web
and you need to be able to apply it to all of the
objects on the form.
I hope we will be able to show this during
spring for the first time.

Speaking about that, I want to start organizing
a first meeting again. As soon we see a
possibility for this we’ll alert you!
At the end of this coming year we hop to
publish our hundredth issue and we’ll throw a
party about that.

Now there still is very good news for our
future:
a Dutch company was capable of creating
Hydrogen as a powder (page8). That solves a
lot of problems.
Just think of it… They even plan for batteries
for notebooks that are exchangeable or to be
refuelled. No acidic batteries any more -no
more pollution, no more waist.
It will take some time but well get there…

Lets start to build the apps of the future!

To begin with this issue...

ADVERTISEMENT

The new LibStick (1)

(on USB Card - 90 Issues)

� 75

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek
Edelstenenbaan 21 3402 XA
IJsselstein Netherlands

editor@blaisepascalmagazine.e

Prof Dr.Wirth, Creator of Pascal Programming language

A L L I S S U E S I N O N E F I L E

B L A I S E P A S C A L M A G A Z I N E

L I B R A R Y 2 0 2 0

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

31

39

47

54

40

48

55

62

63
64

656667
68

69
70

75
76

56

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

8987
88

45

46

50
51 52 53

33

35

37

32

34

36

38

23

24

25
26 27 28

7
14

22

30

71
72

73
74

78
79

ALL CODE ABOUT THE USE

90

ex vat / including shipment

Robert Evans
Happy New Year!
Thank you for yet another very interesting edition of Blaise Pascal Magazine.

I read your article on FastReport VCL 6.9 and noted your comment about needing to start Delphi via
"Run as Administrator”. I have been using FastReport for over ten years and can confirm that the issue
that you encountered is actually much older than just version 6.9.

The underlying problem is that the default install folder suggested by the FastReport installer is under
“C:\Program Files (x86)". In modern versions of Windows (i.e. Vista and successors) such a

location is protected by Windows UAC and so cannot be written to by any program that does not have
elevated privilege. Unless the project Output Directory path is manually overridden by the user, this
restriction prevents the FastReport demos from being recompiled. From time to time it can also raise a
problem while creating one's own programs - i.e. whenever a project Build causes a recompile of
FastReport's own .bpl files.

However the solution is quite simple: just manually uninstall FastReport via the Start Menu and then re-
run the installer but this time choose to override the suggested installation folder to select a more
suitable location. I use a folder below , “C:\Users\Public\Public Documents\FastReport”

but the actual location is not critical as long as it is writeable when needed.

Kind regards,

Robert Evans, Director
Lichfield Technology Limited

Answer: Denis Zubov, from FastReport told me that they are going to change this for future

Wyatt Wong
You may consider to enhance the login with two-factor authentication by making use of Google
Authenticator app

Best Regards,
Wyatt Wong

Answer: that is surely something we might implement in the coming year

Diego José Muñoz Carbajo
Hello, I don't know where contact respect your article 'compiled date'.
Just me: the editor: editor@blaisepascal.eu
Is not easy (and 'modern') simply to use the 'new' unit IOUtils, so the line must be:
TFile.GetLastWriteTime(application.exename)

Thx, Good job

Diego José Muñoz Carbajo
Programador. Freelance.
Ing. técnico informática gestión. EUIT. Universidad Politécnica de Madrid.

Answer: It depends. the GetLastWriteTime is not the same as the compiletime. I haven’t found
anything like compiletime or compiledate in that unit. This is FileAge.
Compiledate:=DateTimeToStr(FileDateToDateTime(FileAge(ExtractFileName(Application.
ExeName))));

6Blaise Pascal Magazine 91 2021

From our Technical advisor: Cartoons from Jerry King

7Blaise Pascal Magazine 91 2021

Introduction of H2FUEL
H2Fuel is a patented technology for the production,
storage and release of hydrogen. For its production, no
electrolysis is required. The hydrogen is stored under
normal atmospheric conditions in a powder. Release
takes place without additional energy, using ultrapure
water. Not only is one hundred per cent of the
hydrogen stored in the powder released but, as a
bonus, the same amount of hydrogen is released from
the water, as well.
In dry powder form, the hydrogen can be stored for an
unlimited period, is in energy terms the maximum
attainable result, has no safety risks and, throughout
the production process from production through
consumption, features no harmful emissions at all.
Once the hydrogen has been issued, the residual
substances can be returned to the powder state with
hydrogen stored in them: this makes H2Fuel the
world’s first circular fuel. H2Fuel can be deployed in all
sectors of society and the economy and, as a result,
forms by far the preferable alternative to both fossil
fuels and other sustainable alternatives.

In this reaction, so much energy is released that the
water splits into hydrogen gas (4H per 2 molecules)
and oxygen (2O per 2 molecules). The oxygen thus
released then bonds with the sodium boron
compound, yielding sodium metaborate (NaBO2) and
hydrogen gas (4H). Thus, overall, four hydrogen atoms
(4H) are released per molecule of sodium borohydride
and 4 hydrogen atoms (4H) are released per 2
molecules of water, yielding a total of 8 hydrogen
atoms (8H) and a reaction heat of 30MJ that is cooled
to 90°C.

NaBH4 + 2H2O Ú NaBO2 + H2O + 8H + 90°C of
heat.

The hydrogen released has now become hydrogen gas
and, with the help of a fuel cell for generating
electricity, can be used as a direct energy source; in
addition to the use of the heat from the reaction, the
hydrogen can be converted into heat using a catalyst.

Packing process
The residual substances, consisting of sodium
metaborate (borax) and water, are removed from the
mixing chamber, after which a portion of the water is
evaporated. The oxygen that is bonded to the sodium
boron compound is removed and; in turn, hydrogen
(4H) is again affixed to it, again yielding sodium
borohydride (NaBH4), and the process repeats.

The hydrogen required for this is obtained by having
the unpacking process take place two times
simultaneously: the internal process and the external
process. Both processes require sustainable electrical
energy. Further, the unpacking process results in a yield
of 8H.

The internal process yields 8H and in turn splits it into
2x 4H, i.e., 4H for the formation of the sodium
borohydride (NaBH4) needed for the repetition of its
own process and 4H for the creation of sodium
borohydride (NaBH4) in the external process destined
for market consumption. There, the 4H which has been
bonded to the sodium boron compound through the
splitting of the water is again converted into 8H
(unpacking process).

Hydrogen as a powder: the energy problems are solved : H2 Fuel
https://h2-fuel.nl/portfolio-item/automotive-sector/?lang=en

Detail:
The powder referred to above is sodium borohydride
(NaBH4). Each molecule of sodium borohydride
contains 4 hydrogen atoms (4H). Two molecules of
water (H2O) also contain four hydrogen atoms (2H2).
Ultrapure water is water from which all interfering
substances have been filtered out.
Some of the required water comes from the fuel cell
and is filtered.
All of the basic substances and filtration installations
needed are commercially available.
One cubic metre of powder contains 9 MWh of energy.

Unpacking process
To make it pumpable, sodium borohydride, partially
diluted with ultrapure water, is introduced into in a
mixing chamber. Very lightly acidified ultrapure water is
also introduced. Instead of acidification, a catalyst can
also be utilised, depending on the requirements of use.
When these ingredients meet, a natural exothermic
reaction takes place, such that four hydrogen atoms
split off from the sodium borohydride (NaBH4), and
hydrogen gas (4H) and a sodium boron compound
(NaB) remain.

maXbox
Author: Max Kleiner

9Blaise Pascal Magazine 91 2021

maXbox

function (GetEnvironmentVariableA
 const Name :): ;AnsiString AnsiString
function (GetEnvironmentVariableU
 const Name :): ;UnicodeString UnicodeString
function (GetEnvironmentVariable
 const Name String String :): ;

{$IFDEF UseInline} {$ENDIF}inline;

What’s nice is when you pass an empty name
or some invalid thing as the actual parameter
of samples, most of the names or buffers will
be initialized and checked or filled out with a
proper default name of their own.
So the Fundamentals Library includes:

— String, DateTime dynamic array routines and
— Unicode routines
— Hash (e.g. SHA256, SHA512, SHA1, SHA256, MD5)
— Integer (e.g. Word128, Word256, Int128, Int256)
— Huge Word, Huge Integer
— Decimal (Decimal32, Decimal64, Decimal128,
— HugeDecimal and signed decimals)
— Random number generators
— Ciphers (symmetric: AES, DES, RC2, RC4;
 asymmetric: RSA, Diffie-Hellman)
— Data structures (array and dictionary classes)
— Mathematics (Rational number, complex number,
 vector, matrix, statistics)
— JSON parser
— Google protocol buffer parser, utilities and
 Pascal code generator
— Socket library (cross platform - Windows and
 Linux) TLS Client, TLS Server
— TCP Client, TCP Server, HTTP Client,
 HTTP Server, HTML Parser and XML Parser.

Figure 1: Logo

"Love comes unseen; we only see it go."

 - Henry Austin Dobson

INTRODUCTION
The Fundamentals 5 Code Library is a big
toolbox for Delphi and FreePascal.

What I appreciate most in this library are the
main utilities for network and internet.
These utilities (Utils) it provides, involve
math, statistic, unicode routines and data
structures for classes similarly to how users
would find them in a big framework.
In this way, testing-routines help ensure your
tests and give you confidence in your code.

Our Test Directory includes detailed
information, guides and references for many
of our tests.
This includes test and result codes,
specimen collection requirements, specimen
transport considerations, and methodology.
Concerning a documentation of the
Fundamentals library, the most is detailed
direct in code with a revision history and
supported compilers.
There are also tools like DiPasDoc which we
can use to generate API documentation from
comments in sources.
Those are free and generate HTML as well as
CHM. An online documentary has been built
in the meantime but not finished:
http://fundamentals5.kouraklis.com/

David J. Butler is also the author of the Zlib
version of PASZLIB which is based on the zlib
1.1.2, a general purpose data compression
library. The 'zlib' compression library provides
in-memory compression and decompression
functions, including integrity checks of the
uncompressed data. This version of the
library supports only one compression
method (deflation) but other algorithms will
be added later and will have the same stream
interface.

Similarly to for example the Indy or Jedi library,
we can specify the class name, test name
number of samples (measurements) to take
and number of operations (iterations) the code
will be executed.
Most of the operations are not overload but
has a strong name like that:

https://github.com/fundamentalslib/
fundamentals5/

https://github.com/maxkleiner/
fundamentals5

Assertions check for
programming errors,

NOT user errors!

Fundamentals 5
Code Library Page1/7

10Blaise Pascal Magazine 91 2021

maXbox
 I did open another fork on
 github to document my adapted
 scripting units. Another advantage
 is the use of test-procedure with
 assertions. It implements the Assert
 procedure to document and enforce the
 assumptions you must make when
 writing code. Assert is not a real
 procedure. The compiler handles Assert
 specially and compiles the filename and line
 number of the assertion to help you locate the
 problem should the assertion fail.

 The syntax is like:
procedure (:);Assert Test Boolean
procedure const Message string (: ; :); Assert Test Boolean

If you write a simple script program and
distribute it to each computer, you can have
the users start the tests on their own by
running the script with a list of asserts.

 ((,) = ,);Assert CopyFrom 'a' 'a' 'CopyFrom'0
 ((, -) = ,);Assert CopyFrom 'a' 'a' 'CopyFrom'1
 ((,) = ,);Assert CopyFrom '' '' 'CopyFrom'1
 ((, -) = ,);Assert CopyFrom '' '' 'CopyFrom'2
 ((,) = ,);Assert CopyFrom '1234567890' '890' 'CopyFrom'8
 ((,) = ,);Assert CopyFrom '1234567890' '' 'CopyFrom'11
 ((,) = ,);Assert CopyFrom '1234567890' '1234567890' 'CopyFrom'0
 ((, -) = ,);Assert CopyFrom '1234567890' '1234567890' 'CopyFrom'2

 ((, ,),);Assert StrMatchnot '' '' 'StrMatch'1
 ((, ,),);Assert StrMatchnot '' 'a' 'StrMatch'1
 ((, ,),);Assert StrMatchnot 'a' '' 'StrMatch'1
 ((, ,),);Assert StrMatchnot 'a' 'A' 'StrMatch'1
 ((, ,),);Assert StrMatch 'A' 'A' 'StrMatch'1
 ((, ,),);Assert StrMatchnot 'abcdef' 'xx' 'StrMatch'1
 ((, ,),);Assert StrMatch 'xbcdef' 'x' 'StrMatch'1
 ((, ,),);Assert StrMatch 'abcdxxxxx' 'xxxxx' 'StrMatch'5
 ((, ,),);Assert StrMatch 'abcdef' 'abcdef' 'StrMatch'1
 ((, ,),);Assert StrMatch 'abcde' 'abcd' 'StrMatch'1
 ((, ,),);Assert StrMatch 'abcde' 'abc' 'StrMatch'1
 ((, ,),);Assert StrMatch 'abcde' 'ab' 'StrMatch'1
 ((, ,),);Assert StrMatch 'abcde' 'a' 'StrMatch'1
 ((, ,)= ,);Assert StrMatches true'abcd' 'abcd' 'StrMatches'1

Lets take the above single assert with

 (, : ; :): ;Function const const IndexStrMatches Substr S AnsiString Int Boolean

As you can see the strings matches if equal otherwise we get an Exception:

 ((, ,)= ,); Assert StrMatches true'abcd' 'abcde' 'StrMatches'1 Exception: StrMatches

Page 2/7
Fundamentals 5
Code Library

11Blaise Pascal Magazine 91 2021

maXbox
 If the test condition fails the
 unit sets this variable to SysUtils

 a procedure that raises the
 EAssertionFailed exception.

 By the way don’t comment an assert
 like this:

You also can negate an assert as long as it
delivers a (logic) condition:boolean

Then you want to write more assert system
information to a log file for analyzing problems
during installation, debugging, tests and de-
installation or app distribution like that:

{ }
{ Test cases }
{ }
{$IFDEF DEBUG}
{$IFDEF LOG}
{$IFDEF TEST}
//{$ASSERTIONS ON}

 //Assert(StrMatchLeft('ABC1D', 'aBc1', False), 'StrMatchLeft');
 //Assert(StrMatchLeft('aBc1D', 'aBc1', True), 'StrMatchLeft');

10/01/2018 19:31:54 V:4.6.2.10
[max] problem occurred in initializing MCI.
[at: 3275216pgf; mem:1247492]
14/01/2018 17:15:18 V:4.7.2.30
[max] MAXBOX8 Out Of Range.
[at: 2607048pgf; mem:1082444]
14/01/2018 17:15:21 V:4.7.2.40
[max] MAXBOX8 Out Of Range.
[at: 2605716pgf; mem:1080012]
16/01/2018 09:18:00 V:4.7.5.20
[max] MAXBOX8 List index out of bounds
(456). [at: 2913700pgf; mem:1157700]

 ((, ,),);Assert StrMatchLeft Falsenot 'AB1D' 'ABc1' 'StrMatchLeft'

 ((, ,),);Assert StrMatchLeft Truenot 'aBC1D' 'aBc1' 'StrMatchLeft'

Page 3/7
Fundamentals 5
Code Library

12Blaise Pascal Magazine 91 2021

maXbox

procedure ;TestBitsflc
begin
 ((,) = ,);Assert SetBit32 $100F 5 $102F 'SetBit'

 ((,) = ,);Assert ClearBit32 $102F 5 $100F 'ClearBit'

 ((,) = ,);Assert ToggleBit32 $102F 5 $100F 'ToggleBit'

 ((,) = ,);Assert ToggleBit32 $100F 5 $102F 'ToggleBit'

 ((,),);Assert IsBitSet32 $102F 5 'IsBitSet'

 ((,),);Assert IsBitSet32not $100F 5 'IsBitSet'

 ((),);Assert IsHighBitSet32 $80000000 'IsHighBitSet'

 ((),);Assert IsHighBitSet32not $00000001 'IsHighBitSet'

 ((),);Assert IsHighBitSet32not $7FFFFFFF 'IsHighBitSet'

 (() = - ,);Assert SetBitScanForward32 0 1 'SetBitScanForward'

 (() = ,);Assert SetBitScanForward32 $1020 5 'SetBitScanForward'

 (() = ,);Assert SetBitScanReverse32 $1020 12 'SetBitScanForward'

 ((,) = ,);Assert SetBitScanForward321 $1020 6 12 'SetBitScanForward'

 ((,) = ,);Assert SetBitScanReverse321 $1020 11 5 'SetBitScanForward'

 (() = - ,);Assert ClearBitScanForward32 $FFFFFFFF 1 'ClearBitScanForward'

 (() = ,);Assert ClearBitScanForward32 $1020 0 'ClearBitScanForward'

 (() = ,);Assert ClearBitScanReverse32 $1020 31 'ClearBitScanForward'

 ((,) = ,);Assert ClearBitScanForward321 $1020 5 6 'ClearBitScanForward'

 ((,) = ,);Assert ClearBitScanReverse321 $1020 12 11 'ClearBitScanForward'

 (() = ,);Assert ReverseBits32 $12345678 $1E6A2C48 'ReverseBits'

 (() = ,);Assert ReverseBits32 $1 $80000000 'ReverseBits'

 (() = ,);Assert ReverseBits32 $80000000 $1 'ReverseBits'

 (() = ,);Assert SwapEndian32 $12345678 $78563412 'SwapEndian'

 ((,) = ,);Assert RotateLeftBits32 0 1 0 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 1 0 1 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 1 1 2 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 $80000000 1 1 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 $80000001 1 3 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 1 2 4 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 1 31 $80000000 'RotateLeftBits32'

 ((,) = ,);Assert RotateLeftBits32 5 2 20 'RotateLeftBits32'

 ((,) = ,);Assert RotateRightBits32 0 1 0 'RotateRightBits32'

 ((,) = ,);Assert RotateRightBits32 1 0 1 'RotateRightBits32'

 ((,) = ,);Assert RotateRightBits32 1 1 $80000000 'RotateRightBits32'

 ((,) = ,);Assert RotateRightBits32 2 1 1 'RotateRightBits32'

 ((,) = ,);Assert RotateRightBits32 4 2 1 'RotateRightBits32'

 (() = ,);Assert LowBitMask32 10 $3FF 'LowBitMask'

 (() = ,);Assert HighBitMask32 28 $F0000000 'HighBitMask'

 ((,) = ,);Assert RangeBitMask32 2 6 $7C 'RangeBitMask'

 ((, ,) = ,);Assert SetBitRange32 $101 2 6 $17D 'SetBitRange'

 ((, ,) = ,);Assert ClearBitRange32 $17D 2 6 $101 'ClearBitRange'

 ((, ,) = ,);Assert ToggleBitRange32 $17D 2 6 $101 'ToggleBitRange'

 ((, ,),);Assert IsBitRangeSet32 $17D 2 6 'IsBitRangeSet'

 ((, ,),);Assert IsBitRangeSet32not $101 2 6 'IsBitRangeSet'

 ((, ,),);Assert IsBitRangeClear32not $17D 2 6 'IsBitRangeClear'

 ((, ,),);Assert IsBitRangeClear32 $101 2 6 'IsBitRangeClear'

 ((, ,),);Assert IsBitRangeClear32 $101 2 7 'IsBitRangeClear'

end;

{$ENDIF}
{$ENDIF}

 Next step is to bundle asserts in a
Test Procedure with sections like that:

Page 4/7
Fundamentals 5
Code Library

13

As you see, if DEBUG is set the Assert procedure
checks whether the stack is empty first, if not it
executes the code that pops the data object off
the stack.
If the stack is empty an EEZAssertionError
exception is raised (the constant
 is a string ascEmptyPop

 code for a string-table
 resource).
 If DEBUG is not set the
 code runs at full speed.

 So log the steps and
 compare test procedures
 before installation:
 The location of the update
 can be a local, UNC or
network path to compare it.
If you need Admin Rights you can try this:

ExecuteShell('cmd','/c runas
"/user:Administrator" '+
ExePath+'maXbox4.exe')

or
C:> net user Administrator /active:yes

After you have the option activated hereby of
finishing and writing the script, the next and final
step is select in maXbox. "Go Compile"

What this does is create a complete,
ready-to-run Setup program based on your
script.
By default, this is created in a directory named
Exepath under the directory or UNC path
containing the script or what destination you
need.

Blaise Pascal Magazine 91 2021

maXbox

procedure ;TestStdTypes
begin
 (() =); {$IFDEF LongWordIs32Bits} {$ENDIF} Assert SizeOf LongWord 4
 (() =); {$IFDEF LongIntIs32Bits} {$ENDIF}Assert SizeOf LongInt 4
 (() =); {$IFDEF LongWordIs64Bits} {$ENDIF} Assert SizeOf LongWord 8
 (() =); {$IFDEF LongIntIs64Bits} {$ENDIF} Assert SizeOf LongInt 8
 (() =); {$IFDEF NativeIntIs32Bits} {$ENDIF} Assert SizeOf NativeInt 4
 (() =); {$IFDEF NativeIntIs64Bits} {$ENDIF} Assert SizeOf NativeInt 8
 (() =); {$IFDEF NativeUIntIs32Bits} {$ENDIF} Assert SizeOf NativeUInt 4
 (() =); {$IFDEF NativeUIntIs64Bits} {$ENDIF} Assert SizeOf NativeUInt 8
end;

 A tester is then able to run a
 bunch of tests in Fundamentals,
 e.g:

 setBitmaskTable;
 TestBitsflc;

 In the Fundamentals Lib we do have a 15
CLF_Fundamentals Testroutines Package:

 01 TestMathClass;
 02 TestStatisticClass;
 03 TestBitClass;
 04 TestCharset;
 05 TestTimerClass
 06 TestRationalClass
 07 TestComplexClass
 08 TestMatrixClass;
 09 TestStringBuilderClass
 10 TestASCII;
 11 TestASCIIRoutines;
 12 TestPatternmatcher;
 13 TestUnicodeChar;
 14 flcTest_HashGeneral;
 15 flcTest_StdTypes;

Another way is to prevent call errors as a
mistaken precondition of false assumption in
a procedure you designed. This pre- and
postcondition can handle a lot of errors.
An example should make this clear.
A object has a method called to TStack Pop

remove the topmost data object from the stack.
 If the is empty, I count calling stack Pop

as a programming mistake: you really should
check for the stack being empty in your program
prior to calling Of course could have Pop. Pop

an if statement within it that did this check for
you, but in the *MAJORITY* of cases the stack
won’t be empty when is called and in the Pop

MAJORITY of cases when you use Pop, you
will have some kind of loop in your program
which is continually checking whether

the stack is empty or not anyway. In my mind
having a check for an empty stack within is Pop

safe but slow.
So, instead, has a call to an Pop Assert

procedure at the start (activated by the DEBUG
compiler define) that checks to see whether the
stack is empty. Here is the code for Pop:

 . : ;function TStack Pop pointer
 var
 : ;Node PNode
 begin
 {$IFDEF DEBUG}
 (,);Assert IsEmpty ascEmptyPopnot
 {$ENDIF}
 := ^. ;Node Head Link
 ^. := ^. ;Head Link Node Link
 := ^. ;Pop Node Data
 ();acDisposeNode Node
 ;end

Page 5/7
Fundamentals 5
Code Library

maXbox

14Blaise Pascal Magazine 91 2021

function const (, : GetInstallScript S_API pData
string string): ;

var : ;ts TStrings
begin
 . () with do beginTIdHTTP create self
 try
 := .ts TStringList Create
 . (+ ());ts Add HTTPEncode pData'install='

 := (,);result Post S_API ts
 finally
 . ;ts Free
 ;Free
 ;end
 end
end;

The most important step comes with unit tests
with setup and teardown.
Generic "Assert This" Assertion Procedure
means that most generic assertion program
simply says "assert this" and passes a Boolean
expression.
It is used by all the other assertion routines,
which construct a Boolean expression from
their specific values and logic.
Unit testing is a way of testing the smallest
item of code referred to as a unit that can be
logically isolated in a system.

There are different unit (modules) test
frameworks for Delphi and Free Pascal, which
can cause duplicate work for those who target
both compilers (for example, library and
framework developers).
Default unit test framework for Free Pascal is
FPCUnit, it has almost the same design as
DUnit but different in minor details.

A unit can be almost anything you want it to be
– a specific piece of functionality, a program,
or a particular method within the application:

 type
 = ;THugeCardinal_TestCase TTestCase
 var
 : ;Fbig1234 THugeCardinal
 : ;Fbig2313 THugeCardinal
 : ;Fbig3547 THugeCardinal
 //TVerifyResult
 , , , : ;Temp1 Temp2 Temp3 Temp4 THugeCardinal
 : ;Temp2000_1 THugeCardinal
 : ;Temp2000_2 THugeCardinal
 , : ;T3 F100 THugeCardinal
 : ;TmpStream TMemoryStream

 ; procedure THugeCardinal_TestCaseSetUp //override;
 ; procedure THugeCardinal_TestCaseTearDown //override;

 //published
 //procedure Test_CreateZero;
 ;procedure Test_CreateRandom
 ;procedure Test_CreateSmall
 ;procedure Test_Clone
 ;procedure Test_Assign
 ;procedure Test_Zeroise
 ;procedure Test_CompareSmall
 ;procedure Test_Compare
 ;procedure Test_AssignSmall
 ;procedure Test_BitLength
 ;procedure Test_MaxBits
 ;procedure Test_Add
 ;procedure Test_Increment
 ;procedure Test_Subtract
 ;procedure Test_MulPower2
 ;procedure Test_MulSmall
 ;procedure Test_Multiply
 ;procedure Test_Modulo
 ;procedure Test_AddMod
 ;procedure Test_MultiplyMod
 ;procedure Test_isOdd
 ;procedure Test_CreateFromStreamIn
 ;procedure Test_CloneSized
 ;procedure Test_Resize
 ;procedure Test_AssignFromStreamIn
 ;procedure Test_Swap
 ;procedure Test_ExtactSmall
 ;procedure Test_StreamOut
 ;procedure Test_PowerMod
 ;procedure Test_SmallExponent_PowerMod

 ;procedure InitUnit_HugeCardinalTestCases
 begin
 //TestFramework.RegisterTest(THugeCardinal_TestCase.Suite)
 ;THugeCardinal_TestCaseSetUp
 ;end

 ;procedure DoneUnit_HugeCardinalTestCases
 begin
 THugeCardinal_TestCaseTearDown
 ;end

Page 6/7
Fundamentals 5
Code Library

maXbox

15Blaise Pascal Magazine 91 2021

CONCLUSION:
The proper way to use Assert in the Fundamentals Lib is to specify conditions that must be true in
order for your code to work correctly.
 Assert(StrMatches('abcd', 'abcde', 1)=true, 'StrMatches');

All programmers make assumptions about internal state of an object or function, the value or validity
of a subroutine’s arguments, or the value returned from a function. A good way to think about
assertions is that they check for programmer errors, not user errors!

My 7 Steps for maintainable code:
• Maintain separation of concerns (avoid unnecessary dependencies)
• Fully qualified unit names to be used: Winapi.Windows not Windows
• Code format to be consistent with LIB source
• Do not put application-specific implementations in general code libraries
• Carefully consider modification to common code – the way to proceed
• No hints (instant code review fail) and No warnings
• Keep code small – avoid long methods and should be broken down

Ref:

http://www.softwareschule.ch/download/maxbox_starter36.pdf
https://github.com/fundamentalslib/fundamentals5/
http://www.softwareschule.ch/examples/unittests.txt

 script: 919_uLockBox_HugeCardinalTestCases.pas

Doc:
http://fundamentals5.kouraklis.com/
https://maxbox4.wordpress.com

Page 7/7
Fundamentals 5
Code Library

News from the future

About 5 years ago I talked about future
development . One of the items was a
rollable screen from an item like a pencil.

In addition to the rollable phone, there was
announced a new 17-inch printed OLED
scrolling display that can be unfurled and
features a "100% color gamut. The new
screen technology, from TCL CSOT, can be
widely applied on flexible TVs, curved and
foldable displays as well as transparent
commercial display screens.

https://www.cnet.com/news/tcl-
rollable-phone-concept-unveiled-at-
ces-2021-and-lg-rollable/

16Blaise Pascal Magazine 91 2021

LAZARUS: CREATING ATOM AND PAGE 1/12
VS CODE PLUGINS IN PASCAL
By Michael van Canneyt

Figure 1: Logo of Electron

17Blaise Pascal Magazine 91 2021

expertstarter

ABSTRACT
The Atom and VisualStudio Code editors are
among the most popular programmer editors.
These editor are extensible for anyone that can
create Javascript. Object Pascal programmers
can also create Javascript, so logically they
can also create VS Code and Atom
extensions.
In this article we show how.

1 INTRODUCTION
Web applications are cross-platform. Any
platform that has a browser can run a web
application.

Less known is that you can run web applications
on a desktop:
Electron is an environment that uses the
browser and Node.js to allow you to create
desktop applications that are written in
Javascript, and which run in a browser - sort of.
It uses the chromium engine to render HTML -
the HTML is the GUI (Graphical User Interface)
of the application.
The application logic is written in Javascript.

With the appearance of Electron, two powerful
programming editors were created that use
Electron: Atom and VS Code.
Since they are built with Electron, they are
cross-platform.

WIKIPEDIA

 Atom is a free and open-source text and
 source code editor for macOS, Linux,
 and Microsoft Windows with support
for plug-ins written in JavaScript, and
embedded Git Control, developed by GitHub.
Atom is a desktop application built using
web technologies. Most of the extending
packages have free software licenses and
are community-built and maintained.
Atom is based on Electron (formerly known
as Atom Shell), a framework that enables
cross-platform desktop applications using
Chromium and Node.js. It is written in
CoffeeScript and Less.

Atom was released from beta, as version
1.0, on 25 June 2015. Its developers call it a
"hackable text editor for the 21st Century".
It is fully customizable in HTML, CSS, and
JavaScript.

WIKIPEDIA

LESS KNOWN IS THAT
YOU CAN RUN WEB

APPLICATIONS ON A
DESKTOP:

 Electron (formerly known as Atom Shell)
 is an open-source software framework
 developed and maintained by GitHub.
It allows for the development of desktop GUI
applications using web
 technologies: it combines
the Chromium rendering
engine and the Node.js
runtime. Electron is the
main GUI framework behind
several open-source projects including Atom,
GitHub Desktop, Light Table, Visual Studio
Code, Evernote, and WordPress Desktop.

 Visual Studio Code is a free source-code
 editor made by Microsoft for Windows,
 Linux and macOS. Features
 include support for debugging,
 syntax highlighting, intelligent
 code completion, snippets, code
 refactoring, and embedded Git.
 Users can change the theme, keyboard
shortcuts, preferences, and install extensions
that add additional functionality.
Microsoft has released Visual Studio Code's
source code on the VSCode repository of
GitHub, under the permissive MIT License,
while the compiled releases are freeware.

Her you can download the Atom program:
https://atom.io/

Here you can download VS Code programm
https://code.visualstudio.com/download

With the appearance of Electron, two powerful
programming editors were created that use

Electron: Atom and VS Code.
Since they are built with Electron, they are
cross-platform. And because Electron uses a
Javascript engine (the same as Node.js), it is
possible to loadand execute arbitrary Javascript
code in the editor. This Electron ability is used to
allow people to extend the editor: you can
extend the editor in whatever way you see fit.
The only requirement is that the extension is
written in Javascript.

WIKIPEDIA

18Blaise Pascal Magazine 91 2021

Naturally, there are numerous plugins for both
editors: in Atom they are called Packages,
in VS Code, they are called Extensions. Both
editors have plugins to facilitate programming
in Object Pascal.
But can you also write pascal to extend
these editors ?
Fortunately, now you can.
Pas2JS and the TMS Web Compile convert
Object Pascal to Javascript.
Javascript is a simple text file, and it should be
possible to include the output of the Pas2JS or
TMS Web Compiler in the editor in a format it
accepts.
Note that the Lazarus IDE support requires
the trunk version of the Pas2JS compiler:
it uses a option to append a small piece -ja

of Javascript to the output. If you use a
released version of the compiler, you can
append this little piece of code manually.

Figure 2: Visual Studio Code Editor

2 EDITOR API
The Atom and VS Code editors are themselves
written in Javascript. Because they are
well-designed, they make an API available to
any Javascript programmer that wishes to
extend the editor. How can we make this API
available to the pascal programmer ? In the
exact same manner as the Browser API was
made available to the Pascal programmer: by
writing external class definitions that
’translate’ the Javascript APIs of the editors for
the Object Pascal compiler.

This task has been accomplished: the APIs of
both editors have been translated to Pascal:
the units that contain these definitions have
been created and made available in the
subversion repository. The units with the editor
APIs are called libatom and libvscode.

19Blaise Pascal Magazine 91 2021

The APIs made available to you by these editors
are huge. They contain hundreds of
classes. They match the browser APIs for size,
so needless to say that an in-depth study of
these APIs is outside the scope of this article.
Although they offer the same kind of
functionalities, the APIs of both editors are
wildly different: code designed to run in 1
editor will not run in the other. Conceivably, a
kind of unifying API can be made on top of
these APIS, so as to allow a programmer to
create a plugin that works for both editors.

3 PLUGIN ARCHITECTURE
Both editors have more or less the same
architecture for a plugin: a plugin is similar
to a library: it is a javascript file that must
expose a number of functions, plus a
manifest file describing the plugin. The
manifest file is a JSON file such as it is
found in many Node.js packages:
package. json, which must have some
entries for the Editor to be able to load
your plugin: the location of the Javascript
file (a module) with the plugin code.

In the case of VS Code, the javascript
code must export two procedures:
u activate

This function is called when the plugin is
loaded: In this function, you must install
the necessary commands, hooks and
keyboard shortcuts. For this purpose,
the editor passes a context object as the
sole argument to the procedure. The
context contains an instance of the global
editor object.
v deactivate

This function is called when the plugin is
unloaded.

In the case of Atom, the javascript code must
export the above two functions (although they
have different arguments), and can export two
additional procedures:
w initialize

This function is called exactly once before
activating the package.
x serialize

This function is called when the package is
being unloaded, so it can preserve state. The
saved state is passed to the package activate
function when the editor loads it.

The module concept of javascript translates
almost directly to Libraries.
Support for libraries is currently being
implemented, but is not yet in the current
release.

Because the Pas2JS compiler (2.0) does
not yet support compiling libraries, it is easiest
to use a little Javascript wrapper that will load
the code generated by Pas2js. This little
Javascript wrapper will start the pas2js rtl, and
will call a function defined in the main program.
For Atom, this wrapper looks like this:

'use babel';
import { CompositeDisposable } from 'atom';
import { pas, rtl } from './pas2jsdemopackage.js';
export default {
 activate(state) {
 rtl.run();
 this.subscriptions = new CompositeDisposable();
 this.atomEnv = {
 atomGlobal : atom,
 subscriptions : this.subscriptions,
 initialState : state
 }
 this.atomHandler = {
 onDeactivate : function (a) {},
 onSerialize : function (a,o) {}
 }
 pas.program.InitAtom(this.atomEnv,this.atomHandler);
 },

 deactivate() {
 if (this.atomHandler.onDeactivate) {
 this.atomHandler.onDeactivate(this.atomEnv)
 }
 this.subscriptions.dispose();
 },

 serialize() {
 var obj = {};
 if (this.atomHandler.onSerialize) {
 this.atomHandler.onSerialize(this.atomEnv,obj)
 }
 return obj;
 }
};

You don’t need to be a Javascript specialist to
understand that this code exports the three
functions mentioned above. What is important
for the pascal programmer, are three lines of
code.
The first important line imports the symbols
that can be found in any pas2js generated
program:

import { pas, rtl } from ’./pas2jsdemopackage.js’;

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 3/12

20Blaise Pascal Magazine 91 2021

The pas object contains the code from all the
units and the main program. The rtl object
contains the pascal run-time code.
The second important line of code initializes the
pascal runtime:
rtl.run();

This is the same code that can be found in a
HTML page tag to start a pascal-<script>

generated program.
The last piece of code transfers control to the
InitAtom function in the pascal main program:

This last line is a design choice, a convention to
handle the transfer of code to pascal;
it is only necessary for the time being, because
Pas2JS does not yet support libraries.

When Pas2JS will support libraries, the above
wrapper will of course no longer be necessary.

Note that a set of callbacks is passed to the
InitAtom call. This is done so only one function
needs to be exposed: when the InitAtom
function returns, the handlers in the
atomHandler object will be set and can be
used to transfer control to the pascal code in
the other two exposed functions.
The VS Code wrapper is entirely similar, except
the name of the Pascal initialization function:

const vscode = require('vscode');
const pascalRuntime = require('./pas2jsdemoextension.js');
var callbacks = {
 onDeactivate: function (a) { }
}
function activate(context) {
 pascalRuntime.rtl.run();
 var vscodeEnv = {
 vscodeGlobal: vscode,
 extensionContext: context
 }
 pascalRuntime.pas.program.InitVSCode(vscodeEnv,callbacks);
}
function deactivate() {
 if (callbacks.onDeactivate) {
 callbacks.onDeactivate();
 }
}
 module.exports = {
 activate,
 deactivate
}

4 OBJECT PASCAL APPLICATION
In the above, we’ve seen the Javascript code
that will be used to kickstart the pascal code
for our plugin.

To make it easier for you to create an Object
Pascal program that can be used as a VS
Code or Atom plugin, a unit was created as
part of the Pas2JS package, which contains an
’Application’ object.

The application object is much like the Delphi
TApplication class, as it descends from
TCustomApplication - a standard class in
the Free Pascal runtime, which serves as the
ancestor for all kinds of application classes -
native or browser-based:
console applications, GUI applications (in
Lazarus) and Node.js or Browser based
applications in Pas2JS.

Because the VS Code and Atom APIs are
different, the application objects for both
environments
are of course also different. So the Pas2JS
distribution now has two units called
atomapp and vscodeapp.
They each define an application object for use
in the Atom and VS Code editor: Each
object has a property that contains an instance
of the global VSCode and Atom editor
 environment: these objects are
 made available by the editors:
 we’ll see how to use this later on.

 . . (. , .);pas InitAtom this atomEnv this atomHandlerprogram

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 4/12

21Blaise Pascal Magazine 91 2021

To create your Atom plugin, the package
program code must define a descendent of
this class, and override the three protected
virtual methods

TMyAtomApplication TAtomApplication = () Class
 Protected
 procedure override (:); ;DoActivate aState TJSObject
 procedure override ; ;DoDeactivate
 procedure override (:); ;DoSerialize aState TJSObject
end;

These methods obviously correspond to the 3
exported functions of the Javascript wrapper
and will be called when the plugin is loaded and
unloaded.

The Javascript wrapper code calls a function
InitAtom (this method name is case sensitive).
In this function, you can instantiate the atom
application class, and call
SaveAtomEnvironment to save the atom object
and set the callbacks needed by the wrapper:

Procedure (: ;InitAtom aAtom TAtomEnvironment
 aCallBacks TAtomPackageCallBacks :);

begin
 If Nil then = Application
 Application TMyAtomApplication Create:= . ();Nil
 Application SaveAtomEnvironment aAtom aCallBacks. (,);

end;

This will also call the application
object’s method.DoActivate

The VS Code application object
looks very similar:

TVSCodeApplication TCustomApplication = ()class
 Protected
 procedure virtual ; ;DoActivate
 procedure virtual (); ;DoDeactivate
 Public
 procedure (: ;SaveVSCodeEnvironment aEnv TVSCodeEnvironment
 aCallBacks TVSCodeExtensionCallBacks :);
 Property : ;VSCode TVSCode
 Property : ;ExtensionContext TVSExtensionContext
end;

Likewise, a VS Code extension program must
contain a descendent of this class, and it
must instantiate it in the function InitVSCode

that is called by the Javascript wrapper.
 (: ;Procedure InitVSCode aVSCode TVSCodeEnvironment
 aCallBacks TVSCodeExtensionCallBacks :);

begin
 If Nil then = Application
 Application TMyVSCodeExtension Create:= . ();Nil
 Application SaveVSCodeEnvironment aVSCode aCallBacks. (,);

end;

Again, the method of the DoActivate

application class will be called by this process.
In the method, you must place DocActivate

all code that will hook into the editor API:
add commands, keyboard shortcuts etc.

5 LAZARUS INTEGRATION
The above code is the start of a VS Code or
Atom plugin:
It is possible to create an Atom or VS Code
plugin using Atom or VS Code themselves to
edit the pascal code, and use the above as a
starting point: in that case you must manually
add the wrapper code, package.json
program file etc. to your project.

But at the moment of writing, the Lazarus code
editor is still much more suitable for writing
Object Pascal than VS Code or Atom:
The Lazarus code tools provide much more
possibilities than either of these general-
purpose editors do.
That is why the Lazarus Pas2Js support has
been extended with two project types to
create an Atom or VS Code plugin.

This is a simple application object (although
some methods have been left out for clarity).
It exposes two Javascript objects:
SubScriptions Atom,and which will
contain the Atom global editor object that
exposes the complete Atom API for you,
and a subscriptions object.
The subscriptions object is an Atom object that
owns all resources you will allocate during
the lifetime of your plugin. When the plugin is
freed, the subscription will free all objects
it owns.

TAtomApplication TCustomApplication = ()class
 Protected
 procedure virtual (:); ;DoActivate aState TJSObject
 procedure virtual (); ;DoDeactivate
 procedure virtual (:); ;DoSerialize aState TJSObject
 Public
 procedure (: ;SaveAtomEnvironment aEnv TAtomEnvironment
 aCallBacks TAtomPackageCallBacks :);

 property : ;Subscriptions TAtomCompositeDisposable
 Property : ;Atom TAtom
end;

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 5/12

22Blaise Pascal Magazine 91 2021

Figure 3: New project type: Atom Package

The author writes documentation primarily
using Markdown, in Atom.
So, since we now can write plugins in Pascal,
a good first attempt at a plugin is a plugin to
fix casing of some SQL keywords:
we uppercase a selection of SQL keywords,
thus having a more unified look for all SQL.

Before starting to code this, it is a good idea
to look at the APIs made available to you in
the Atom flight manual:
https://flight-manual.atom.io/api/

v1.54.0/AtomEnvironment/

— Directory
Every Atom plugin lives in its own directory.
Here you specify the directory for the new
plugin.
— Description
A textual description of your package, it goes in
the manifest file (n).package.jso

— Package Name
A (unique) name for your package, it goes in the
manifest file.
— Class Name
The Pascal class name for the application class.
— Link in Atom package dir
When you check this flag, the IDE will create (on
unix and MacOS) a link in the Atom package
directory to the directory where you create your
project. When you next start Atom, it will then
load your plugin.
— Commands
The commands that your package will provide
to the editor. For each command
you must specify a unique name, and the name
of a pascal function that will be called when the
command is invoked. The command names are
entered in the created menu.json file but also in
the pascal code, to register the callback for the
command. An empty function will be generated
for each function you specify here.
— License
The license for your package, it goes in the
manifest file.
— Keywords Some keywords (space
separated) for your package, it goes in the
manifest file.
— Activation Commands
The commands that will cause your package to
be loaded by the editor. The scope is a valid
Atom scope identifier such as atom-workspace.
You can leave this list empty.

6 A SAMPLE ATOM PACKAGE
As a Pascal and SQL programmer, the author of
this article is used not to have to care about
the case of keywords and identifiers.
However, not everyone shares this view.
In Delphi and Lazarus, the code formatter can
be used to remedy this sloppiness:
the IDE code formatter will happily correct
casing for you.
Unfortunately, this disregard for casing extends
to project documentation, SQL statements,
resulting in documentation with for example
SQL keywords written in a wide variety of
casings.

These wizards will create a skeleton project for
you, which can be compiled using Pas2JS and
which is ready to be installed in the Atom or VS
Code editor. We’ll demonstrate the use of
these wizards in the following sections.

The Atom flight manual also contains a good
anatomy of an Atom package, it describes all
files that Atom expects to find. To get started,
we invoke the Lazarus wizard to create an Atom
plugin, as shown in figure figure 3 on page 22.
When selected, a small dialog appears to set
some options, as shown in figure 4 on page 22:
The various items that can be entered here serve
to generate a skeleton project:

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 6/12

23Blaise Pascal Magazine 91 2021

Figure 4: New project type: Atom Package

The most interesting is of course the program
code. The class declaration is much as we
expected:

 = ()TAtomFixIdentifiersApplication TAtomApplicationClass
 Protected
 procedure override (:); ;DoActivate aState TJSObject
 procedure override ; ;DoDeactivate
 procedure override (:); ;DoSerialize aState TJSObject
 Public
 Procedure ;FixIdentifiers
end;

The interesting function is of course DoActivate,
this is where we start the ball rolling. The new
project wizard has already filled it with code:

procedure . (TAtomFixIdentifiersApplication DoActivate
 aState TJSObject:);

Var cmds TJSObject : ;

begin
 inherited ();DoActivate aState
 cmds TJSObject New:= . ;

 cmds fix identifiers activate FixIdentifiers[' - : ']:=@ ;

 subscriptions add Atom Commands Add atom workspace cmds. (. . (' - ',));

end;

The object controls all the Atom.Commands

commands of the Atom editor. It has a
method Add which needs a scope, and a
Javascript object which has a set of properties:
each property has the name of a command,
and the property value is the function that
must be called when the command is
activated. In the code above, the command
name is and the fix-identifiers:activate

function is FixIdentifiers.

The result of the Add command is an Atom
disposable: We add it to the Subscriptions
so that when the package is unloaded, the
disposable is freed.

Once you confirm your choices, the IDE will
create a project with several files (see figure
5 right top):

— fix_identifiers.lpr

 The program with generated code:
 it can be compiled.
— menu.json

 Atom menu entries: the menu entries
 here will appear in Atom under the
 ’Packages’ menu.
— package.json

 The package manifest file.
— keymaps.json

 The keymaps offered by your package:
 It is necessary to edit the generated file,
 and assign a unique key combinations to
 each command.
— package.less
 CSS for your package if your code needs it.
 This will be loaded into the editor.
— packageglue.js

 This file contains the Atom package wrapper
 Javascript code shown above.
 You may edit this to your liking. If you
 change the name (or output file) of the
 Pascal project, you must manually change
 the name of the imported project file here.

Figure 5: The new project

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 7/12

24Blaise Pascal Magazine 91 2021

Procedure . ;TAtomFixIdentifiersApplication FixIdentifiers
Const
 ToUpperCase : Array of string
 = (' ',' ',' ',' ',bigint smallint int varchar
 ' ',' ',' ');char null nullnot default not

 SErrNoEditor Cannot fix identifiers. No editor is active!' = ' ;

 SErrNoBuffer Cannot fix identifiers. No buffer available! = ' ';

Var
 Ed TAtomTextEditor : ;

 Buf TAtomTextBuffer : ;

 S : ; String
 P Integer : ;

begin
 Ed Atom WorkSpace getActiveTextEditor:= . . ;

 if not then () Assigned Ed
 begin
 Atom notifications addWarning SErrNoEditor. . ();

 Exit;

 end;

 Buf Ed getBuffer:= . ;

 if not then () Assigned Buf
 begin
 Atom notifications addWarning SErrNoBuffer. . ();

 Exit;

 end;

 For in do S ToUpperCase
 DoUpperCase Buf S(,);

end;

We first get a reference to the active text
editor: The WorkSpace object of the Atom
editor manages the editors, and the
getActiveTextEditor method of this object
returns the currently active editor. This can of
course be empty, and we display a nice
notification if this is the case.
Once we have the editor, we get the underlying
text buffer with becausegetBuffer:

multiple editors can be editing the same buffer
at the same time, the underlying buffer is a
separate object of the editor. Normally the
buffer cannot be empty, but for safety’s sake
we check for this and display a message if no
buffer is found.

Once the buffer is found, we loop through our
list of identifiers we wish to uppercase, and
call , passing it the buffer and the DoUppercase

keyword we wish to uppercase.
The object has search (and TAtomTextBuffer

replace) methods: Scan, BackwardsScan
and which allow us to do what we replace

want.
Unfortunately, the replace method does not
allow to use placeholders in the replacement
text, so we opt for the BackwardsScan
method. Using the backwards scan instead of
 the forward scan, this avoids the danger
 that the search algorithm gets stuck in an
 infinite loop, because the replacement text
 will also match the search expression.
 The routine starts with creating a regular
 expression that will only match whole-word
 forms of the keyword, and a lowercase and
 uppercase version of the search term.

Procedure . (TAtomFixIdentifiersApplication DoUppercase
aBuf TAtomTextBuffer : ;

aWord :);String
Var
 S ARegex aLower aUpper, , , : ;String
 P Integer : ;

begin
 aRegex W aWord W:='(^|\ *)'+ +'(\ |)';$
 aLower LowerCase aWord:= ();

 aUpper UpperCase aWord:= ();

 aBuf BackwardsScan TJSRegexp New aRegex ig. (. (,' '),

 procedure(:)aMatch TAtomBufferScanMatch
 begin
 s aMatch matchText:= . ;

 P Pos aLower LowerCase S:= (, ());

 S Copy S P aUpper:= (, , -)+1 1
 + (, + (), ()-);Copy S P Length aWord Length S P
 aMatch replace S. ();

 end);

end;

An empty procedure has FixIdentifiers

been generated by the wizard, we just need
to fill it with code. To do what we want,
we need to find a reference to the currently
activeeditor, and the text buffer that it is
actually editing. When we have the buffer,
when can simply tell Atom to do a series of
search and replaces for a set of words that we
wish to correct the case for: The buffer API
has a method for this.
The following is a possible implementation,
with a limited list of keywords to replace:

Then it invokes the BackwardsScan option
with a regular expression object (defined in
the JS unit) and a callback: the callback is
invoked for each matched item.
The callback receives an object that describes
the match, and that contains a replace
method to actually replace the found term in
the text buffer: we must use it to replace the
search term with the uppercase keyword,
taking care that we match any non-letters
before and after the keyword.
That’s it.

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 8/12

25Blaise Pascal Magazine 91 2021

We compile the lazarus project, and restart
Atom. When we press to invokectrl-shift-P

the command palette, we start typing the
command name, we can see our command as
in figure 6 on this page.
You can easily verify that the command actually
changes the casing of the SQL keywords.
If you wish to debug the package, you must
start the Atom editor with the ’–dev’
commandline option. When you do so, then
you can show the Chromium ’Developer tools’
using the ’View - Developer - Toggle Developer

tools’ menu: this will present you with the
sources of your plugin - in Pascal - and you can
debug the Atom package.
To distribute your package, all you need to do
is create a .zip file from the directory with
the code, or push it onto a github repository.

Figure 6: Our command in the command palette

{
 "atom-workspace": {
 "ctrl-alt-shift-f": "fix-identifiers:activate"
 }
}

Our plugin is ready. All that is left to do is assign
a key combination to our command in the

keymaps.json file:

Figure 7: The VS Code Extension options dialog

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 9/12

26Blaise Pascal Magazine 91 2021

7 A SAMPLE VS CODE PACKAGE
The functionality that was made for the Atom
editor can of course also be implemented for
VS Code. To do so, we can start the VS Code
Extension in the Lazarus IDE’s ’Project-New
Project’ dialog. figure 7 on page 24
The various items that can be entered for VS
Code are - not surprisingly - very similar to
the one in the Atom package dialog:

— Directory

 Every VS Code extension lives in its own
 directory. Here you specify the directory
 for the new extension.
— Description

 A textual description of your package,
 it goes in the manifest file (package.json).
— Package Name

 A (unique) name for your package,
 it goes in the manifest file.
— Class Name

 The Pascal class name for the application
 class.
— Publisher

 If you want to publish your package in the
 online VS Code extension repository,
 here you must enter your developer name.
— Commands

 The commands that your package will
 provide to the editor. For each command
 you must specify a unique name, and the
 name of a pascal function that will be called
 when the command is invoked. Again,
 an empty function will be generated
 for each function you specify here.
— License

 The license for your package,
 it goes in the manifest file.
— Keywords

 Some keywords (space separated) for your
 package, it goes in the manifest file.
— Contribution Commands

 The commands that will cause your package
 to be loaded by the editor. The scope is a
 valid Atom scope identifier such as atom-
 workspace.
 This list goes in the manifest file. VS Code
 editor will use this list to present your
 commands in the command palette.

For the sample code, we use the same names
and settings as in the Atom package.

When you click OK, the IDE will make a set of
files that make up the extension (see figure
figure 8 on page 25):

— fix_identifiers.lpr

 The program with generated code:
 it can be compiled.
— .vscode/tasks.json

 This file is used by VS Code to build your
 package: It contains the Pas2JS command-
 line needed to build your package;
 it is possible to edit and compile your code
 in VS Code.
— .vscode/launch.json
 This file is used by VS Code to run and debug
 your package: It contains the necessary
 command-line options needed to start
 VS Code with your extension loaded.
— package.json
 The package manifest file.
— js/packageglue.js
 This file contains the VS Code extension
 Javascript wrapper code shown
 above. As in the case of the Atom package:
 If you decide to change the name
 (or output file) of the Pascal project,
 you must not forget to change the name of
 the imported project file here.

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 10/12

27Blaise Pascal Magazine 91 2021

Again, the IDE has generated a project file that
is ready to be compiled, you just need to
create some code in the correct callbacks.

 = ()TFixIdentifiersApplication TVSCodeApplicationClass
 Protected
 procedure override ; ;DoActivate
 procedure override ; ;DoDeactivate
 Public
 function (:) : ;FixIdentifiers args TJSValueDynArray JSValue
end;

Note that the generated FixIdentifiers
function has some arguments and returns a
value. The function contains the DoActivate

code to register our command:
procedure . ;TFixIdentifiersApplication DoActivate
Var
 disp TVSDisposable : ;

begin
 inherited ;DoActivate
 disp VSCode commands registerCommand fix identifiers activate:= . . (' - : ',

 @);FixIdentifiers
 TJSArray ExtensionContext subscriptions push disp(.). ();

end;

The Document property of a TVSTextEditor
class is an in instance of TVSTextDocument
which contains the actual document that the
 user is editing. This class does not offer
 methods to directly manipulate the text:
 every edit must be done by a
 TVSTextEditorEdit

 TVSTextEditorinstance: the class has an
 edit method which creates such an edit and
 calls an event handler with the created
instance (called in the code editBuilder

below).
To make things easier, we will retrieve the whole
 text of the document (there is a
 method called getText for this),
 replace all identifiers in this text,
 and then use the
 TVSTextEditorEdit’s
 replace method to set the new text
 of the document. The replace
 method replaces a given range’s text
 with a new supplied text.

The replacing of the text needs a Range (class
TVSRange): this is a small object that
contains two positions: the start and end
position of a range of text. Since we will be
replacing the whole text of the document, we
create a range that starts at row 0 column 0, and
which is 1 line too long: the validateRange
method of the clips theTVSTextDocument

range so it is valid, and we use that to correct
the Range.

This code looks very similar to the DoActivate
code of the Atom package. The result of
the command is a VS Code registerCommand

disposable class: The ExtensionContext
was passed by VS Code to the VS Code
extension. It contains a arraySubscription

which you can push elements on: We push the
disposable result of the registerCommand
to the array.Subscriptions

The method has been FixIdentifiers

generated by the Lazarus IDE wizard, and we
must fill it with code to implement our plugin.

The API of VS Code is quite big, it is
documented here:
https://code.visualstudio.com/api/
references/vscode-api

Unfortunately, the VS Code editor does not
offer a search and Replace API such as it exists
in Atom. We must implement the search and
replace ourselves.

To change the contents of a document, you
must first obtain a reference to the document.
We do this in a similar manner as in the Atom
plugin: the window.activeTextEditor
returns an active text editor: an object of class
TVSTextEditor.

Putting all this together leads to the following
code:

function . (TFixIdentifiersApplication FixIdentifiers
 :) : ; args TJSValueDynArray JSValue
Const SErrNoEditor Cannot replace identifiers no editor = ' : ';

Var StringEd TVSTextEditor aText R TVSRange: ; : ; : ;

begin
 Result null:= ;

 Ed VSCode window activeTextEditor:= . . ;

 if not then () Assigned Ed
 begin
 VSCode window showInformationMessage SErrNoEditor. . ();

 exit;

 end;

 aText Ed document getText:= . . ();

 aText DoUppercaseSQL DoUpperCaseSQL aText:= (());

 R TVSRange New Ed document lineCount:= . (, , . . ,);0 0 0
 R Ed document validateRange R:= . . ();

 Ed edit editBuilder TVSTextEditorEdit. ((:)procedure
 begin
 editBuilder replace R aText. (,);

 end
);

end;

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 11/12

28Blaise Pascal Magazine 91 2021

The does the actual search DoUppercaseSQL

and replace on the text. It is a simple loop
which uses the standard Javascript
String.replace to do the search and replace.

Function String String . (:) : ;TFixIdentifiersApplication DoUpperCaseSQL aText
Const
ToUpperCase bigint smallint int varchar : = (' ',' ',' ',' ',Array of string
 ' ',' ',' ');char null nullnot default not
Var StringS aRegex aRepl, , : ;

begin
 Result aText:= ;

 For in do S ToUpperCase
 begin
 aRegex W S W:='(^|\ *)'+ +'(\ |)';$
 aRepl UpperCase S:=' '+ ()+' ';$1 $2
 Result TJSString Result replace TJSRegexp New aRegex ig aRepl:= (). (. (,' '),);

 end;

end;

This is maybe not the most efficient algorithm,
but it will do nicely for demonstration purposes.
Compiling the program and debugging it in VS
Code we can see that the project actually works:

If you want to distribute your package, you need
to build it. In order to do so you need to install
the vsce (Visual Studio Code Extensions) npm
package:
 npm install -g vsce

This will install a vsce command on your system,
which you can then use to create a .vsix file:
 vsce package

Figure 7: Our command in the command palette

The packager may complain
about a missing repository,
but if all went well you will
get a message that your file
was created:

8 CONCLUSION
VS Code and Atom plugins are normally created
in Javascript. Thanks to Pas2JS and
TMS Web core, Pascal programmers can now
program plugins for these two popular engines
in Pascal. The method shown here will become
more simple in the future: when library support
is finished, then the glue code will no longer be
necessary.

home:~/github/vscodefixidentifiers> vsce package
DONE Packaged:
/home/michael/vscodedemo/
fix-identifiers-0.0.1.vsix (17 files, 365.06KB)

LAZARUS: CREATING ATOM AND VS CODE PLUGINS IN PASCAL PAGE 12/12

ADVERTISEMENT

Subscription
Combi (4)

Subscription + Lazarus Handbook

LAZARUS

HANDBOOK

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t,

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo,

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k

LAZARUS

HANDBOOK

2
FO

R PR
OGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

LA
ZA

RU
S

HA
ND

BO
OK

 2

LA
ZA

RU
S H

AN
DB

OO
K

 1

Ex Vat 9%
Including shipment !

Figure: 1

Page 1/6 BITMAP ENLARGEMENT BY INTERPOLATION

Tested with: Delphi 7

 By David Dirkse

expertstarter

30Blaise Pascal Magazine 91 2021

INTRODUCTION
The Delphi TBitmap class has a two
dimensional array of bytes,words or cardinals
called the canvas which holds an image.
An individual byte,word,cardinal of this canvas
is called pixel.
On many occasions images need to be resized.
This may be done by copying the bitmap to a
new one of different size,
using a suitable algorithm to calculate the pixel
values of the new bitmap.
One method is to take the individual pixels
from the destination bitmap,
project them over the source pixels and
calculate the average color of the source pixels
covered. I call this the "projection method".

This method works fine in case of image
reduction.
For images enlarged by a factor 2 or 3, the
result is not smooth. In this article I describe a
better algorithm for these cases:

— transfer the source pixels
 directly to their new position in
 the destination bitmap
— use interpolation to calculate the remaining
 -in between- pixels of the destination
 bitmap.
 I call this the "interpolation method".

See the next pictures showing
the different resizing algorithms
for a threefold magnification:

Please use a magnifying glass to see the
differences more clearly.

TBitmap class
In this project, pixels are cardinals only
(unsigned 32 bit integers).
This is the internal layout of a 32 bit pixel:

There are 8 bits per color, color intensity
ranges from to 0 255.

Bits are not used.24..31

Next picture shows the coordinate positions of
the pixels.
The scanline[] property supplies the pointer y

to the first pixel of row y.

Figure 2: Projection method

Figure 3: Interpolation method

Figure 4: Copordinate positions

Figure1: Original

Figure: 1

31Blaise Pascal Magazine 91 2021

Pixels on the canvas of bitmap map are
addressed by: map.canvas.pixels[x,y]
This is a slow process, only suitable for a few
individual pixels.
Many times faster is to address pixels by a (50*)
pointer to their memory location.
To facilitate pointer calculations I store these
pointers as dwords.
Next a bitmap named map is created with 100
rows and 200 columns:

type = ^ ;PDW dword
...

var : ;map TBitmap
 : ;p0 dword // pointer to [0,0]
 : ;pstep dword // pointer distance between rows
....

begin
 := . ; map TBitmap create
 with domap
 begin
 := ; width 200
 := ; height 100
 := ; pixelformat pf32bit
 ; end
 := (. []); p0 dword map scanline 0
 := - (. []); pstep p0 dword map scanline 1

Now the expression
 := . . [,]; color1 map canvas pixels 12 75 //----1

can be replaced by
 := (- * + (shl))^; color1 PWD p0 pstep75 12 2 //----2

Note:
In cases and -1- -2-

before the values of are different.color1

In case the field occupies bits , -1- red 0..7
blue 16..23.

This is the Windows color format for 32 bit

and t pixels.24 bi

Regarding a bitmap as a one-100*200 pixel

dimensional of array[0..19999] dword,

the first is at pixel position dword [0]

[0,199], the left bottom.

Dword [1] [1,199] is at pixel position which
is bytes higher. 4

Going from [0,199] to [0,198]
requires addition of to a 4*200 = 800
pointer.

Pointers are byte addresses.
Expression (12 shl 2) is a fast way to
multiply 12 by 4.
For a next row, a pointer has to be subtracted
by value pstep = 4*column count

Note:
Regarding a bitmap as a
one dimensional array A,

the pointer to is A[0]
bitmap.scanline[bitmap.height-1].

Multiplication by 2
A 5*5 10*10. bitmap is magnified to

Next the -in between- pixels A,B,C have to be
calculated.
The bottom row and also the right column
need separate action.

Figure 6: The pixels that are directly copied are
indicated by a number.

 BITMAP ENLARGEMENT BY INTERPOLATION Page 2/6

Figure 5: Coordinate positions

Figure: 1

32Blaise Pascal Magazine 91 2021

procedure X2copy
type of = [] ;TAIP arry dword1..8
var , , , : ; c1 c2 c3 c4 dword //colors of source map
 : ; AIP TAIP //interpolation pixels
 : ; pd0 dword //destination row 0 pointer
 , : ; pd1 pd2 dword //destination row pointers
 : ; pdstep dword //destination row difference
 : ; ps0 dword //source row 0 pointer
 : ; psstep dword //source row difference
 , : ; x y word //source pixel addressing
 , : ; py py1 dword //scratch pointers

Variables address the source pixel {c x,y c1

stands for color}.
C1 is copied directly to the destination
bitmap.
To calculate the in-between pixels A,B,C the
procedure interpolate24(AIP,c1,c2,c3,c4);
is called.

A is AIP[1]
B is AIP[2]
C is AIP[3]

Interpolate24...{2x magnification, 4 variables}
calls

Then r,g,b values are calculated for each A,B,C
color.

A = (C1+C2)/2 r,g,bfor
B = (C1+C3)/2 r,g,bfor
C + (C1+C2+C3+C4+3)/4 r,g,bfor

Finally colors are packed in r,g,b AIP[1],

AIP[2}..etc by a call to

procedure var (: ; , , :);PackColor col dword r g b byte
begin
 col r g b := ((shl) (shl));16 8or or
end;

Please refer to the source code for details.

Pixel at is copied to the destination c1 [x,y]

bitmap.
Pixel is equal to .A c1

Pixels and are the average of and B C c1 c2

which is calculated by

procedure var (: ; , :);interpolate22 AIP TAIP c1 c2 dword
//return AIP[1]
var , , , , , , , , : ;r g b r1 g1 b1 r2 g2 b2 byte
begin
 (, , ,); UnpackColor r1 g1 b1 c1
 (, , ,); UnpackColor r2 g2 b2 c2
 := (+) shr ; r r1 r2 1
 := (+) shr ; g g1 g2 1
 := (+) shr ; b b1 b2 1
 ([], , ,); packcolor AIP r g b1
end;

 BITMAP ENLARGEMENT BY INTERPOLATION Page 3/6

procedure var (, , : ; :);unpackColor r g b byte col dword
begin
 := ; b col and $ff
 := shr ; col col 8
 := ; g col and $ff
 := shr ; col col 8
 := ; r col and $ff
end;

which extracts the 8 bit r,g,b values from
dword col.

c1 r1,g1,b1 has values for red, green, blue.
c2 r2,g2,b2 has values...etc.

RIGHT COLUMN

Figure 6: Pixels are processed starting
left top to right bottom.

Figure 7: Coordinate positions

Figure: 1

33Blaise Pascal Magazine 91 2021

BOTTOM ROW

c1 is copied from the source bitmap.
B equals c1.
A and C are the avarage of c1,c2 calculated
similar to the right column pixels.

Multiplication by 3
Below is pictured a 3x4 bitmap and its
magnification by 3.

The process is similar to the x2
magnification however more calculation is
required.
First the 3x3 pixelfields in the destination
bitmap are processed.
Interpolation is more complicated.
I calculate pixels A,B,C,D,E,F,G,H as
weighted average of C1,C2,C3,C4.
If a color (C1,C2..) has distance d to a pixel
(A,B,C...) its weight factor w = 1/d.
The Pythagoras lemma is used to calculate
the distances.

 BITMAP ENLARGEMENT BY INTERPOLATION Page 4/6

Figure 8: Bottom row positions

Figure 9: Magnification by 3

A = (1.C1 + 0.5C2)/(1+0.5) = 0.66C1 + 0.33C2
B = (0.5C2 + 1.C1)/(1+0.5) = 0.33C1 + 0.66C2
D = 0.36C1 + 0.23C2 + 0.23C3 + 0.18C4

Please look at the next picture: (Figure 10)

Figure: 1

34Blaise Pascal Magazine 91 2021

Of course the calculation for D is repeated 3
times: for red, green and blue.

RIGHT COLUMN

C1, C2 and interpolation colors A,B are copied
also to the far right destination column

BOTTOM ROW

The C1 and C2 values are copied directly.
A, B are interpolation colors. C1, C2, A, B are
copied to the bottom row of the destination map.

SHOWING RESULTS
map1 (loaded from disk), is displayed in
paintbox1. Paintbox1 has a fixed size of
400*400 pixels.

 is the result of expansion and this bitmap map2

is displayed in paintbox2. This paintbox is
800*800 pixels in size. To show all pixels in
case is larger, horizontal and vertical map2

scrollbars are added on form1.

The scrollbar max property has to be adjusted
for the size of map2.
The following code takes care

var : ;d smallInt
...

begin
 := . - . ; d map2 width paintbox2 Width
 < := ; if thend d0 0
 . := ; Hscrollbar max d
 . := ; Hscrollbar position 0
 := . - . ; d map2 Height paintbox2 Height
 < := ; if thend d0 0
 . := ;Vscrollbar Max d
 . := ; Vscrollbar position 0
end;

 BITMAP ENLARGEMENT BY INTERPOLATION Page 5/6

Figure 10: Shows the Formula

Figure 11: Right column

Figure 12: Bottom Row

Figure: 1

35Blaise Pascal Magazine 91 2021

A scrollbar event calculates the onChange

rectangle to be copied from to map2
paintbox2:

procedure . (:);TForm1 VscrollbarChange Sender TObject
//V,H scrollbar changes
//repaint paintbox2
var , : ;BW BH word //paintbox width,height
 rs rd Trect, : ; //source,destination rect
begin
 := . ; BW paintbox2 Width
 := . ; BH paintbox2 Height
 with dors
 begin
 := . ; left Hscrollbar position
 := . ; top Vscrollbar position
 := + ; right left BW
 := + ; bottom top BH
 ;end
 with dord
 begin
 := ; left 0
 := ; top 0
 := ; right BW
 := ; bottom BH
 ;end
 . . (, . ,); paintbox2 Canvas CopyRect rd map2 Canvas rs
end;

To conclude I show another example of a 3
times magnified image using both the
projection and the interpolation method:

Figure 16: Interpolation method

The image represents the escutcheon of the
Dutch county of Zeeland.
A translation of the Latin text
“Luctor Et Emergo” is :
"I struggle but I'll survive".

Figure 15: Projection method

Figure 14: Original

 BITMAP ENLARGEMENT BY INTERPOLATION Page 6/6

Figure 13: Bottom Row

LA
Z

A
R

U
S

 H
A

N
D

B
O

O
K

 2
LA

Z
A

R
U

S
 H

A
N

D
B

O
O

K
 1

FOR PROGRAMMING WITH FR
EE PA

SCAL A
ND LA

ZARUS

FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

934 PAGESLA
ZA

R
U

S
 H

A
N

D
B

O
O

K

LAZARUS HANDBOOK POCKET edition is

also sewn, (see next page) to make sure you will
not lose pages after a while. It is printed on 100
percent guaranteed FSC certified Paper

INCLUDED:
bookmark - creditcard - usb stick
which contains the personalized pdf
file of the book and the extra program files. So
you have your electronic as wel the printed book
in one product.

For ordering go to:
https://www.blaisepascalmagazine.eu/product-category/books/

60 euro
ex Vat inc. PDF including shipment

Sewn POCKET (2)

ADVERTISEMENT

934 pages
in two books

36Blaise Pascal Magazine 91 2021

+

37

LAZARUS

HANDBOOK

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t,

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo,

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k

LAZARUS

HANDBOOK

2
FO

R P
ROGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

LAZARUS

HANDBOOK

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t,

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo,

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k

LAZARUS

HANDBOOK

2
FO

R P
ROGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

https://www.blaisepascalmagazine.eu/product-category/books/

The books The extra protection cover Including the PDF

75 euro ex Vat
including shipment
including. PDF

HardCover (3)

ADVERTISEMENT

934 Pages
in two books

37Blaise Pascal Magazine 91 2021

934 P
AGES

LA
ZA

RU
S H

AN
DB

OO
K

FO
R PR

OGRAMMIN
G W

IT
H FR

EE
 PA

SCAL A
ND LA

ZARUS

+

Blaise Pascal Magazine 90 2020 38

Figure: 1

Page 1/5 Cyclic Redundancy Checking /

Choose a number k (called the key) and divide
 by the remainder is M k, r.

The quotient is discarded. The remainder Q

is called the checksum and this number is r

attached to the message,
M = Q.k + r .
(Message = quotient times key + remainder)

Look at the next picture for the case of data
transmission:

CAPABILITIES
In case of a message length of and a 32 bits

checksum of , there are 16 bits

 messages that share the 2^32/2^16 = 65536

same checksum.
This looks bad at first glance but consider a
randomly damaged message it only goes M:

undetected if out of checksums is 1 65536

generated.
With a n bit checksum the chances for a
random error staying undetected is 1/2^n .

INTRODUCTION
Cyclic Redundancy Checking (CRC) is a way to
insure the integrity of data. During transmission
data may be disturbed by atmospheric interference,
bad contacts or other hardware failures. Also
damaged magnetic media cause corrupted data.
Data also may be manipulated by interested
parties. The basic idea of CRC checking is to attach
a unique number to the data.
This number is generated in the following way:
Regard the data (message M) as one big binary
number.

Tested with: Delphi 7

At the sender side, bits of message M send
are also shifted into register while is r k

subtracted from After message , the r. M

checksum is transmitted. r

At the receiver side also the checksum is
generated.
When bits are transmitted error free, the M

generated checksum at the receiver side
equals the checksum send by the sender.

DECIMAL EXPLANATION
To understand CRC checking, take the example
of normal decimal arithmetic and a key (k)
of . 10

Then message generates a checksum 192743

of regardless of the other digits. 3

Any error except for the last digit goes 3

undetected.
Reason is that 40, 700, 2000, 90000,
100000 are multiples of the key k.

Now consider a key of
11. 19274310 = 1218a111 {a = 10}

This message will generate a checksum of .1
Next an error is imposed on , which becomes M

19574310 = 12407911 9 and now checksum
is generated. The error is detected.
Let our be . key k 125

 By David Dirkse

Figure 1: the case of data transmission:

expertstarter

Customized text

Because of some
glitches in the same article of issue 90 we have
republished it in this issue (91) extra.

Blaise Pascal Magazine 90 2020 39

Figure: 1

8 * 125 = 1000 3,4, so, errors in digits …etc
will go undetected because they impose errors
on that are a multiple of .M 1000

Here we reach an important conclusion:
an error superimposed on message goes E M

undetected if is a multiple of E k.

Working decimal, may not be a multiple 10n

of k for n = 1,2,3,….
This is the case when the number system base
and the key have no common factors.

With a key of k bits, producing checksums of
n = k-1 bits long, any single error burst within
n bits will be detected.

PUBLIC OR SECRET KEY?
In the case of data transfers a public key,
known by everyone, is fine.
Another situation occurs when CRC checking
is used as a signature to protect data against
unauthorized modification.
In this case the checksum is generated with a
secret key, only known by the application.

In , is the unity element of operation: x or 0
1+0 = 1, 0+1 = 1.

1 is its own inverse : 1 + 1 = 0.
The associative law holds:
(a+b) + c = a + (b+c)

The commutative law holds : a+b = b+a
The distributive law holds: a(b+c) = ab + ac
see the next example as proof where a=1001,
b=1100 c=0111 and

SIMPLIFIED ARITHMETIC
Before, I mentioned that the checksum is
generated by division.
Division implies borrows.
Borrows (and carries) may be avoided by
defining addition (subtraction) as exclusive or
(xor) operations. This simplifies hardware
without reducing effectiveness.

Binary xor operations are
0+0 = 0; 0+1=1; 1+0=1; 1+1=0;

No carries, no borrows, they are simply
ignored. There is no difference between
addition and subtraction. xor is also called:
“logical difference”.

The left column shows , the right a(b+c)

column ab + ac.
So we have a valid arithmetic system.
Here is another reassuring example:
the calculation a * b / b = a for
a=010111 b=101101 and

Figure 2: CRC cheking

Figure 3: a valid arithmetic system.

Page 2/5 Cyclic Redundancy Checking

Blaise Pascal Magazine 90 2020 40

Figure: 1

Note: we are not interested in the quotient.

CHOOSING A KEY
A key of will generate 1 0000 00002

checksums that equal the 8 least significant
bits of because any message of the formM

xxx 0000 0000 is a multiple of the key.
Any other key is good.
The choice of a key depends on the type of
errors expected. Many keys are designed to
detect double bit errors that are far apart.
In that case errors like 100000000000000001

may not be a multiple of the key.
To choose a key may start with factorizing
expected errors to make sure they are not a
multiple of the key. This arithmetic, of course,
must be performed using the above
rules ignoring carries and borrows.

POPULAR KEYS
A popular key is 16 bit

1 0001 0000 0010 0001 which is known as
the standard.X25

Another 16 bit key is
1 1000 0000 0000 0101 called the CRC-16
protocol, used in modems.
The Ethernet standard uses the 32 bit key:
 1 0000 0100 1100 0001 0001 1101 1011 0111.

The keys are designed to detect double bit
errors that are many bits apart.
Choosing a certain key is based on the
assumption that some errors are more likely to
occur than others.

A BIT CALCULATOR
To explore and learn binary arithmetic with
suppressed carries and borrows I have
programmed a simple calculator. Below is a
reduced image.

Calculations may be performed with or
without carries.

The speed is adjustable from 1 to 25
operations per second.
It uses 3 registers:
A : 48 bits.

B : 24 bits, may be shifted left to represent
value where n is the shift count.B*2n
X : 25 bits.

Operations are:
Add: A = A + B.
Overflow sets if the sum exceeds 2 48 -1^
Subtract: A = A – B
Underflow is set when A becomes negative.
Multiply: A = A + B.X
(clear A before operation)
Divide: X = A / B
A holds remainder after division.

Numbers may be entered directly into (0,1)

the register or entered in decimal or
hexadecimal format in an edit box.
Register values may be displayed in decimal or
hexadecimal format in this edit box.

Page 3/5 Cyclic Redundancy Checking

Figure 4: a simple calculator

Customized text

Blaise Pascal Magazine 90 2020 41

Figure: 1

1. A register.
2. B register.
3. C register.
4. Buttons to transfer register to edit box.
5. Buttons to transfer edit box to registers.
6. Speed control
7. On-Line help
8. Close exerciser and exit.
9. Overflow / underflow indicators.

10. Carry suppression button.
11. Clear buttons for A,B,X registers.
12. B register left – right shift handles.
13. Operation buttons
14. Finish operation in progress, bypassing
 delays.
15. Operation busy indicator.
16. Edit component for decimal or
 hexadecimal display of numbers.

THE DELPHI (7) PROJECT
Unit 1 handles button events and
indicators.
Unit 2 TEdit64 consists of a class called
which is a descendant of TObject.
TEdit64 has a box property pointing to a
paintbox for display of register values.

The class does not perform TEdit64

arithmetic operations, but only displays
and edits data, shifts the B register and
manipulates a cursor.
Data is held in property digits,
an of byte.array[…]

Byte layout is:
1xxx xxxx right pointing arrow displayed at
top of bit to indicate a borrow
x1xx xxxx left pointing arrow displayed at
top of bit to indicate a carry
xx10 xxxx bit displayed in red color (not
black). Not used.
xxx1 xxxx bit displayed bold. (not used)
xxxx nnnn 0..15 number .
Only used here.0,1

Some properties of TEdit64:

Image below lists the controls and registers:

Size, boxsize and offset are counted in binary
digits.
Pitch is the pixelcount per digit.
Binvalue: read (write) register value as 64 bit
integer.
Box: associated paintbox for display of register.

Page 4/5 Cyclic Redundancy Checking

Figure 5: The controls and registers

Figure 6: Some properties of TEdit64:

Unit 3 handles arithmetic operations.
Operations are performed bit-wise.
A component rotationbutton

(simulation of a rotary button as
found in laboratory equipment)
allows for adjustable speed.

The button is set for values . 0..20

The delay is obtained from a microseconds
timer component.
Value causes operation speed, 0 1Hz

20 25Hz.causes
Each step must cause the same relative speed
increment so 25 = step20.
Step = e0.05.ln(25) = e0.1609.
So, delaytime = 1e6 / exp(n*0.1609)

where is the position. n rotation-button

This unit has the following procedures:
procedure ADDstep(n : byte);

Adds bit of to corresponding bit of n B A.
procedure carrystep(n : byte);

is called to propagate a carry through .A
procedure AddBtoA;

calls and to make full ADDstep carrystep

addition A = A + B.

A similar case is subtraction with
procedures subtractstep(n:byte),

borrowstep(n:byte) being called by
procedure subtractBfrom A.

Multiplication is done by calling AddBtoA

repeatedly if the corresponding bit is X 1.

Division subtractBfrom A calls repeatedly,
setting an bit if subtraction is done. X

For each position of B a check is (offset)

needed because subtraction may not be
possible.
Different checks are used for the case of
carries and carry suppression.

function AminBOK: boolean; returns true
if subtraction with carries is possible.
Note: in computer hardware the subtraction is
actually made and negative results are
restored. However, non restore divide
algorithms also exist.
function AxorBOK: byte; checks for carry
suppressed division and returns
- 0 : continue shifting B register right
- 1 : xor B to A and shift B right
- 2 : error

Please refer to the source code for details.
The component was described rotation button
some years ago in Blaise Pascal Magazine.
For the microseconds timer and the array
button component (used to select operations) see my

book: “Computer Math and Games in Pascal”.
The buttons and extra examples are available via
download from your registered subscription address:

Page 5/5 Cyclic Redundancy Checking

See examples below:

Figure 7: Examples

https://www.blaisepascalmagazine.eu/your-downloads/

42Blaise Pascal Magazine 90 2020

BLAISE PASCAL MAGAZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

procedure ;
var
begin
 := for toi 1 9
do
 begin

 ;end
end;

43

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek
Edelstenenbaan 21 3402 XA
IJsselstein Netherlands

editor@blaisepascalmagazine.eu
https://www.blaisepascalmagazine.eu

Prof Dr.Wirth, Creator of Pascal Programming language

BLAISE PASCAL MAGAZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

procedure
;
var
begin

L
E
A

R
N

 T
O

 P
R

O
G

R
A

M

U
S
IN

G
 L

A
Z
A

R
U

S
H

O
W

A
R

D

P
A

G
E
-C

L
A

R
K

VIDEO

BLAISE PASCAL MAGAZINE 89
Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases

CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

LAZARUS 2.010 FOR WEB:
WEbCore for FREE, for Linux for Mac, and Windows,

a special to install a free groep of components
DELPHI - DELEAKER

helps to find memory leaks in Delphi
MYCLOUD DATA

-_Delphi server client app: an authors and booklist
available via the internet

UNTYPED I/O
These records may be

 transferred without bothering about
 their internal structure.

and fields that can switch color

CODE SNIPPETS for Delphi and or Lazarus creating buttons

depending on handling content

LAZARUS
HANDBOOK
FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

934 PAGES

SUPER
OFFER (5)

€ 150 ex Vat
free shipping

ADVERTISEMENT

1. One year Subscription
2. The newest LIB Stick
 - including Credit Card USB stick
3. Lazarus Handbook - Personalized
 -PDF including Code

4. Book Learn To Program using Lazarus PDF
 including 19 lessons and projects
5. Book Computer Graphics Math & Games

 book + PDF including ±50 projects

A L L I S S U E S I N O N E F I L E

B L A I S E P A S C A L M A G A Z I N E

L I B R A R Y 2 0 2 0

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

31

39

47

54

40

48

55

62

63
64

656667
68

69
70

75
76

56

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

8987
88

45

46

50
51 52 53

33

35

37

32

34

36

38

23

24

25
26 27 28

7
14

22

30

71
72

73
74

78
79

ALL CODE ABOUT THE USE

90

Since I am interested in crispr technology, I am
always on the look out for explanations: some
articles are very interesting and will provide a lot of
better understanding of these very special items
and Danny Wind of the Delphi Company showed
me this one.

Fantastic. Just go there and read it.

Here is given a very good written explanation of
things one needs to understand before even being
able to follow the article – and it reads like a
detective.
Only a small part of the article is published here
because all information is on his website and of
course much more.

JUST A SHORT INTRODUCTION:
Welcome! In this post, we’ll be taking a
character-by-character look at the source
code of the BioNTech/Pfizer SARS-CoV-2
mRNA vaccine.

This is a good question, so let’s start off with a
small part of the very source code of the
BioNTech/Pfizer vaccine, also known as
BNT162b2, also known as Tozinameran also
known as Comirnaty.

First 500 characters of the BNT162b2 mRNA.
Source: World Health Organization

The BNT162b2 mRNA vaccine has this digital
code at its heart. It is 4284 characters long, so
it would fit in a bunch of tweets. At the very
beginning of the vaccine production process,
someone uploaded this code to a DNA printer
(yes), which then converted the bytes on disk
to actual DNA molecules.

THE CRISPR PAGES PAGE 1/2

A Codex DNA BioXp 3200 DNA printer

Out of such a machine come tiny amounts of
DNA, ending up as RNA in the vaccine vial.
RNA is the volatile ‘working memory’ version
of DNA. DNA is like the flash drive storage of
biology. DNA is very durable, internally
redundant and very reliable. But much like
computers do not execute code directly from a
 flash drive, before something
 happens, code gets copied to a
 faster, more versatile yet far
 more fragile system.
 For computers, this is RAM,
 or biology it is RNA.
 The resemblance is striking.
 Unlike flash memory, RAM
 degrades very quickly unless
 lovingly tended to.

THE BRIEFEST BIT OF
BACKGROUND

DNA is a digital code. Unlike computers, which
use 0 and 1, life uses A, C, G and U/T (the
‘nucleotides’, ‘nucleosides’ or ‘bases’).
In computers we store the 0 and 1 as the
presence or absence of a charge, or as a
current, as a magnetic transition, or as a
voltage, or as a modulation of a signal, or as a
change in reflectivity. Or in short, the 0 and 1
are not some kind of abstract concept.

44Blaise Pascal Magazine 91 2021

THE CRISPR PAGES PAGE 2/2

They live as electrons and in many other
physical embodiments.
In nature, A, C, G and U/T are molecules,
stored as chains in DNA (or RNA).
In computers, we group 8 bits into a byte, and
the byte is the typical unit of data being
processed.
Nature groups 3 nucleotides into a codon, and
this codon is the typical unit of processing. A
codon contains 6 bits of information (2 bits
per DNA character, 3 characters = 6 bits. This
means 2� = 64 different codon values).
Pretty digital so far. When in doubt, head to
the WHO document with the digital code to
see for yourself.

SO WHAT DOES THAT CODE DO?
The idea of a vaccine is to teach our immune
system how to fight a pathogen, without us
actually getting ill. Historically this has been
done by injecting a weakened or incapacitated
(attenuated) virus, plus an ‘adjuvant’ to scare
our immune system into action. This was a
decidedly analogue technique involving
billions of eggs (or insects). It also required a
lot of luck and loads of time. Sometimes a
different (unrelated) virus was also used.
An mRNA vaccine achieves the same thing
(‘educate our immune system’) but in a laser
like way. And I mean this in both senses - very
narrow but also very powerful.
So here is how it works. The injection contains
volatile genetic material that describes the
famous SARS-CoV-2 ‘Spike’ protein. Through
clever chemical means, the vaccine manages
to get this genetic material into some of our
cells.
These then dutifully start producing SARS-
CoV-2 Spike proteins in large enough
quantities that our immune system springs
into action. Confronted with Spike proteins,
and (importantly) tell-tale signs that cells have
been taken over, our immune system develops
a powerful response against multiple aspects
of the Spike protein AND the production
process.
And this is what gets us to the 95% efficient
vaccine.

So if your interested: here is his website article:
https://berthub.eu/articles/posts/
reverse-engineering-source-code-of-
the-biontech-pfizer-vaccine/

Further reading/viewing
In 2017 Ben Hubert held a two hour presentation on DNA, which
you can view here. https://berthub.eu/dna/
Like this page it is aimed at computer people.
In addition, Ben Hubert has been maintaining a page on ‘DNA
for programmers’ since 2001. You might also enjoy this
introduction to our amazing immune system:
https://berthub.eu/articles/posts/
immune-system/
Finally, this listing of his blog posts:
https://berthub.eu/articles/
has quite some DNA, SARS-CoV-2 and COVID related material.

Image from https://www.webmd.com/lung/coronavirus

45Blaise Pascal Magazine 91 2021

CODE SNIPPETS Part 5 Path & CompileDate Page 1/1

This is the Lazarus example: I dropped some
code that will always show the correct compile-
date and path of your application. In contrast to
Delphi we need now to create code that is ready
for Windows, Linux and Mac
The code is downloadable of course.

46Blaise Pascal Magazine 91 2021

 ;unit UnitMain

{$mode objfpc}{$H+}

interface

uses
 , , , , , , , ,Classes SysUtils Forms Controls DateUtils Graphics Dialogs StdCtrls
 ;ExtCtrls

type

 { TForm1 }

 = ()TForm1 TFormclass
 : ;Button1 TButton
 : ;Label1 TLabel
 : ;Label2 TLabel
 : ;Panel1 TPanel
 (:);procedure Button1Click Sender TObject
 (:);procedure FormCreate Sender TObject
 private

 public
 : ; : ;Var StringCompiledate aDate TDateTime
 ;end

var
 : ;Form1 TForm1

implementation

{$R *.lfm}

{ TForm1 }

procedure . (:);TForm1 Button1Click Sender TObject
begin
label1 caption Compiledate. := + + ;'COMPILE DATE:' ' '

label2 caption ExtractFilePath Application ExeName. := + + (.) ; 'PATH' ' ' // Path

end;

procedure . (:);TForm1 FormCreate Sender TObject
begin
 //You cant use the same solution as in Delphi because
 // we have to serve more oOperating Systems
 (. ,)if FileAge Application ExeName adate
 := ()then CompileDate DateTimeToStr aDate
 := ;else CompileDate '?'

 := + + +Caption Compiledate'COMPILE DATE:' ' ' ' '

 + + (.) ; ' Path ' // PathExtractFilePath Application ExeName

end;

expertstarter

This is the promised Delphi version, it has some
special aspects which I will show you and that are
very determinative: The MaskEdit component has
no variant with Database aspects.
So to create almost the same aspects I tried to
find a easy way to still get that done.

Introduction:
The “MaskEdit” is a very nice component to use
but needs some special knowledge.
In this Delphi example some of the possibilities
are explained, the code is available from your
personal subscription download address:
https://www.blaisepascalmagazine.eu/
your-downloads/

and you need to login first.

You can build the project easily, its number of
components is limited, and you can of course first
try out the example. As I mentioned there are
some special aspects on this subject. I never
realized that there are no standard DBMaskEdit
components. So the easy way for the loading and
saving in a DataBase must be solved in a work
around. Or maybe some special component from
third party vendors. But for these easy kind of
projects we don’t want that - unless they are free.

expertstarter

CODE SNIPPETS Part 6 (DB)Edit Mask Page 1/3

47Blaise Pascal Magazine 91 2021

The Project
Here is the form of the project:
FmaskEditForm

GOALS FOR THE PROJECT:
u Explain the settings for the MaskEdit
v Creation of the Database
w Work around to insert or append
w Explain the click event of the GridCell

u Explaining the settings for the MaskEdit
 The MaskEdit Help is very good at making
 the process clear:
 Choose Edit Mask in the Object Inspector
 and then click on the ellipsis button:
 A new window pops up

— With that component selected, click the
 ellipsis button in the Value column for the
 EditMask property.
— Double-click the Value column for the
 EditMask property.

If you click on F1 you get these help instructions

48Blaise Pascal Magazine 91 2021

Define your own mask:
This is a bit more complex and intricate.
You can use a special character to specify the
mask; for a listing of those characters, see the
TEditMask datatype. (See figure 2 page before)
The mask consists of three fields separated by
semicolons. The three fields are:
u The mask itself; you can use predefined
 masks or create your own.
v The character that determines whether or
 not the literal characters of the mask are
 saved as part of the data.
w The character used to represent a blank in
 the mask.
I used only standard settings: there is an option
to make a localized version:
 FormatSettings.DateSeparator := '/';

do not use FormatSettings it overules and
causes errors.

xExplain the click event of the GridCell
I got almoast frustrated when I tried to
implement whta i thought it was a simple
peace of code. Nothing hapne nothing worked
as I wanted to activate a simple gridcel.

It works because the way TDBGrid is coded,
the associated dataset is synchronized to the
currently selected/clicked grid row. Generally
speaking, it's easiest to get values from the
current record of the dataset, but you asked,
so. Try to avoid changing the current record's
values by manipulating the cell's text because
the DBGrid will fight you every inch of the way.

Note that a more robust way of getting the cell
text, which includes Remy Lebeau's suggestion
to use Column.Field instead of SelectedField, is
as follows:

v Creation of the Database
I chose to use a Client data set, because for
demo’s they are wonderfully simple: her is the
code: (if you want to save the Client
database you need to use one of the earlier
projects)

procedure . (:);TFMaskEdit FormCreate Sender TObject
begin

 // Use the ShortDateFormat settings only
 // ShowMessage('ddddd = '+ formatdatetime('ddddd', now));
 // Format example : ShowMessage('d/m/yyyy = '+ formatdatetime('d/m/yyyy', now));
 // FormatSettings.DateSeparator := '/';
 // do not use FormatSettings it overules and causes errors

 With doCDS
 begin
 . ;FieldDefs Clear

 . (,);FieldDefs Add ftDate'ADate'

 . (, ,);FieldDefs Add ftString'AStr' 50
 . (,);FieldDefs Add ftLargeint'AInt'

 ;CreateDataSet
 //add some data
 ;Open

 ;Append
 (). := ;FieldByName AsString'ADate' '12-09-2003'

 ;Post

 ;Append
 (). := ;FieldByName AsInteger'AInt' 1
 ;Post

 ;Append
 (). := ;FieldByName AsString'ADate' '12-12-2090'

 (). := ;FieldByName AsInteger'AInt' 30
 ;Post
 . []. := ; DBGrid1 Columns Width0 150 // this sets the date colum width
 //which is otherwise to small for the long date
 ;end

end;

So this creates each time the database and fills
it with fields and data.
The event should be OnCreate of the form

w Work around to insert or append
We need to be able to extract as well to insert
dat from the database (grid). To be able to
insert I thought it might be the easiest way to
use the MaskEdit because we then do not have
to use extra components, but there is a
restriction: the is triggerd directly, so onClick

I used the onDoubleclick OnChange event.
has the same problem. Here is an example:

procedure . (:);TFMaskEdit MaskEdit1DblClick Sender TObject
begin // Must be doubleclick otherwise it will be triggerd to early
 // sets the value in the database and shows it in the grid
 With doCDS
 begin
 ;Append
 (). :=FieldByName AsDateTime'ADate'

 (.); StrToDate MaskEdit1 EditText
 ;Post
 ;end
end;

CODE SNIPPETS Part 6 (DB)Edit Mask Page 2/3

49Blaise Pascal Magazine 91 2021

x Explain the click event of the
 GridCell
I got almost frustrated when I tried
to implement what I thought was a
simple peace of code.
Nothing happened, nothing worked
as I wanted to activate a simple
gridcell. I found a solution that
solves this problem on the internet
and explains it as follows:

It works because the way
TDBGrid is coded, the associated
dataset is synchronized to the
currently selected/clicked
grid row.
Generally speaking, it's easiest to get values
from the current record of the dataset.
Try to avoid changing the current record's
values by manipulating the cell's text
because the DBGrid will fight you every inch
of the way.
Note that a more robust way of getting the cell
text, which includes Remy Lebeau's
(http://www.lebeausoftware.org)

 suggestion is to use instead of Column.Field

SelectedField, see code right top:

procedure . (:);TFMaskEdit DBGrid1ColEnter Sender TObject
begin
 // Starts the field value whre you cliked on immediately
 . := . (). ;MaskEdit2 EditText cds FieldByName Asstring'Aint'

end;

procedure . (:);TFMaskEdit DBGrid1CellClick Column TColumn
var string : ;s
 : ;AField TField
begin
 // Starts the column field value
 // if you do not use them together you will mis the first instance of Cell Click
 := . ; AField column field // Fill the field
 := . ; S AField AsString // Fil the Var

 . := ; MaskEdit2 EditText S // Set into Maskedit
 // it must be MaskEdit2.EditText, not MaskEdit2.EditMask!

end;

I chose to use for initializing DBGrid1colEnter

the event, and the to fill te DBGrid1CellClick

the MaskEdit: it must be
MaskEdit2.EditText, not
MaskEdit2.EditMask!
So now you can click on the gridcell and see the
changes....

CODE SNIPPETS Part 6 (DB)Edit Mask Page 3/3

CODE SNIPPETS Part 7 Recall App Settings Page 1/4

In this series we want to show and create
little nice code creations that can be helpful
and very easy to replicate.

INTRODUCTION:
As I promised: here is the version for Lazarus.
This one can be used on Windows / Linux and
Mac OS (Big Sur).
Mattias Gaertner whom fell in to the bucket of
Pascal-Elixir (I am jealous of this) has of course
helped me with Mac OS.
I had learned by one of our readers that if you
want to write an app for several Oss you best
start with Mac. Usually after that Linux and
Windows will be easy
This app is created with the latest version of
Lazarus 2.0.10 / FPC 3.2.0.
I have tested it under all OS’s.

expertstarter

50Blaise Pascal Magazine 91 2021

To demonstrate, I made a small text which you can
activate by clicking the button. It will show the text
and if you click on the text you will see a
showmessage that lets you see the numbers of the
position and the size of the app.
After that there is a read out inserted into the Hint.
If you move over with your mouse it will show up.
If you change the position and/or size you will after
clicking on the text again be able to see the
changes. You can see that on the next page... as an
extra I have some information over Mac and the
Bundles. Read it: for Mac it is important...

Figure 1: Push the button , Windows 10 example

Figure 2: The Hint appears, Ubuntu Linux example

It’s a very simple project as you can see by the
code. I added some extra’s to show the actual
number if you change the size and or
placement on the desktop.

We build in a procedure to make sure that the
Application-window-sizes are guarded.
()See the code at the red arrow on the next page.

I had to do this because I found out - I am
normally on a very large 4k screen - under “Big
Sur” the application flipped and was out of
sight. That is because my “Big Sure” screen is
only 13 inches.

Actually there are only two important events:
Form Create and Form Close.
The
TMemInifile.Create(extractfilepath
(application.exename)
+'PositionIni.ini');
means that if the file does not exist it will be
created and the position of the form as well its
size will be read.
In the Form Close it works the other way
around, the settings will be rewritten into the
inifile.
At that point the inifile must be freed:
PositionIni.Free; In case you are using

several forms you should free in the
FormDestroy of the main form.

Figure 3: Osx Mac, “Big Sur”

CODE SNIPPETS Part 7 Recall App Settings Page 2/4

51Blaise Pascal Magazine 91 2021

 ;unit fPositionAppMainForm

{$mode objfpc}{$H+}

interface

uses
 , , , , , , , ,Classes SysUtils Forms Controls Graphics Dialogs StdCtrls Inifiles
 ;LazLogger{For testing Purpose}

...

 var
 : ;FMainForm TFMainForm

implementation

{$R *.lfm}

function string . : ;TFMainForm GetCfgFilename
{$IFDEF darwin}
var
 : ;p SizeInt
{$ENDIF}
begin
 := (.);Result ExtractFilePath Application ExeName
 {$IFDEF darwin}
 := (,);p pos Result'.app/Contents/MacOS/'

 > if thenp 0
 := ((, -));Result ExtractFilePath LeftStr Result p 1
 {$ENDIF}
 := + ;Result Result 'PositionIni.ini'

end;

 { TFMainForm }
procedure . (:);TFMainForm FormCreate Sender TObject
Var : ;r TRect
begin
 // PositionIni := TMemInifile.Create(extractfilepath(application.exename) +'PositionIni.ini');
 // this is the standard windows solution

 // These lines below show the construction you need
 // if you want to use it on Mac, Linux and Windows
 := . ();PositionIni TMemInifile Create GetCfgFilename

 := . (, ,) ;PositionTop PositionIni ReadInteger PositionTop'SETTINGS' 'Top'

 := . (, ,) ;PositionLeft PositionIni ReadInteger PositionLeft'SETTINGS' 'Left'

 := . (, ,) ;AppWidth PositionIni ReadInteger AppWidth'SETTINGS' 'Width'

 := . (, ,) ;AppHeight PositionIni ReadInteger AppHeight'SETTINGS' 'Height'

 // To test the eventual wrong numbers this is a way to ensure
 // that it will only start with the maximum width and higth
 := . ;r Screen WorkAreaRect
 (< .) (< .)if orPositionLeft r Left PositionTop r Top
 (+ > .)or PositionLeft AppWidth r Right
 (+ > .) or thenPositionTop AppHeight r Bottom
 begin
 // the actual test itself:
 // outside of screen, using default
 //ShowMessage('AAA1 '+dbgs(PositionLeft)+' '+dbgs(r));
 end else
 . (, , ,);FMainForm SetBounds PositionLeft PositionTop AppWidth AppHeight
 //ShowMessage('AAA2 '+dbgs(PositionLeft)+' '+dbgs(r)+' Cur='+dbgs(BoundsRect));

 // to set the form at the right placee
 . := ;FMainForm Top PositionTop
 . := ;FMainForm Left PositionLeft
 . := ;FMainForm Width AppWidth
 . := ;FMainForm Height AppHeight
end;

CODE SNIPPETS Part 7 Recall App Settings Page 3/4

52Blaise Pascal Magazine 91 2021

procedure var . (: ; :);TFMainForm FormClose Sender TObject CloseAction TCloseAction
begin
 := . ; PositionTop FMainForm Top
 := . ; PositionLeft FMainForm Left

 := . ; AppWidth FMainForm Width
 := . ; AppHeight FMainForm Height

 . (, ,); PositionIni WriteInteger PositionTop'SETTINGS' 'Top'

 . (, ,); PositionIni WriteInteger PositionLeft'SETTINGS' 'Left'

 . (, ,); PositionIni WriteInteger AppWidth'SETTINGS' 'Width'

 . (, ,); PositionIni WriteInteger AppHeight'SETTINGS' 'Height'

 . ; PositionIni UpdateFile
 . ; PositionIni Free
end;

procedure . (:);TFMainForm Button1Click Sender TObject
begin
 // popup the label
 . := ; Label1 Visible True
end;

procedure . (:);TFMainForm FormDestroy Sender TObject
begin
 // PositionIni.free; //Only if there are several forms
end;

procedure . (:);TFMainForm Label1Click Sender TObject
Var String , , , : ;PT Pl AW AH
 Hintstring: ;String

begin // create the Hintstring and the showmessage

 := . ; PositionTop FMainForm Top
 := . ; PositionLeft FMainForm Left

 := . ;AppWidth FMainForm Width
 := . ; AppHeight FMainForm Height

 . (, ,); PositionIni WriteInteger PositionTop'SETTINGS' 'Top'

 . (, ,); PositionIni WriteInteger PositionLeft'SETTINGS' 'Left'

 . (, ,);PositionIni WriteInteger AppWidth'SETTINGS' 'Width'

 . (, ,); PositionIni WriteInteger AppHeight'SETTINGS' 'Height'

 . ; PositionIni UpdateFile
 := . (, ,) ; PositionTop PositionIni ReadInteger PositionTop'SETTINGS' 'Top'

 := . (, ,) ; PositionLeft PositionIni ReadInteger PositionLeft'SETTINGS' 'Left'

 := . (, ,) ; AppWidth PositionIni ReadInteger AppWidth'SETTINGS' 'Width'

 := . (, ,) ; AppHeight PositionIni ReadInteger AppHeight'SETTINGS' 'Height'

 := (); PT IntTostr PositionTop
 := ();PL IntTostr PositionLeft
 := (); AW IntTostr AppWidth
 := (); AH IntTostr AppHeight

 := + + + + + + + + + + + + + + ; Hintstring PT PL AW AH'Top' ' ' ' ' 'Left' ' ' ' ' 'Width' ' ' ' ' 'Hight' ' '

 . := ; Label1 Hint Hintstring

 (); showmessage Hintstring

end;

CODE SNIPPETS Part 7 Recall App Settings Page 4/4

53Blaise Pascal Magazine 91 2021

procedure . (:);TFMainForm Label1Click Sender TObject
Var String String , , , : ; : ;PT Pl AW AH Hintstring
begin
 := . ;PositionTop FMainForm Top
 := . ;PositionLeft FMainForm Left
 := . ;AppWidth FMainForm Width
 := . ;AppHeight FMainForm Height

 . (, ,);PositionIni WriteInteger PositionTop'SETTINGS' 'Top'
 . (, ,);PositionIni WriteInteger PositionLeft'SETTINGS' 'Left'
 . (, ,);PositionIni WriteInteger AppWidth'SETTINGS' 'Width'
 . (, ,);PositionIni WriteInteger AppHeight'SETTINGS' 'Height'

 . ;PositionIni UpdateFile
 := . (, ,) ;PositionTop PositionIni ReadInteger PositionTop'SETTINGS' 'Top'
 := . (, ,) ;PositionLeft PositionIni ReadInteger PositionLeft'SETTINGS' 'Left'

 := . (, ,) ;AppWidth PositionIni ReadInteger AppWidth'SETTINGS' 'Width'
 := . (, ,) ;AppHeight PositionIni ReadInteger AppHeight'SETTINGS' 'Height'
 := ();PT IntTostr PositionTop
 := ();PL IntTostr PositionLeft
 := ();AW IntTostr AppWidth
 := ();AH IntTostr AppHeight

 := + + + + + + + + + + + + + + ;Hintstring PT PL AW AH'Top' ' ' ' ' 'Left' ' ' ' ' 'Width' ' ' ' ' 'Hight' ' '
 . := ;Label1 Hint Hintstring
 ();showmessage Hintstring
end;

Figure 2: Dragging and resizing

Figure 3: Now the hint appears

LAZARUS INSTALL FOR 2 PAGE 1/7PAS JS
expertstarterBy Mattias Gärtner

Figure 1: Logo

54Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS
2 JS

PAS JS2

 A source-to-source translator, source-to-source
 compiler (S2S compiler), transcompiler,
 or transpiler is a type of translator that takes
the source code of a program written in a programming
language as its input and produces an equivalent
source code in the same or a different programming
language.

A transpiler converts between programming
languages that operate at approximately the same level
of abstraction, while a traditional compiler translates
from a higher level programming language to a lower
level programming language.

For example, a transpiler may perform a translation of
a program from Pascal to JavaScript,
while a traditional compiler translates from a language
like C to Assembler or Java to bytecode.

Bytecode, also termed portable code or p-code, is a
form of instruction set designed for efficient execution
by a software interpreter.
Unlike human-readable source code, bytecodes
are compact numeric codes, constants, and
references (normally numeric addresses) that encode
the result of compiler parsing and performing semantic
analysis of things like type, scope, and nesting depths
of program objects.
The name bytecode stems from instruction sets
that have one-byte opcodes (is the portion of a
machine language instruction that specifies the
operation to be performed.) followed by optional
parameters.

WIKIPEDIA

https://wiki.freepascal.org/pas2js

INTRODUCTION

COMPILER
Pas2js is an open source Pascal to
JavaScript transpiler.
It parses Object Pascal and emits JavaScript.
The JavaScript is currently of level
ECMAScript 5 and should run in any browser
or in Node.js (target "nodejs"). It is available
in 3 forms:
— as a library
— as a command-line program
— as a webserver

It transpiles from actual Pascal source,
it has no intermediate .ppu files.

That means all sources must always be
available.
Through external class definitions, the
compiler can use JavaScript classes:
— All classes available in the JavaScript
 runtime, and in the browser are available
 through import units (comparable to the
 windows or unix units for the native
 compiler).
— For Node.js, basic support for the nodejs
 runtime environment is available.
— An import unit for jQuery is available
 (libjquery)

This project is NOT related to a similar named
project on github.

RTL
For the generated code to work, a small
JavaScript file is needed: It defines rtl.js.

an object rtl. This object will start the Object
Pascal code if you include a call to rtl.run()
in the HTML page.

<script
type="application/javascript">
 rtl.run()
</script>

pas2js can automatically include this file in the
generated output, like this:

pas2js -Jc -Jirtl.js -Tbrowser
hello.pas

For nodejs, the compiler will insert the call to
rtl.run() automatically at the end of the
generated Javascript file.

There is a basic Object Pascal RTL, several
units from the FPC Packages are also available
For extra information you can go to:
https://wiki.freepascal.org/pas2js

LAZARUS INSTALL FOR 2 PAGE 2/7PAS JS

55Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS JS2

The most recent version you can get from our
own download addresses:
https://www.blaisepascalmagazine.eu/

pas2js-version2/ where you find:
pas2js-windows-2.0.0.zip
pas2js-macos-2.0.0.zip
pas2js-linux-2.0.0.zip

or you can find it on this webaddress where all
and older versions are available:
ftp://ftpmaster.freepascal.org/fpc/
contrib/pas2js

The releases contain binaries for Windows(32
and 64bit), Linux (64 bit) and macOS.

Installation procedure:
1. Download pas2js
 Every version has a directory with the
 version number.
 A list of changes can be found on the
 changelog page Pas2JS Version Changes

2. Unpack it in folder of your choice.
 The example top right uses
 C:\lazarus\pas2js\.

 The release contains three folders:
 — bin
 - contains the compiler as executable

 or and library and (pas2js pas2js.exe)
 some utilities.
 — demo
 - lots of examples
 — packages
 - the Pascal units of the RTL and other packages.

3. You can create a simple config to let the
 compiler find the RTL and packages.

Edit bin/pas2js.cfg:

#
Minimal config file for pas2js compiler
#
-d is the same as #DEFINE
-u is the same as #UNDEF
#
Write always a nice logo ;)
-l

Display Hints, Warnings and Notes
-vwnh
If you don't want so much verbosity use
#-vw

Allow C-operators
-Sc

-Fu$CfgDir\..\packages*
-Fu$CfgDir\..\compiler\utils\pas2js\dist

#IFDEF nodejs
-Jirtl.js
#ENDIF

end.

SVN
svn co
https://svn.freepascal.org/svn/
projects/pas2js/trunk pas2js

You need FPC 3.0.4 or better to compile it.

Change to the directory and build it with:

make clean all

This creates
bin/$(TargetCPU)-$(TargetOS)/pas2js

(Windows: pas2js.exe).
For example on Linux 64bit it creates
bin/x86_64-linux/pas2js,
while under Windows 64bit it creates
bin\x86_64-win\pas2js.exe.

And create a text file in the folder pas2js.cfg

where is:pas2js.exe

Write always a nice logo ;)
-l

Display Warnings, Notes and Hints
-vwnh
If you don't want so much verbosity
use
#-vw

-Fu$CfgDir/../../packages/*
-Fu$CfgDir/../../compiler/utils/pas2j
s/dist/

#IFDEF nodejs
-Jirtl.js
#ENDIF

Put all generated JavaScript into
one file
-Jc

end.

LAZARUS INSTALL FOR 2 PAGE 3/7PAS JS

56Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS JS2

HOW TO USE PAS2JS
The command-line arguments are kept mostly
the same as the FPC command-line
arguments. Error messages are also in the
same format.

The compiler needs access to all sources, and
so you need to specify the path to the sources
of all used units.

As for the FPC compiler, a configuration file is
supported, which has the same syntax as the
FPC config file. Note that the snapshots and
svn version already contains a default
pas2js.cfg with unit search paths (-Fu) for the
rtl and fcl. See here how for details about the
pas2js.cfg.

Basically, the command is the same as any
FPC command line. The only thing that is
different is the target: -Tbrowser or -Tnodeejs

Here is the complete list of command line
arguments.

FOR THE BROWSER
Consider the classical:

program ;hello

begin
 ();Writeln 'Hello, world!'

end.

Yes, writeln is supported.
Here is how to compile it:

pas2js -Jc -Jirtl.js -Tbrowser hello.pas

When compiled succesfully, the code can be
run in the browser by opening a html file in
the browser with the following content:

<html>
 <head>
 <meta charset="utf-8"/>
 <script type="application/javascript"
src="hello.js"></script>
 </head>
 <body>
 <script type="application/javascript">
 rtl.run();
 </script>
 </body>
</html>

The files that are needed are:
hello.html
hello.js
Whether hello.html is opened by double-
clicking it in the explorer or put on a server and
opened with an URL, is not relevant for the
functioning.
The output is visible in the browser's web
developer console. By including the
browserconsole unit, it will be visible in the
browser page:

FOR NODEJS
pas2js -Tnodejs hello.pas

When compiled succesfully, the code can be run
in node using the following command.
nodejs hello.js

Note: on macOS it is "node hello.js"

What is node js used for? Node. js is primarily
used for non-blocking, event-driven servers,
due to its single-threaded nature. It's used for
traditional web sites and back-end API
services, but was designed with real-time,
push-based architectures in mind.

 Node.js is an open-source, cross-platform,
 back-end JavaScript runtime environment that
 executes JavaScript code outside a web browser.
Node.js lets developers use JavaScript to write
command line tools and for server-side
scripting—running scripts server-side to produce
dynamic web page content before the page is sent to the
user's web browser. Consequently, Node.js represents a
"JavaScript everywhere" paradigm, unifying web-
application development around a single programming
language, rather than different languages for server-
side and client-side scripts.

Though .js is the standard filename extension for
JavaScript code, the name "Node.js" doesn't refer to a
particular file in this context and is merely the name of
the product. Node.js has an event-driven architecture
capable of asynchronous I/O. These design choices aim
to optimize throughput and scalability in web
applications with many input/output operations, as
well as for real-time Web applications (e.g., real-time
communication programs and browser games).

The Node.js distributed development project was
previously governed by the Node.js Foundation, and
has now merged with the JS Foundation to form the
OpenJS Foundation, which is facilitated by the Linux
Foundation's Collaborative Projects program.

 ;program hello

uses ;browserconsole

begin
 ();Writeln 'Hello, world!'

end.

WIKIPEDIA

LAZARUS INSTALL FOR 2 PAGE 4/7PAS JS

57

// JavaScript:
DoIt();{name:"Fred", id:3, size:4.3}
// Pascal;
DoIt new(([, , , , ,]));'name' 'Fred' 'id' 'size'3 4.3
You can nest it create sub objects :to

// JavaScript:
DoIt(});{name:"Fred", size:{width:3,height:2}
// Pascal;
DoIt new new(([, , , ([, , ,])]));'name' 'Fred' 'size' 'width' 'height'3 2
You can use TJSArray create JS arrays the fly ._ :of to on

// JavaScript:
DoIt();{numbers:[1,2,3]}
// Pascal;
DoIt new TJSArray(([, ._ (, ,)]));'numbers' of 1 2 3

Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS JS2

 = ()TJSFunction TJSObjectclass external name 'Function'

 private
 : ;Flength NativeInt external name 'length'

 : ;Fprototyp TJSFunction external name 'prototyp'

 public
 : ;name String
 : ;property prototyp TJSFunction read Fprototyp
 : ;property length NativeInt read Flength
 (: ; :): ; ;function const varargsapply thisArg TJSObject ArgArray TJSValueDynArray JSValue
 (:): ; ;function varargsbind thisArg TJSObject JSValue
 (:): ; ;function varargscall thisArg TJSObject JSValue
 ;end

This declares the TJSFunction object: in
Javascript, functions are objects.

The "external name 'Function'" means that you
declare a Javascript class where the Javascript
name of the class is 'Function'.
The (TJSObject) means it descends from
TJSObject also an external class. There does
not need to be an ancestor type.
Fields are declared just as in Pascal.
To declare read-only fields, a trick can be
used: declare the field using an external name
"thename" modifier, and declare a read-only
property with the same name.
(see the length declaration)
Varargs can be used to indicate that a function
accepts any number of arguments.
JSValue can be used to indicate an unknown
type.
It is more or less equivalent to a Variant.

LAZARUS INTEGRATION OF PAS2JS
Lazarus understands the concept of external
classes as used by pas2js, so code completion
will work. Since Lazarus 1.9 the IDE can use
pas2js.exe as a normal compiler.

The integration is described on the Lazarus
website: lazarus -pas2js integration. It is still
under construction, but deep integration with
lazarus is planned.

Importing Javascript classes
To import a javascript class, one writes a
normal class definition that mimics the
Javascript class. It is possible to use
properties. Many examples can be found in the
JS, web, nodejs and libjquery units.

Create simple JS objects with the new function
Some JS-framework functions expect a JS object
as parameter. Here is how to do that in Pascal
using the new function from unit JS:

RESOURCE STRINGS
The pas2js transpiler can generate a JSON file
(extension .jrs) with all the resource strings in
your program.

This is a quite simple file. A JSON object exists
for every unit, with each JSON property a
resource string.

 {
 "trs2" : {
 "ResUsed" : "This resourcestring is used",
 "ResUnUsed" : "This resourcestring is not used",
 "ImplResUsed" :
 "This implementation resourcestring is used"
 }
 " " : trs1 {
 "MyString" : "The very nice string we will need to
translate"
 }

LAZARUS INSTALL FOR 2 PAGE 5/7PAS JS

58Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS JS2

This file can be translated, and the translation file
can be loaded using the rstranslate unit, part of
the rtl. There are demo programs which
demonstrate the use of this feature.

The generating of this file is controlled by the -Jr
option. It can take 3 possible arguments:

u none This is the default, no file is generated.
v unit one file per compiled unit will be
 generated. This file will contain all resource
 strings of the unit.
w program one file is generated for the main
 file. This fill will contain all used resource
 strings for the main file and all the units it
 uses.
If you compile a program, then the program
option will generate a file with all the used
resource strings in your program.

The above example was generated using the
command:
pas2js -Jrprogram trs1.pp -B

Note that the format is different from the
format used by FPC:

Identifiers in the file are case sensitive: the
names must be typed as they appear in the
source file. The strings are grouped per unit,
this allows to load them faster.
The hash and bytes parts are missing, they
make little sense in a Javascript context.

Exceptions
Exceptions are translated to actual Javascript
exceptions. The has several rtl.js

mechanisms to deal with uncaught
exceptions. The basic mechanism is setting
the to true before showUncaughtExceptions

calling in your html file.rtl.run()

<script
type="application/javascript">
 rtl.showUncaughtExceptions=true;
 rtl.run();
</script>

The browser will then use a window.alert()

to show uncaught exceptions.
More explanations can be found in
pas2js_exceptions

DEBUGGING
The generated Javascript source code is of
course visible and debuggable in the browser.

Moreover, the transpiler can generate a source
map, which means that you will be able to see
and debug the Pascal code in the browser.
(Not everything will work, but many things
do. This depends on the browser too.)

A source map can be generated using the
command-line parameter:

-Jm

The easiest is to include the Pascal sources in
the source map:

-Jminclude

By default all source filenames are relative to
.js.map. You can tell the compiler to store all
file names relative to a specific local base
directory:

-Jmbasedir=DirName

And you can store an URL in the map, so the
browser will use URL/above-relative-file-name
to get the source:

-Jmsourceroot=URL

Porting from FPC/Delphi
See here for tips and traps porting code from
FPC and Delphi.

Delphi cannot parse some of the constructs
that exist in pas2js (namely: external classes).
You can create stub declarations suitable for
the Delphi parser with the stub creator.

LAZARUS INSTALL FOR 2 PAGE 6/7PAS JS

59Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS JS2

EXAMPLES:
— Time Tracking Application:
 https://www.devstructor.com/demos/pas2js-time/source.zip

— Drawing and animation on canvas:
 http://ragnemalm.se/images/santa/santa.html

 (sources: http://ragnemalm.se/images/santa/)
— WebGL:
 https://github.com/genericptr/Pas2JS-WebGL#pas2js-webgl

— Allegro Web Game:
 https://lainz.github.io/AllegroPas2JS-Demo-Game/index.html

 (sources:) https://github.com/lainz/AllegroPas2JS-Demo-Game
 https://github.com/genericptr/Pas2JS-WebGL#pas2js-webg

In the next issue we will explain
the Lazarus pas2JS Integration

Figure 1+2: Time Tracking Application:

LAZARUS INSTALL FOR 2 PAGE 7/7PAS JS

60Blaise Pascal Magazine 91 2021

ftp://ftpmaster.freepascal.org/fpc/contrib/pas2js/2.0.0/

PAS JS2

http://ragnemalm.se/images/santa/santa.html

https://github.com/genericptr/Pas2JS-WebGL#pas2js-webgl

https://lainz.github.io/AllegroPas2JS-Demo-Game/index.html

ADVERTISEMENT

1 year Subscription+
the new LibStick (6)

(on USB Card - 90 Issues)

� 100

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek
Edelstenenbaan 21 3402 XA
IJsselstein Netherlands

editor@blaisepascalmagazine.eu
https://www.blaisepascalmagazine.eu

Prof Dr.Wirth, Creator of Pascal Programming language

BLAISE PASCAL MAGAZINE 90
Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js / Databases

CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

Object Pascal Handbook for Delphi 10.4 Sydney Edition / By Marco Cantu
PPM Viewer for CNN feature maps / By Max Kleiner

The latest FastReport is also available for Lazarus / By Detlef Overbeek
MindMap: the one that is simply the absolute top / By Detlef Overbeek

Database Workbench 5.7 you simply cant do without it / By detlef Overbeek
Code Examples part 3/4/5

Free webcore for the Mac / By Mattias Gaertner
MMXcode for Delphi / By Detlef Overbeek

Free Simple projects with Lazarus and Delphi
 Cyclic redundancy codes / By David Dirkse

A L L I S S U E S I N O N E F I L E

B L A I S E P A S C A L M A G A Z I N E

L I B R A R Y 2 0 2 0

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

31

39

47

54

40

48

55

62

63
64

656667
68

69
70

75
76

56

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

8987
88

45

46

50
51 52 53

33

35

37

32

34

36

38

23

24

25
26 27 28

7
14

22

30

71
72

73
74

78
79

ALL CODE ABOUT THE USE

90

ex vat / inc. shipment

www.barnsten.com / info@barnsten.com
France: Téléphone +33 (0)9 72 19 28 87
Benelux: Telefoon +31 (0)2 35 42 22 27

Promotions
Delphi & C++Builder are the best development tools on the market to design and develop modern, cross-platform
native apps and services. It’s easier than ever to create stunning, high performing apps for Windows, macOS, iOS,
Android and Linux Server (Linux Server is supported in Delphi Enterprise or higher), using the same native code base.
Share visually designed UIs across multiple platforms that make use of native controls and platform behaviors, and
leverage powerful and modern languages with enhancements that help you code faster.

SUPER DEALS AT BARNSTEN UNTIL January 31, 2021 *

Get 15% on RAD Studio, Delphi and C++Builder products
This can be bought directly in the webshop
PLUS

GET a FREE Web Pack of your choice when you buy a new license for Delphi/RAD Studio/C++Builder Enterprise or
Architect. Choose between IntraWeb, TMS Web Core, or uniGUI and build amazing native applications. You will receive
a link to redeem the Web Pack of your choice with the delivery of your license.
* These offers are not valid on Academic licenses and/or existing contracts

www.barnsten.com / info@barnsten.com
France: Téléphone +33 (0)9 72 19 28 87
Benelux: Telefoon +31 (0)2 35 42 22 27

RAD Studio™ is the fastest way to design and develop modern, cross-platform native apps and services. It’s easier
than ever to create stunning, high performing apps for Windows, macOS, iOS, Android and Linux Server (Linux Server
is supported in Delphi Enterprise or higher), using the same native code base. Share visually designed UIs across
multiple platforms that make use of native controls and platform behaviors, and leverage powerful and modern
languages with enhancements that help you code faster. Developers pick RAD Studio™ because it delivers 5x the
speed for development and deployment across multiple desktop and mobile platforms.

Which promotion suits you the best?
Start today with the most powerful framework for Windows and native application development for Windows, macOS,
Android, iOS and Linux.
You can choose for a license including 36 months subscription. You will get access to all new versions and technical
support for three years.
You can choose option 2 if you want to bring your Delphi apps to the Web. You will receive your Delphi license incl. 1
year subscription and a free Web Component tool of your choice.

Chat with us or call if you have questions or need a personal advise.

Direct access to Windows 10 Store support
With the latest Embarcadero 10.3.3 Rio software you can transform existing and new Windows Desktop applications.
The applications are suitable for the Microsoft Windows 10 Store, using the Desktop Bridge technology, also known as
Centennial Bridge. In addition you will have to opportunity to sell to the entire world via the store.

Blaise Pascal Magazine 91 2021 64COMPONENTS
DEVELOPERS4

Compile Tool for kbmMemTable Page 1/7
and kbmMW By Detlef Overbeek

Figure 1: The setup for the memtable starts

Figure 2: Program folder

Figure 3: Folder selection

Figure 4: If you had a previous installation make sure it is
all removed and there is nothing of the installation is left

Figure 5: The running installment

Introduction:
I tried the newest extra from Kim Madsen: The
compiletool.
It is a tool that you will get together with two
programs: kbmMemTable and kbmMW.

The name is a bit misleading:
It actually is an installer that makes things that
were rather complex before very easy.
In this overview I’ll show where it is placed
after installing the program of the MemTable
or the Suite.
I am very pleased with this, not only because
Component4Developers is an advertiser but
because it makes it almost 100% easy to use
it.
To convince you, these pages that show
almost without text what to do and where you
can find the installer of ”The Compile Tool”.

Blaise Pascal Magazine 91 2021 65COMPONENTS
DEVELOPERS4

Compile Tool for kbmMemTable Page 2/7
and kbmMW

Figure 6: The installation is complete

Figure 7: In the source-dir you will find the
Compiletool project

Figure 8: Select the project and double-click

Figure 9: It starts then Delphi

Figure 10: Compile the project (Right Column)

Blaise Pascal Magazine 91 2021 66COMPONENTS
DEVELOPERS4

Compile Tool for kbmMemTable Page 3/7
and kbmMW

Figure 11: The form that will be compiled
and generates the program.

Figure 12: Compiling the Project

Figure 14: If you had compiled the program
while Delphi was still running you can get this warning

Figure 13: Restarted after recompiling

Blaise Pascal Magazine 91 2021 67COMPONENTS
DEVELOPERS4

Compile Tool for kbmMemTable Page 4/7
and kbmMW

Figure 15: Press this button to generate
compile and install inside Delphi.
After this you only need to add the address
to the browsing path of Delphi.
This is explained on page of the magazine XX
or page of the articlexxxxxx

Figure 16: Succes

COMPONENTS
DEVELOPERS4Blaise Pascal Magazine 91 2021 68

 Page 5/7

Blaise Pascal Magazine 91 2021 69COMPONENTS
DEVELOPERS4

Compile Tool for kbmMemTable Page 6/7
and kbmMW By Detlef Overbeek

Figure 17: The path you need is difficult to find :
Go to Tools ÚOptions ÚSearch under Language ÚDelphi ÚLibrary

Blaise Pascal Magazine 91 2021 70COMPONENTS
DEVELOPERS4

Compile Tool for kbmMemTable Page 7/7
and kbmMW By Detlef Overbeek

Here you see all the components that where
installed with the help of the compile tool.
How easy can it be?
The old way of installing - a bit more
complex - is still possible

Blaise Pascal Magazine 91 2021 71COMPONENTS
DEVELOPERS4

COMPONENTS
DEVELOPERS4Are Bumblebees picky?

When it comes to feeding on pollen, honeybees
and bumblebees are generalists. They like a
buffet of choices – except when it comes to
pollen from flowers of the genus Cucurbita,
including squash and pumpkin, which they avoid.

The Cornell study: “Pollen Defenses Negatively
Impact Foraging and Fitness in a Generalist
Bee,” published Feb. 20 in the journal Nature
Scientific Reports, found that squash and
pumpkin pollen have physical, nutritional and
chemical defense qualities that are harmful to
bumblebees. When bumblebees are fed cucurbit
pollen, it causes all kinds of problems, Adults
have damaged and distorted digestive tracts and
colonies fed cucurbit pollen failed to rear any
offspring.
Bumblebees do visit pumpkin and squash flowers
for the nectar, and though they don’t collect the
pollen, some might inadvertently get on their
legs.They were actually seen in the field using
their legs to groom it off their bodies and then
wipe it on a leaf. Not only are they not collecting
it, they actually hate it. The [cucurbit] system is
really interesting because we have specialists and
generalist bees feeding on the same resource.
The results suggest that deterring bumblebees
from collecting and eating pollen may provide an
evolutionary benefit to cucurbit plants.

Bees that are really effective at collecting and
eating certain types of pollen may be actually
functioning more like herbivores and pollen
thieves than actual pollinators. At the same time,
bees that visit plants for nectar but don’t collect
pollen may be good pollinators, as stray pollen on
their bodies may end up pollinating the next
flower.

What this tells us is that some plant pollen may be
chemically or mechanically protected from
generalist bees which, oddly enough, can benefit
the plants in terms of pollination. In the study,
Brochu and colleagues created diets that
represented different defenses to test which
cucurbit pollen characteristics deterred
bumblebees.
One diet of wildflower pollen collected by
honeybees served as a control. A second consisted
of unadulterated cucurbit pollen, which is
nutritionally poor food for bumblebees, has large
and spiny grains, and contains natural chemicals.
In a third treatment, the team extracted the
chemicals from the cucurbit pollen and added
them to the control diet of nutritionally rich
wildflower pollen.

Microcolonies of five bees were each fed a
separate treatment. The bees fed the wildflower
pollen thrived, as expected. Under a natural
cucurbit diet, the cumulative effect of the pollen’s
physical defenses, poor nutritional content and
chemicals led to bees ejecting their offspring from
their brood cells and killing them. Bumblebees do
this when stressed, possibly because they can’t
take care of the larvae, Brochu said.

With the crushed pollen diet, where the pollen’s
physical defenses were removed, eggs and larvae
failed to mature. Over the course of the 50 days of
the experiment, in both the crushed and natural
cucurbit treatment, no offspring made it to
adulthood.

In the crushed treatment, the adults also died at a
higher rate, possibly due to a release of additional
toxic chemicals. And with the chemical wildflower
treatment, larvae made it to adulthood most of the
time and the bees ate more, possibly to
compensate for something in the chemicals. Their
abdomens became hard and dark, a process called
melanization, which indicated trauma to the guts.

We tend to think that all pollen resources are great
for all bees, but I don’t think that’s true.

For the sake of bumblebees pumpkin and squash
growers may think twice about bringing commercial
bumblebees into their fields and may provide
wildflower strips as alternative food sources.
Bumblebees avoided gathering cucurbit pollen.

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping,
 range selection features
● Advanced indexing features for extreme performance

● RAD Studio XE5 to 10.4.1 Sydney supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OSX client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralized and distributed load
 balancing and failover
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multithread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronouncable password generators.
● High performance LZ4 and Jpeg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, JSON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

COMPONENTS
DEVELOPERS4

KBMMW PROFESSIONAL AND ENTERPRISE EDITION
V. 5.13 RELEASED!

DX

· Improvement to ORM including support for rewriting JOINS.

· Improvements to SmartBind

· Improvements to SmartEvent

· Improvements to LINQ

· Support of XML mixed text documents

· New TkbmMWXMLReformatter which can analyze and

 reformat even damaged XML

· New support for USB/HID devices including MagTek barcode

 reader class (Windows/Ent)

· More features improvements and fixes.

Please visit

http://www.components4developers.com

for more information about kbmMW

