
102
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Delphi VCL4Python

Python install help

The latest release of Delphi 11.1

The Droste effect: picture in picture in picture

Library support in PAS2JS

Pas2JS: Leveraging Typescript to use existing Javascript libraries

Pas2JS: Using multiple forms and routing

Creating a Daily Snaphot of Lazarus with GIT

Understanding Electron

D11.1

102
Multi platform / Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

From Your Editor Page 4
Cartoon, from our Technical Advisor Page 5
By Jerry King

Delphi VCL4Python Page 7
By Max Kleiner

Python install help Page 12
By Detlef Overbeek

The latest release of Delphi 11.1 Page 20
By Detlef Overbeek

Creating a Daily Snaphot of Lazarus with GIT Page 35
By Michael van Canneyt

The Droste effect: picture in picture in picture Page 42
By David Dirkse

Pas2JS: Leveraging Typescript to use existing Javascript libraries Page 46
By Michael van Canneyt

Library support in PAS2JS Page 57
By Michael van Canneyt

Pas2JS: Using multiple forms and routing Page 67
By Michael van Canneyt

Understanding Electron Page 89
By Detlef Overbeek

CONTENT

ARTICLES

Pascal is an imperative and procedural programming language, which Niklaus Wirth designed (left below) in 1968–69 and published in

1970, as a small, efficient language intended to encourage good programming practices using structured programming and data

structuring. A derivative known as Object Pascal designed for object-oriented programming was developed in 1985. The language name

was chosen to honour the Mathematician, Inventor of the first calculator: Blaise Pascal (see top right).

Publisher: PRO PASCAL FOUNDATION in collaboration © Stichting Ondersteuning Programmeertaal Pascal - NetherlandsNiklaus Wirth

Blaise Pascal Magazine 102 2022 2

LIB Stick BlaisepascalMagazine Archive Page 88
LIB Stick + Subscription + two books Page 6
Lazarus Handbook Pocket Page 56
Lazarus Handbook HardCover Page 45
Lazarus Handbk Pocket + Subscription Page 75
Barnsten Delphi Dag Page 19
Barnsten Delphi Offer Page 66
SuperPack Page 34
kbmMW Page 96

ADVERTISERS

All material published in Blaise Pascal is copyright © SOPP Stichting Ondersteuning Programeertaal Pascal unless otherwise noted and may not be copied, distributed
or republished without written permission. Authors agree that code associated with their articles will be made available to subscribers after publication by placing it
on the website of the PGG for download, and that articles and code will be placed on distributable data storage media. Use of program listings by subscribers for
research and study purposes is allowed, but not for commercial purposes. Commercial use of program listings and code is prohibited without the written permission
of the author.

Copyright notice

Editors Correctors
Peter Bijlsma, W. (Wim) van Ingen Schenau, Rik Smit Howard Page-Clark, Peter Bijlsma
Trademarks All trademarks used are acknowledged as the property of their respective owners.
Caveat Whilst we endeavour to ensure that what is published in the magazine is correct, we cannot accept responsibility for any errors or omissions.
If you notice something which may be incorrect, please contact the Editor and we will publish a correction where relevant.
Subscriptions (2019 prices)

Subscriptions can be taken out online at www.blaisepascal.eu or by written order, or by sending an email to office@blaisepascal.eu

Subscriptions can start at any date. All issues published in the calendar year of the subscription will be sent as well.
Subscriptions run 365 days. Subscriptions will not be prolonged without notice. Receipt of payment will be sent by email.
Subscriptions can be paid by sending the payment to:
ABN AMRO Bank Account no. 44 19 60 863 or by credit card or Paypal
Name: Pro Pascal Foundation-Foundation for Supporting the Pascal Programming Language (Stichting Ondersteuning Programeertaal Pascal)
IBAN: NL82 ABNA 0441960863 BIC ABNANL2A VAT no.: 81 42 54 147 (Stichting Programmeertaal Pascal)
Subscription department
Edelstenenbaan 21 / 3402 XA IJsselstein, The Netherlands
Mobile: + 31 (0) 6 21.23.62.68 office@blaisepascal.eu

Editor - in - chief
Detlef D. Overbeek, Netherlands Tel.: Mobile: +31 (0)6 21.23.62.68
News and Press Releases email only to editor@blaisepascal.eu

Internat.
excl. VAT

Internat.
incl. 9% VAT Shipment

WIKIPEDIAMember and donator of
Member of the Royal Dutch Library

Printed Issue
±60 pages

Printed Issue inside Holland (Netherlands)
60 pages

Electronic Download Issue
60 pages

€ 155,96

€ 250,00

€ 250

€ 70 € 64,20

€ 80,00

€ 70,00

3Blaise Pascal Magazine 99/100 2021

Anton Vogelaar
ajv @ vogelaar-electronics.com

Siegfried Zuhr
siegfried @ zuhr.nl

Bob Swart
www.eBob42.com
Bob @ eBob42.com

Daniele Teti
www.danieleteti.it
d.teti @ bittime.it

B.J. Rao
contact @ intricad.com

Wim Van Ingen Schenau -Editor
wisone @ xs4all.nl

Rik Smit
rik @ blaisepascal.eu

Detlef Overbeek - Editor in Chief
www.blaisepascal.eu
editor @ blaisepascal.eu

Howard Page Clark
hdpc @ talktalk.net

Heiko Rompel
info @ rompelsoft.de

Kim Madsen
www.component4developers.com

Paul Nauta PLM Solution Architect
CyberNautics
paul.nauta @ cybernautics.nl

Vsevolod Leonov
vsevolod.leonov@mail.ru

Jeremy North
jeremy.north @ gmail.com

Boian Mitov
mitov @ mitov.com

Andrea Magni www.andreamagni.eu
andrea.magni @ gmail.com
www.andreamagni.eu/wp

Max Kleiner
www.softwareschule.ch
max @ kleiner.com

John Kuiper
john_kuiper @ kpnmail.nl

Wagner R. Landgraf
wagner @ tmssoftware.com

Mattias Gärtner
nc-gaertnma@netcologne.de

David Dirkse
www.davdata.nl
E-mail: David @ davdata.nl

Benno Evers
b.evers @ everscustomtechnology.nl

Bruno Fierens
www.tmssoftware.com
bruno.fierens @ tmssoftware.com

Stephen Ball
http://delphiaball.co.uk
@DelphiABall

Michaël Van Canneyt,
michael @ freepascal.org

Dmitry Boyarintsev
dmitry.living @ gmail.com

Marco Cantù
www.marcocantu.com
marco.cantu @ gmail.com

Holger Flick
holger @ flixments.com

Jos Wegman / Corrector / Analyst

Contributors

Danny Wind

dwind @ delphicompany.nl

From your editor

4Blaise Pascal Magazine 99/100 2021

Hello dear readers,
the next issue is finally available and now we
need to explain why certain things happen.
In my country (Holland) it is springtime.
Now because of the rising temperatures it is very
nice to go out again and even Corona seems to
vanish.

This is exactly what I had in mind when I tried
to create an event in the Hortus Botanicus in
Leiden.
The plan was great: some of you were very
enthusiast, but there were to few of you.
Since I had to confirm the reservation within 2
weeks the risk was to large there wouldn't be
enough participants.
Now I advised my colleges from Barnsten to use
a later date for their event in May because than it
might be even warmer and no more real danger
of Corona. That will be on Thursday the 19th of
May in the Dutch “Brooklyn” Breukelen.

Alas that is not the only reason for being
cautious. Mr. Putin demonstrated he is a very
fearful men with a syndrome persecution
madness. This results in aggression and
oppressing his own people and even attacking
Ukraine.

To alleviate their fate of being driven from home
we need to help them. That's why we addressed
some advertisement for them to get free
subscriptions, a book and even a whole
programming tool from Componets4Developers.

I haven't seen many others but I urge them to do
something alike so these people will be able to
train for a better future. Lazarus itself is for free
for everybody and Delphi has a community tool.
Of course you can choose to help them in your
own way. I hope you will do so.

We all need to go on with our lives and one way is
to do programming.

Again, Michael van Canneyt (for Lazarus and FPC)
has been able to explain quite some things about
programming for the web and on the road to that
goal he created new abilities for Pas2JS.

Especially the explanation of how to use multiple
forms is very interesting. A MUST READ.

There is some extra news about Delphi 11.1 and
how to use it. The option to view the effect of
styles in design time is very helpful.
Because Artificial Intelligence is getting bigger
and better and thus more interesting I wanted
again to have an article on that subject.
There are some extra instalments to make and
Max Kleiner explains them, I try to make it easy to
install all the necessary tools : Python it self and
some extra’s from Delphi.
Jim McKeeth is organising an event about Artificial
Intelligence on 30 of March. See the address
below.

For Lazarus is the planning to do this as well, not
through Python but with a direct tool which will
be developed soon. Its not we don't want Python,
but it is an extra step and that is not necessary in
FPC.
At the end of the article list I explain things about
Electron, how it works and what you can use it
for.

Pleas take a look at Jims online event
(see the address below):
 Thank you,

https://register.gotowebinar.com/register/8998248551997116685?source=eloqua

From our Technical advisor: Cartoons from Jerry King

5Blaise Pascal Magazine 99/100 2021

BLAISE PASCAL MAGAZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

procedure ;
var
begin
 := for toi 1
9 do
 begin

L
E
A

R
N

 T
O

 P
R

O
G

R
A

M

U
S
IN

G
 L

A
Z
A

R
U

S
H

O
W

A
R

D

P
A

G
E
-C

L
A

R
K

THE NEW LIBRARY OF
BLAISE PASCAL MAGAZINE

COMPLETELY RENEWD PDF VIEWER
ON A USB STICK

https://www.blaisepascalmagazine.eu/product/lib-stick/

 € 75,00

102
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Delphi VCL4Python

Python install help

The latest release of Delphi 11.1

The Droste effect: picture in picture in picture

Library support in PAS2JS

Pas2JS: Leveraging Typescript to use existing Javascript libraries

Pas2JS: Using multiple forms and routing

Creating a Daily Snaphot of Lazarus with GIT

Understanding Electron

D11.1

https://www.blaisepascalmagazine.eu/product/bundle-download-subscription-libstick-two-books/

maXboxBlaise Pascal Magazine 102 2022

AUTHOR: MAX KLEINER People lie, numbers don't. — unknown.

7

Page 1/6

It supports:
¦ Win32 & Win64 x86 architectures
¦ Python cp3.6, cp3.7, cp3.8, cp3.9 and cp3.10
For other platforms, check out DelphiFMX4Python.

Another way to install is explicit with:

maXbox Starter 92-1 Code with VCL Python

 DELPHI PYTHON VCL 4

pip install delphivcl

 ABSTRACT:

In the last few Articles we have seen that P4D is a set of free components that wrap up
the Python packages into Delphi and Lazarus (FPC). This time we go(t) the other way

round: How can we show the Python User to profit from the VCL Components. To be able to
use this article you should read the Articles from Issue Nr: 96 Page 9 / Nr: 97 Page 9 / Nr: 98

Page 9 / Its all available on your LIB stick.
You need to install Python first. In a separate Article: INSTALLING PYTHON in this issue is

a guide for making the necessary installments.

INTRODUCTION
 We create Python extension modules from Delphi classes, records or functions.
It can be the beginning of a long journey to provide Delphi's VCL library as a certain
Python module to build powerful Windows GUI out from a Script.

The Python module we take a look at is called: DelphiVCL.pyd
It can be simply installed from the shell via pip:

python.exe -m pip install delphivcl

u*.py: The norm input source code that we had written.
v*.pyc: The compiled bytecode. If you import a module, Py will build a *.pyc file that
 contains bytecode to make importing it again later easier and faster.
w*.pyd: The mentioned windows dll file for Python.

in case you want to install the 32bit version with the 32bit executable.

On Win, the standard Python installer already associates the .py extension with a file
type (Python.File) and gives that file type an open command that runs the interpreter
(G:\Program Files\Python\python.exe "%1" %*).
This is enough to make scripts executable from the command prompt.
We can use the python-dll as we use a windows dll.
Therefore *.pyd files are dll-libraries, but there are a few differences:
So far you have to know 3 different file types you can import from, after installed a known
package like Delphi VCL:

If you have a DLL named bee.pyd, then it must have a function PyInit_bee().
You can then write Python "import bee", and Python will search for bee.pyd (as well as bee.py,
bee.pyc) and if it finds it, will attempt to call PyInit_bee() to initialize it.
Of course you don't link your .exe with bee.lib, as that would cause Windows to require the DLL to be
present, we load it dynamically at runtime.

starter expert
D11

maXbox 8

Page 2/6

https://github.com/maxkleiner/DelphiVCL4Python/blob/main/tests/___init__.py

from delphivcl import *

maXbox Starter 92-1 Code with VCL Python

 DELPHI PYTHON VCL 4

import importlib.machinery, importlib.util
def new_import(ext_file):
 loader = importlib.machinery.ExtensionFileLoader("DelphiVCL",ext_file)
 spec = importlib.util.spec_from_file_location("DelphiVCL",ext_file,
 loader = loader, submodule_search_locations=None)
#print("spec", spec, spec.loader, modulefullpath, __file__)

The project which we introduce is in the subdirectory Delphi and generates a Python

extension module (a DLL with extension "pyd" in Windows) that allows you to create a user
interface using Delphi from within Python.
A part of the VCL or LCL (almost and maybe) is wrapped with a few lines of code!

The small demo TestApp.py gives you a flavour of what is possible.
The machinery by which this is achieved is the WrapDelphi unit.
The subdirectory DemoModule demonstrates how to create Python

extension modules using Delphi, that allow you to use in Python,
functions defined in Delphi.

Compile the project and run test.py
from the command prompt (e.g. py test.py).

The generated pyd file should be in the same directory as the Python file.
This project should be easily adapted to use with Lazarus and FPC.

After compiled to the DelphiVCL.pyd we want to use it in a Python script, which is the main
topic of this article:

Python code in one module gains access to code in another module,
 by the process of importing it. The import statement is the most common way of invoking the
import machinery, but it is not the only way.

First we check our Python installation.
Python 3.* provides for all user and current user installations.
All user installations place the Py-dll in the Windows System directory

and write the registry info to HKEY_LOCAL_MACHINE.
Current user installations place the dll in the install path and
the registry info in HKEY_CURRENT_USER version < PY 3.5.

So, for current user installations we need to try and find the install path or package path since it
may not be on the system path as an environment var.
In our case we set a const to demonstrate:

Blaise Pascal Magazine 102 2022

maXbox 9

Page 3/6

So next we load the dll (with or without import statement possible),
call the VCL class and start the main procedure:

maXbox Starter 92-1 Code with VCL Python

 DELPHI PYTHON VCL 4

 = ;Const PYHOME 'C:\Users\max\AppData\Local\Programs\Python\Python36-32\'

 = ; VCLHOME ’r"C:\users\max\appdata\local\programs\python\python36-32\lib\site-packages\delphivcl\win32\delphivcl.pyd"'

We can see the simple VCL-form as it says "Hello":

https://github.com/maxkleiner/DelphiVCL4Python/tree/main/samples/HelloWorld

eg TPythonEngine Create:= . ();Nil
try
 eg pythonhome PYHOME. := ;

 eg loadDLL. ;

 ...

 eg execStr LoadPy_VCLClass. ();

 eg execStr STARTMAIN. ();

 eg execStr. ();'main()'

Blaise Pascal Magazine 102 2022

maXboxBlaise Pascal Magazine 101 2022

Page 4/6

 =STARTMAIN
 'def main(): '+ +LF
 ' Application.Initialize() '+ +LF
 ' Application.Title = "Hello Python" '+ +LF
 ' Main = MainForm(Application) '+ +LF
 ' Main.Show() '+ +LF
 ' FreeConsole() '+ +LF
 ' Application.Run() '+ +LF
 ‚ Main.Destroy() ';

 __ (,):def init__ self owner
def on_form_close self sender __ (, ,

action):

maXbox Starter 92-1 Code with VCL Python

 DELPHI PYTHON VCL 4

As a special proof of
concept I run the hello world sample with P4D in a

maXbox script to show the compatibility between the two type- and memory layout
systems. But of course normally the script runs in a shell or with PyScripter. As a caveat I

can run this "test toggle workaround" only once, could be that a finalizer,
dispose or destructor is missing.

We pass with the
MainForm() call our initialized Application to a Python class defined
in LoadPy_VCLClass which has the class name 'class
MainForm(Form): with two method-functions (def in class):

Imagine on the VCL-form from Python

is a SynEdit-control which enables to script in Pascal and Python

together, fascinating it:

10

maXbox

Page 5/6
maXbox Starter 92-1 Code with VCL Python

 DELPHI PYTHON VCL 4

 . (:);procedure TForm1 Button1Click Sender Tobject
 begin . (.);PythonEngine1 ExecStrings Memo1 Lines
end;

In P4D you do have the mentioned memo with ExecStrings:

This explains best the code behind, to evaluate an internal Python expression or statement.
You are responsible for creating one and only one TPythonEngine instance.

CONCLUSION
The VCL/LCL is a mature Windows/Linux native GUI framework with a huge library of included

visual components and a robust collection of 3rd party components and classes. It is the finest
framework for native Windows applications, and we can use it with Python!

Python has only one type of module object, and all modules are of this type, regardless of whether the
module is implemented in Python, Delphi, FreePascal, C, or something else.

VCL4Python topics
•https://learndelphi.org/python-native-windows-gui-with-delphi-vcl/
•http://www.softwareschule.ch/examples/weatherbox.txt
•http://www.softwareschule.ch/examples/pydemo37.htm
•https://github.com/maxkleiner/DelphiVCL4Python
•https://t.co/lNhgxqNr7B

11Blaise Pascal Magazine 102 2022

maXbox

Page 1/7

PYTHON INSTALL HELP

AUTHOR: DETLEF OVERBEEK

starter expert

12

Addittional Installer

Blaise Pascal Magazine 102 2022

 INSTALLATION
 PROCEDURES FOR PYTHON AND DELPHI4PYTHON

If you follow the guidelines of this article it will be fairly easy for you to handle.
For Lazarus we will have an other implementation because we will make Lazarus directly

approachable for the use of special Libraries we need to connect to for Artificial

Intelligence. That will probably become available in the next Issue (103). That said we will also
create a future possibility to have Python for Lazarus.

There might be a confusion about several titles for the Delphi Projects, there is Delphi4Python and
there is Python4Delphi as well of course Python itself.First of all yo need to install Python.

You need to have the program because all other subjects use it.

The “Delphi for Python” way means you will install a group of components for direct use and get
about 34 example programs. Its nice to install them, because otherwise you will need to get the
Python4Delphi which is much harder and confusing to install as well get it organized.
So I will give a short explanation.
Installing Python (in this case for Windows)
To download it go to: https://www.python.org/

(there is of course a list of beta versions if you want to use those, but I advise you to
chose a stable version).

maXbox 13Blaise Pascal Magazine 102 2022

Page 2/7

PYTHON INSTALL HELPAddittional Installer

There are two different apps
combined: The IDLE Shell witch is

“Pythons Integrated Development and
Learning Environment”.

The next one shows the Python Index of
Modules: see page 7 of this article.

There are quite a lot of possibilities:
you will have to try them your self

maXbox 14Blaise Pascal Magazine 102 2022

Page 3/7

PYTHON INSTALL HELPAddittional Installer

I have inverted
the Command

Prompt which is
shown here,
so they will be
better readable.
Please read the
text and it will
help you during
installation.
You can set the
PDF file to show
two pages side
by side, so can
read the whole
texst.

15

Page 4/7

I have inverted the Command Prompt
which is shown here,
so they will be better readable.
Please read the text and it will help you
during installation.
You can set the PDF file to show two pages
side by side, so can read the whole texst.

maXbox 16Blaise Pascal Magazine 102 2022

Page 5/7

Installation of the components of
Delphi for Python works inside
Delphi and the easiest way is to
handle it is through the GetIt Package
manager.
Search for “Pyt” (See at the top)
and the click install.

The demo apps and components
will be installed automatically.

Some are shown on the
next page 6 of this article

Page 6/7

PYTHON INSTALL HELPAddittional Installer

Blaise Pascal Magazine 102 2022 maXbox 17

maXbox

Page 7/7

PYTHON INSTALL HELP

18

Addittional Installer

Blaise Pascal Magazine 102 2022

19

AdvertisementDatum en tijd

do 19 mei 2022

09:00 – 17:00 CEST

Locatie

Van der Valk Hotel Breukelen

91 Stationsweg

3621 LK Breukelen

Restitutiebeleid

Geen refunds

https://www.eventbrite.nl/e/tickets-delphi-dag-2022-290410775447

Kom naar de Delphi Dag 2022!
Wat hebben we hiernaar uitgekeken! Een LIVE Delphi dag met interessante sessies verzorgd door Delphi Experts.

Wat kunt u verwachten?

Maak kennis met ervaren Delphi experts die u tijdens hun boeiende sessies meer vertellen over de door hen gebruikte

technieken, nieuwe technologieën, Delphi innovaties zoals bijvoorbeeld het gebruik van Delphi in combinatie met Mendix

(Low-Code en Web) en Python (AI).

Bent u of gaat u bestaande applicaties migreren? Onze sprekers kunnen u daar zeker bij helpen! Of leer meer over Duster,

de ideale tool om u te ondersteunen bij de migratie van uw Delphi code naar de nieuwste versie. Buiten de sessies om heeft

u alle gelegenheid om contact te hebben met de sprekers en collega-ontwikkelaars.

Wie zijn de sprekers?

De sprekers vandaag zijn Delphi MVP's Bob Swart (Bob Swart Training & Consultancy), Danny Wind (The Delphi Company)

en Marco Geuze (GDK Software). Ook zal Laurens van Run van het bedrijf Mendrix een interessante presentatie verzorgen.

Alle sessies zijn nederlands gesproken.

Dagprogramma

09:00 - 09:30 - Welkom met koffie/thee en lekkers

09:30 - 09:45 - Opening door Barnsten

09:45 - 10:45 - Gebruik Delphi met Python in Artificial Intelligence Neural Networks - door Danny Wind

10:45 - 11:15 - Pauze

11:15 - 12:15 - Delphi en Mendix - een mooi duo - door Marco Geuze en Kees de Kraker

12:15 - 13:00 - Lunch

13:00 - 14:00 - High quality and maintainable code in Delphi - door Laurens van Run van Mendrix

14:10 - 5:10 - Duster migratie tool - door GDK Software

15:10 - 15:30 - Pauze

15:30 - 16:30 - Delphi (Automatisch Testbaar) Web Development met IntraWeb - door Bob Swart

16:30 - 16:45 - Q&A

Kosten en voorwaarden:
De toegangsprijs is € 99,-- excl. BTW en incl. toegang tot alle sessies, koffie/thee/frisdranken, snack en lunch. De tickets zijn

niet te annuleren, maar kunnen wel worden overgedragen aan een collega. Sessies en datum kunnen wijzigen in geval van

onvoorziene omstandigheden.

Blaise Pascal Magazine 102 2022

D11.1
DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

ABSTRACT
UPDATE: A change in information, a modification of existing or known data.
An update is a concept that in itself means that there is an improvement.
UPGRADE: Upgrading is the process of replacing a product with a newer version
of the same product. An upgrade is a concept that in itself means that there is
an increase in value.
I felt it necessary to clarify for myself the difference, because among other
things I wanted to know what is the real nature of the latest version.
According to this is Delphi 11.1 an Upgrade, and that means we need to
expect it as a new version, which in consequence means
you have to replace the older version 11.

INSTALLING
MIGRATION
Because of that you need to (make a backup)
create a Migration file before you install the new
version:
Installing will help you to first uninstall and
then install. After the install you can set your
original migration file to recreate your
settings as much as possible to overcome
the endlessly and irritating reinstalling of
all kinds of components. This means the
creation of a migration file. Let us start

with that. In windows choose pen the
program overview by clicking the

(probably - left bottom) Windows
Symbol. Here you search for

Embarcadero and will see
Figure 1.

20

RADRAD
Studio 11.1

The SplashScreen:The New Logo

Figure 1: Finding the Migration tool

PAGE 1/14

21

D11.1

Blaise Pascal Magazine 102 2022

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

Figure 2: Export settings

Figure 4: Settings for import

Figure 3: You’d better be sure

If you already have created a file
you don’t need to follow these steps.

Otherwise you create your First Migration file. Click
“Next” and than chose the Delphi version you want to put
the settings in your migration file. Click“Next” again and a

window jumps up that lets you make choices.

After that, you can save the file. Be
aware that Windows does only allow you to save it in

certain places, because of security reasons.

There is something I should warn you about: I tried to do a complex export
by including additional configuration files and Include GetIt packages. That

was not a good idea. Since the GetIt files caused quite a lot of work and
finally created a mess. Probably because there were newer files.

After that I had to reinstall Delphi 11.1 and after simply
not doing extras it all worked.

PAGE 2/14

22Blaise Pascal Magazine 102 2022

Figure 7: Not knowing this I executed it and than a lot of
time was used to install all the old Getit packages.

D11.1
DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

Figure 5/6: here you select the GetItPackage:

the problem is that if you choose to do so your new version of GeIt will
become a problem.

PAGE 3/14

23

D11.1

Blaise Pascal Magazine 102 2022

Figure 8: The new version starts:

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

Figure 7:
For installing you will find if you use the .iso
a new virtual DVD player.

I was not able to start Delphi again.
The easiest solution I found was reinstalling.

Since I am using the .iso file (RADStudio_11_1_esd_10_8973a.iso)
it does not need that much time to do it all over. Much better than it ever was....

PAGE 4/14

Unpacked to a virtual DVD
drive the number of the
Delphi version is 11. But do
not worry. its correct.

24

D11.1

Blaise Pascal Magazine 102 2022

After creating
the Migration setting file you can start.

We need to find out what are the essential new things for
this version, and that's exactly what I want to do in this article...

If you have a version of Delphi 11 it will ask you if you want it to be uninstalled.
Alas that needs to be done.

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

Here I show what is new and updated in the 11.1 version:

u IMPROVED IDE

Figure 9: The new version progress

Figure 10: The new version is shown for the first time

PAGE 5/14

25Blaise Pascal Magazine 102 2022

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

RAD
Studio 11.1

Figure11 :Make sure you have Checked these three options.

PAGE 7/14

26Blaise Pascal Magazine 102 2022

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

RAD
Studio 11.1

Figure12 : The dark mode and the menu showing Additional options

PAGE 7/14

This Tab is extra important
because of all the items

27

D11.1

Blaise Pascal Magazine 102 2022

CODE INSIGHT
Code Insight for Delphi, is improved. The Delphi LSP (Lan-

guage Server Protocol architecture) engine is greatly improved with
most projects loading and UPDATING ERROR INSIGHT between 5 and 30

times faster. Type parameters are now visible when completing a class declaration,
including T in a generic declaration, and showing set types.

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

COMPILERS AND DEBUGGERS
Improved stability and performance of Delphi compilers

for various platforms. The Delphi macOS 64-bit ARM and Android 64-bit debuggers are

now based on the LLDB debugger architecture, which was already in use for the Delphi iOS 64-bit

debugger.

As a result, Delphi debuggers are unified on this technology for most of the supported platforms, as a way

to deliver increasingly better quality over time. Moreover, there are quality improvements for a better Delphi

RTL integration,

 The LLDB Debugger (LLDB) is the debugger component of the LLVM project. It is built as a set of reusable

 components which extensively use existing libraries from LLVM, such as the Clang expression parser and

 LLVM disassembler. LLDB is free and open-source software under the University of Illinois/NCSA Open

 Source License, a BSD-style permissive software license. Since v9.0.0, it was relicensed to the Apache

 License 2.0 with LLVM Exceptions.

WIKIPEDIA

PAGE 8/14

28

D11.1

Blaise Pascal Magazine 102 2022

RTL, UI AND DATABASE LIBRARIES
¦ There are new Optimizations and quality

 improvements to the core Delphi RTL in the 11.1 Release.
¦ New TURLStream class, a TStream descendant with support for

 async operations.
¦ Support for Windows 11 and Server 2022 in the TOSVersion data structure.

 VCL enhancements to TTreeView, TRichEdit, TEdgeBrowser,
 TLabelledEdit and TNumberBox, flickering and DoubleBuffering,
 VCL high-DPI and scaling.
¦ New Demo through GetIt showing the use of WinUI 3 library in Delphi.
¦ FireMonkey quality improvements to TListView, improved Android SDK
 integration, TWebBrowser, Windows high-DPI-related issues, and performance.
¦ FireDAC adds Structure View integration and offers support for MariaDB 10.6,

 SQLite Encrypted Edition (SEE), and Firebird 4 new data types.
¦ RAD Studio 11.1 also improves DataSnap quality and the ability to deploy a
 WebBroker application on Android.
¦ RAD Server adds SysAdmin endpoints including logs handling,
 backups management, and database validations, plus integrated
 deployment for RSLite.

 You can find some details about RSLite at
 https://ashleyit.com/ or a demo
 https://ashleyit.com/rs/rslite/

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

PAGE 9/14

 INTEGRATION / NEW PLATFORM TARGETING
Starting the 11 Alexandria release, Enterprise and Architects users get a preview

of the new AWS (Amazon Web Service) SDK for Delphi (licensed from Appercept),
and in the future new releases are expected.
https://blogs.embarcadero.com/appercepts-new-aws-sdk-for-delphi-
available-with-rad-studio-and-delphi-enterprise-and-architect/

Customers have access to free Delphi UI libraries for Python developers, and can
also use Python libraries in RAD Studio applications. RAD Studio 11.1 delivers
official support to operating systems released after 11.0 shipped: Windows 11,

macOS 12 Monterey, iOS 15, and Android 12! (Python for Delphi will be an article in

the next issue)

29

D11.1

Blaise Pascal Magazine 102 2022

DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

Windows 11

iOS 15

maOS 12

Adroid 12

aws

integration targeting

RADRAD
Studio 11.1

D11.1

PAGE 10/14

30Blaise Pascal Magazine 102 2022

RAD ON 4K+ SCREENS!
RAD Studio 11 adds high-DPI support to the IDE, enabling

developers to work on larger, high-resolution screens. Full support for
the latest 4k+ high-resolution monitors improves daily developer activities

with cleaner, sharper fonts and icons, and high-resolution support throughout
the IDE windows, including in the VCL and FMX form designers and code editor.

FireMonkey for Windows now uses the same DP model (rather than Pixel model) of all
platforms, offering a significant enhancements of the apps rendering on Windows HighDPI
and 4K monitors.

150 %

150 %

150 %

D11.1
DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

PAGE 11/14

31Blaise Pascal Magazine 102 2022

VCL STYLES AT DESIGN TIME
VCL Styles now provides design-time support:

Prototype stylish UIs even faster by seeing immediately at design-time how your styled forms
and controls will look when running.

Viewing at design time how styles will impact the UI at runtime improves the design and testing
process for modern UIs. Creating better UIs faster is especially useful when working with per-

control styles.

“The
new high

DPI IDE creates a very
clear look and design by
showing during designtime
wat the final product
might look like.
This happens through
the VCL styles
design-time support.
You must of course not

forget to enable the
VCL STYLES

D11.1
DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

PAGE 12/14

Delphi VCL4Python

32Blaise Pascal Magazine 102 2022

COMPILE POSSIBLE FOR ANDROID API 30
Android API and Libraries updated - API 30, Google Play V3, Android X.

This includes the latest billing API (required by Google Play Store). Enhanced Delphi RTL for
Android, supporting for Android API level 30.
Support for the new “AndroidX” libraries.
In-app purchase component to help monetize your applications.
You can of course do without. There is an investigation from the EEC if this is allowed.

Android solution Google Play Billing Library Version 4.
Enhanced FireMonkey Application Platform for creating native Android ARMv7

applications for Android 11, 10, Pie (9.0), Oreo (8.1)

D11.1
DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

PAGE 13/14

33Blaise Pascal Magazine 102 2022

DEVELOPMENT FOR
 M-SERIES APPLE SILICON

Compile for macOS and eventually use the new
universal package for AppStore submission.

You can now compile for both existing Intel and new M-series

macOS processors (Apple Silicon).
Compiling for the newest processor versions enables the fastest

performance across all platforms, and supports universal packaging for the
macOS app store.

With RAD Studio 11 it is possible to compile binaries for macOS ARM.
Since the new M1 processor is incredibly fast it is more than important to create
native apps for it.

D11.1
DELPHI 11.1 THE LATEST VERSION
UPDATE OR UPGRADE?

PAGE 14/14

1. One year Subscription
2. The newest LIB Stick
 - including Credit Card USB stick
3. Lazarus Handbook - Personalized
 -PDF including Code
4. Book Learn To Program using Lazarus PDF
 including 19 lessons and projects
5. Book Computer Graphics Math & Games

 book + PDF including ±50 projects

https://www.blaisepascalmagazine.eu/product/
bundle-computer-graphics-math-games-pascal-libstick-download-subscription/

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Prof Dr.Wirth, Creator of Pascal Programming language Blaise Pascal, Mathematician

BLAISE PASCAL MAGAZINE

procedureprocedure
varvar
beginbegin
 for I := 1 9 to do
 beginbegin
 ...
 end
end;

procedure
var
begin
 for I := 1 9 to do
 begin
 ...
 end
end;

Blaise Pascal, MathematicianProf Dr.Wirth, Creator of Pascal Programming language

Editor in Chief: Detlef Overbeek
Edelstenenbaan 21 3402 XA
IJsselstein Netherlands

editor@blaisepascalmagazine.eu

Prof Dr.Wirth, Creator of Pascal Programming language

BLAISE PASCAL MAGAZINE

COMPUTER (GRAPHICS)
MATH & INGAMES
 PASCAL

DAVID DIRKSE

www.blaisepascal.eu

procedure ;
var
begin
 := for i 1
to do 9
 begin

 ;end
end;

L
E
A

R
N

 T
O

 P
R

O
G

R
A

M

U
S
IN

G
 L

A
Z
A

R
U

S
H

O
W

A
R

D

P
A

G
E
-C

L
A

R
K

LAZARUS
HANDBOOK
FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

934 PAGES

SUPER
OFFER

€ 150 ex Vat

including
30 example

projects

including
19 example

projects

including 50 example projects

Normal Price € 280
75+60+50+35+50

Including
the new
designed
LIB STICK
Program

B L A I S E P A S C A L M A G A Z I N E

1
2

3

4
5

6

8

9 1110

12

13

15

17
19

20

18
16

21

29

39

47

40

48

62

63
64

656667
68

69
70

75
76

56

94
95

57

58

59

60

61

49

43
42

41

4477

80

81
82

83

84

85
86

89
9190

92
93

96

97 98

87
88

45
46

37
38

54
55

31
32

50
51 52

53

33

35

34

36

23

24

25
26 27 28

7
14

22

30

71
72

73
74

78
79

100
99

L I B R A R Y 2 0 2 1

102
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Delphi VCL4Python
Python install help

The latest release of Delphi 11.1
The Droste effect: picture in picture in picture

Using Electron making explanations
Library support in PAS2JS

Pas2JS: Leveraging Typescript to use existing Javascript
libraries

Pas2JS: Using multiple forms and routing
Understanding Electron

D11.1

Blaise Pascal Magazine 102 2022

ABSTRACT
Lazarus evolves continuously.
Because it is an open source project, you don’t need to wait for a
release to be able to use the latest features. In this article we show
how to compile and use the latest development version of the
Lazarus IDE.

u INTRODUCTION
The keeps on developing the and the Lazarus team Lazarus IDE

LCL (y). If you are eager to use one of the Lazarus Component Librar

the new features, it is not necessary to wait for the official release
of a new version of Lazarus.

Because is an open source project, you can perfectly Lazarus

install the latest sources and build for yourself.Lazarus

The sources of are available publicly on Lazarus Gitlab:
https://gitlab.com/freepascal.org/lazarus/lazarus

In order to build yourself, you need 2 things:Lazarus

¦ AN EXISTING INSTALLATION.LAZARUS
At the moment of writing, this is version 2.2.0, sing Free

Pascal compiler 3.2.2. In this text we assume Lazarus is
installed in its default location: C:\Lazarus

¦ A GIT CLIENT.
This is not really a necessity, but makes life
easier if you want to update on a Lazarus

regular basis. The installation has Lazarus

everything to build a new version of Lazarus.

This should not come as a surprise, because
the rebuilds itself as soon as Lazarus IDE

you install a new package in the IDE. You
can do without as it is always make git,

possible to download lazarus sources in a
zip file:
https://gitlab.com/freepascal.or
g/lazarus/lazarus/-/archive
/main/lazarus-main.zip

This URL gives you a ZIP file
with the latest version

of Lazarus.

USING A DEVELOPMENT VERSION OF LAZARUS
By Michaël Van Canneyt

PAGE 1/7

expertstarter

35

USING A DEVELOPMENT VERSION OF LAZARUS PAGE 2/7

Blaise Pascal Magazine 102 2022

Figure 1: System control panel page with advanced settings

The tool is called make, and is installed together with
Free Pascal on Windows. Linux or Mac installations have a make tool installed by default.
To be able to use the make tool, it must be in a directory that is included in the PATH
environment variable. So, you must make sure this is the case, Again, on Linux and Mac

this is normally the case.

If you are on Windows, and have Delphi installed, you will also have the Delphi make tool
installed. It serves the same purpose as the GNU make tool, but has much less features.
It is therefore important that when you enter the make command on the command-line,
that the correct version of make is used.

During its installation procedure, Delphi changes the PATH environment variable to include
the directory with the Delphi version of make (as well as the other delphi tools).
So, it is imperative that the PATH environment variable must be set in such a way that the
directory with the FPC version of make comes before the one with the Delphi version of
make. Delphi no longer uses its make tool, so changing this will not damage the Delphi

installation.

36

SOME PRELIMINARIES
Building Lazarus requires you to enter some commands on the command-line:
Lazarus is built using the GNU Make tool, which is a command-line tool.

USING A DEVELOPMENT VERSION OF LAZARUS PAGE 3/7

Blaise Pascal Magazine 102 2022

To set the PATH variable, in the Windows Control Panel, choose ’System’.
In this dialog, the ’Advanced system settings’ link must be used , in which case you

will see a dialog pop up which resembles figure 1 on page 2.

The ’Environment variables...’ button in the bottom-right of that dialog allows you to set the
environment variables of Windows. There are 2 sets of variables: user-specific variables (at the top)
or system variables. Both will contain a PATH variable.
In the command-line window, both PATH variables will be used. The directories in the system PATH
variable take precedence over the ones in the user-specific PATH variable.
If you have Delphi installed, it is therefore best to change the system PATH variable. Select the
’PATH’ variable, and press the ’Edit...’ button. A special dialog will pop up in which the contents
of the PATH variable have been split into lines: one per directory, see figure 2 on page 3.

In this dialog the ’New’ button can be used to add a new directory to the PATH.
The directory to add is:
C:\lazarus\fpc\3.2.2\bin\x86_64-win64

If you have the Win32 version of lazzrus installed, the directory to use is:
C:\lazarus\fpc\3.2.2\bin\i386-win32

if you have another version of Lazarus (or Free Pascal), you may need to adapt the path.
You can use the ’Move up’ and ’Move down’ buttons to move the new directory before the
entry of the Delphi IDE (as visible in figure 2 on page 3).
After you confirm the new PATH settings with the ’OK’ button, you can check that the correct
version of make is called, by entering the following command on the command-prompt:
make -v

The output will be something like this:
c:\Development\lazarus>make -v
GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty;
not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Figure 2: Environment variables dialog

37

USING A DEVELOPMENT VERSION OF LAZARUS PAGE 4/7

Blaise Pascal Magazine 102 2022

DOWNLOAD USING GIT
In an earlier series of articles in
Blaise Pascal Magazine,
the installation and use of Git has been covered in depth. In this article we will therefore
limit the instructions to the download of Lazarus sources.
The repository can be cloned from:
https://gitlab.com/freepascal.org/lazarus/lazarus.git

or, if you prefer to use SSH:
git@gitlab.com:freepascal.org/lazarus/lazarus.git

We’ll install the lazarus sources below a directory C:\Development\
Obviously, you’re free to choose whatever directory you want.
If you have Git for Windows installed, then you can clone the sources with the following
command in the Git bash window:
cd /c/Development
git clone https://gitlab.com/freepascal.org/lazarus/lazarus.git

This is also the command you can give on Mac or Linux, and the output will look like
figure 3 on page 4. If you are using TortoiseGit, then you can use the context menu of the
Windows file explorer:

Doing so,
will show the Git clone dialog, shown in figure 4 on

page 5, where you can enter the URL mentioned
above. See the first article of the Using Git series
(BPM issue 97, 98 and 99/100). After the initial
clone operation, you can always update the
sources with the git pull command.

38

Figure 3: Git clone on the command-line

USING A DEVELOPMENT VERSION OF LAZARUS PAGE 5/7

Blaise Pascal Magazine 102 2022 39

BUILDING LAZARUS
When the git clone operation is complete, Lazarus can be built. For this, the windows
command-line windows must be used. Do not attempt to use the bash shell from your Git

for windows installation: this build environment is not supported.
Building the Lazarus IDE is a matter of 2 commands:
cd c:\Development\Lazarus
make bigide

The make bigide will actually build Lazarus, together with some commonly used
packages. Building Lazarus takes some time. The make command will also build
Startlazarus.exe and some other tools.
When make stops running, please take a look at the output of the make command
- in particular, check whether errors are displayed or not.
If not, all went well, and a lazarus, startlazarus and lazbuild command will be present
in the build directory.

Figure 4: Tortoise Git clone dialog

CONFIGURING LAZARUS

To start your new version of lazarus, you
must use the newly created application binary.
You can start it in the Explorer, but it is of course easier to create a shortcut on the desktop:
in the File explorer, simply drag the lazarus executable to the desktop while keeping the
Alt key pressed. (Or use the context menu ’New - shortcut’ in the fle explorer).

When you first start the new Lazarus, you may get some dialogs in which Lazarus tells you
that the settings have changed: see figure 5 on page 6 and figure 6 on page 6.

If you wish to use two separate configurations for your installed lazarus and the newly
compiled Lazarus, you should cancel here, and adapt the shortcut so it contains the
commandline option -pcp indicated in figure 6 on page 6, for example:
--pcp=C:\test_lazarus\configs

You can of course choose any directory you want for the configuration.
When you did all this, you will probably still get the Lazarus installation check-up dialog
shown in figure 7 on page 7. In particular, the GDB (gnu debugger) location will be missing.
 You can reuse the one from the original lazarus installation:
C:\lazarus\mingw\x86_64-win64\bin\gdb.exe

To ensure that you are now really working with the latest lazarus, you can check the
Help - About Lazarus dialog. It should display the latest version number, which is 2.3.0
at the time of writing of this article, as can be seen in figure 8 on page 7.

USING A DEVELOPMENT VERSION OF LAZARUS PAGE 6/7

Blaise Pascal Magazine 102 2022 40

Figure 5: Starting a new Lazarus version for the first time

Figure 6: Creating a new confiuration or not

USING A DEVELOPMENT VERSION OF LAZARUS PAGE 7/7

Blaise Pascal Magazine 102 2022

41

Figure 8: ’About Lazarus’ version check

CONCLUSION
Lazarus is an open source tool. This means you do
not have to wait for the latest version to
be released. Instead, in this article we have
demonstrated how you can build your own
version of Lazarus:
this should be within reach for every Object Pascal
developer, regardless of the level of expertise. . .

Figure 7: Lazarus start-up check-up result

Blaise Pascal Magazine 96 2021 4242

Page 1/3

starter expertstarter expert

By David Dirkse
Figure 1: The Cats Eye

Blaise Pascal Magazine 101 2022

THE DROSTE EFFECT

David has created the so called Droste effect program:
Just for fun! The Droste effect is nothing but a picture in a

picture in a picture etc. Its nice to how this is handled and as an
extra you get some nice extra controls for free. So he created the
Droste-Effect-App. So thank David Dirkse and if your interested buy
his book about Computer, Math & Games and Graphics.
Available at:
https://www.blaisepascalmagazine.eu/

product/books-computer-graphics-math-games-download-pdf/

SOME SHORT STORY ABOUT THE “DROSTE EFFECT”
The Droste effect, known in art as an example of mise en abyme

(ranslation placement at the escutcheon's center: depiction of the escutcheon itself

within an „escutcheon“: image within an image : story within a story.),

is the effect of a picture recursively appearing within itself,

in a place where a similar picture would realistically be expected to

appear.

This produces a loop which mathematically could go on forever,

but in practice only continues as far as the image's resolution

allows. The effect is named after a Dutch brand of cocoa, with an

image designed in 1904.

It has since been used in the packaging of a variety of products.

Apart from advertising, the Droste effect is displayed on the

tins and boxes of Droste cocoa powder which displayed a

nurse carrying a serving tray with a cup of hot chocolate and

a box with the same image, designed by Jan Misset. The

effect has been a motif, too, for the cover of many comic

books, where it was especially popular in the 1940s.

Mathematics
The appearance is recursive: the smaller version

contains an even smaller version of the picture,

and so on. Only in theory could this go on

forever, as fractals do; practically, it continues

only as long as the resolution of the picture

allows, which is relatively short, since each

iteration geometrically reduces the

picture's size.

INTRODUCTION

Blaise Pascal Magazine 96 2021 4343Blaise Pascal Magazine 101 2022

At the top you see the functionality
of the app. Its all very easy.
Of course if you want to see the
code used for this: as a subscriber
you have the projects (D7+D11.1)
available.
It is originaly written in Delphi 7,

but I recreated it in Delphi 11.1

(Alexandria).

As you can see on page 3 of this
article I used the new
VCL style sheet and chose the
“Ruby Graphite”. In the next issue
I’ ll explain how it works.

THE DROSTE EFFECT PAGE 2/3

This is all create in Delphi 7.
Take a look and see the
 difference on the next page.

Blaise Pascal Magazine 96 2021 4444

Page 3/3

Blaise Pascal Magazine 101 2022

The RUby Graphite effect in Alexandria

THE DROSTE EFFECT

COMPONENTS TO INSTALL:
¦ Rotation button (separate component)
 and a group of 5 components:

¦ Colormixer
¦ ColorPicker
¦ ElBox
¦ DavTimer
¦ Arraybtn

The components are available for subscribers of
course and in an earlier version (Issue 65, page 20)
I explained how to install the components.

ADVERTISEMENT

Subscription
Combi

Subscription + Lazarus Handbook
(hardcover incl sending)

� 100
Ex Vat 9%

LAZARUS

HANDBOOK

FO
R P

ROGRAMMIN
G W

IT
H FR

EE
 PA

SCAL

Blai
se

 Pa
sc

al

Auth
ors:

 M
ich

ae
l v

an
 C

an
ney

t,

Mat
tia

s G
är

tn
er

 In
ouss

a O
ued

ra
ngo,

Sve
n H

ein
ig, D

et
lef

 O
ve

rb
ee

k

LAZARUS

HANDBOOK

2
FO

R PR
OGRAMMIN

G W
IT

H FR
EE

 PA
SCAL

LA
ZA

RU
S

HA
ND

BO
OK

 2

LA
ZA

RU
S H

AN
DB

OO
K

 1

https://www.blaisepascalmagazine.eu/product/lazarus-handbook-hardcover-subscription/

102
Multi platform /Object Pascal / Internet / JavaScript / WebAssembly / Pas2Js /

Databases / CSS Styles / Progressive Web Apps
Android / IOS / Mac / Windows & Linux

BLAISE PASCAL MAGAZINE

Delphi VCL4Python
Python install help

The latest release of Delphi 11.1
The Droste effect: picture in picture in picture

Using Electron making explanations
Library support in PAS2JS

Pas2JS: Leveraging Typescript to use existing Javascript
libraries

Pas2JS: Using multiple forms and routing
Understanding Electron

D11.1

Blaise Pascal Magazine 102 2022 46

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

u INTRODUCTION
To say that there are a lot of free Javascript
libraries or frameworks out there is an understatement.

Normally, any Javascript class or function can be used in
PAS2JS: By falling back on assembler blocks, any
Javascript function can be called. The transpiler will happily
insert any Javascript in your final transpiled code. But if
the transpiler has external declarations for the Javascript

classes or functions, the transpiler can and will check your
code against the definitions it has.

Plain Javascript has a major drawaback: it is not typesafe.
To remedy this, people at Microsoft created TypeScript:
a type system for Javascript. It is a superset of
Javascript, which is transpiled to Javascript.

(One of the authors of TypeScript was also one of the

creators of Delphi)
This type system is made popular by Angular and other
large Javascript frameworks. People writing
TypeScript code face the same problem as Pas2JS
users: how to make use of the many Javascript
libraries, and still write Typesafe code?
The answer to this problem are declaration modules
(files with extension .d.ts): these modules
do not implement any functionality. They just
describe the API offered by an external
Javascript library. The TypeScript compiler
reads this declaration and uses it to validate
the TypeScript code that makes use of the
Javascript library: It serves exactly the
same purpose as a PAS2JS unit with
external classes.
Many plain Javascript libraries offer
such a TypeScript declaration
module in their distribution.
But there are also a lot of libraries
that do not offer such a
declaration module.
Because there are a lot of
TypeScript

programmers, there is
an ongoing effort to
describe these
JAVASCRIPT

libraries: the
DefinitelyType
d repository
on Github.

ABSTRACT
PAS2JS: contains a tool to
convert TypeScript declaration
modules to a pascal unit with
external class definitions. This can be
used to create import units for many
Javascript libraries. In this article, we
show how to use this tool.

It is available at:
https://github.com/DefinitelyTyped/DefinitelyTyped/

It contains many tens of thousands of declaration modules.
TypeScript javascript programmers that wish to use a library

can just check out this repository and use the declaration module
of the package they wish to use in their project. PAS2JS could use a

similar repository of import units. Indeed, ideally, the TypeScript

declaration modules can just be re-used so all the hard work of all these
TypeScript PAS2JS would benefit the users as well.

Fortunately, this is possible to a certain extent:
The upcoming version of pas2js comes with a tool that converts a TypeScript

declaration module to a pascal unit with external definitions: dtstopas.
Better yet, an online service exists which makes this possible today.

Last but not least, the tool and the webservice have been integrated in the Lazarus

IDE.

You can create an import unit directly in your project from within the Lazarus IDE:

Simply use the File-New menu item.
We’ll discuss each of these possibilities in turn.

TS
By Michael van Canneyt

starter expertTS

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS
2 DTS2PAS
The dts2pas tool is a small command-line tool which will transform a *.d.ts file to a
pascal unit. Running it without options (or option -h) gives the following output:

Usage: dts2pas [options]
Where options is one or mote of:
-a --alias=ALIAS Define type aliases (option can be speficied multiple times)
 where ALIAS is one of
 a comma-separated list of Alias=TypeName values
 a @FILE : list is read from FILENAME, one line per alias
-h --help Display this help text
-i --input=FILENAME Parse .d.ts file FILENAME
-l --link=FILENAME add {$linklib FILENAME} statement. (option can be specified -o -
-output=FILENAME Output unit in file FILENAME
-s --setting=SETTINGS Set options. SETTINGS is a comma-separated list of the following
 coRaw
 coGenericArrays
 coUseNativeTypeAliases
 coLocalArgumentTypes
 coUntypedTuples
 coDynamicTuples
 coExternalConst
 coExpandUnionTypeArgs
 coaddOptionsToheader
 coInterfaceAsClass (*)
 coSkipImportStatements
 Names marked with (*) are set in the default.
-u --unit=NAME Set output unitname
-w --web Add web unit to uses, define type aliases for web unit
-x --extra-units=UNITLIST Add units (comma-separated list of unit names) to uses
 This option can be specified multiple times.

From this output we can see the minimal operation options are:
dts2pas -i 7zip-min/index.d.ts -o 7zip.pp

This will run the declaration conversion on the file 7zip-min/index.d.ts and will write the
resulting pascal file to 7zip.pp
This is what the declaration input file looks like:

export function unpack(pathToArchive: string,
 whereToUnpack: string,
 errorCallback: (err: any) => void): void;
export function unpack(pathToArchive: string,
 errorCallback: (err: any) => void): void;
export function pack(pathToDirOrFile: string,
 pathToArchive: string,
 errorCallback: (err: any) => void): void;
export function list(pathToArchive: string,
 callback: (err: any, result: Result[]) => void): void;
export function cmd(command: string[],
 errorCallback: err: any) => void): void;
export interface Result {
 name: string;
 date: string;
 time: string;
 attr: string;
 size: string;
 compressed: string;
}

47Blaise Pascal Magazine 102 2022

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS
And this is what the tool produces as output
(lines have been formatted for better readability):

Unit _7zip;

{$MODE ObjFPC}
{$H+}
{$modeswitch externalclass}

interface

uses SysUtils, JS;

{$INTERFACES CORBA}
Type
 // Forward class definitions
 TResult = Class;
 Tunpack_errorCallback = Procedure (err : JSValue);
 // Ignoring duplicate type Tunpack_errorCallback (errorCallback)
 Tpack_errorCallback = Procedure (err : JSValue);
 Tlist_callback = Procedure (err : JSValue; result : array of TResult);
 Tcmd_errorCallback = Procedure (err : JSValue);
 TResult = class external name ’Object’ (TJSObject)
 name : string;
 date : string;
 time : string;
 attr : string;
 size : string;
 compressed : string;
end;

Procedure cmd(command : array of string;
 errorCallback : Tcmd_errorCallback);
 external name ’cmd’;

Procedure list(pathToArchive : string;
 callback : Tlist_callback);
 external name ’list’;

Procedure pack(pathToDirOrFile : string;
 pathToArchive : string;
 errorCallback : Tpack_errorCallback);
 external name ’pack’;

Procedure unpack(pathToArchive : string;
 whereToUnpack : string;
 errorCallback : Tunpack_errorCallback);
 external name ’unpack’; overload;

Procedure unpack(pathToArchive : string;
 errorCallback : Tunpack_errorCallback);
 external name ’unpack’; overload;

implementation
end.

48Blaise Pascal Magazine 102 2022

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS
Some things to note:
• types are prepended with T: Javascript is case sensitive, and often you will encounter
 variables with the same name as a type, but with different casing - a class name
 usually starts with a capital. To avoid name clashes, the tool prepends a T to type names.
• The tool correctly spots overloaded versions and marks them as such.
• The tool creates auxiliary types for complex function argument types.
• The special any type is replaced with JSValue.

• The JS unit is automatically used.

The resulting file can be compiled as-is:

> pas2js 7zip.pp
Info: 11458 lines in 6 files compiled, 0.3 secs

The dts2pas tool has several options, we’ll explain them here (using the long version of each option):

alias This can be used to define type aliases. Aliases can be specified in 2 ways:
u As a comma-separated list of Name=Alias pairs:
 --alias=AType=MyType

 This will replace every occurence of the AType in the declaration file with MyType

v Using a @ character, a filename to load a list of Name=Alias pairs (one per line):
 --alias=@MyAliasFile.lst

 This will read file MyAliasFile.lst. Each line of the file must contain a pair.

help Display a help text
input as seen, this is used to specify the input file to parse.
link FILENAME with an argument will insert a linklib statement:

 {$linklib FILENAME}

 When using the resulting unit, this will insert an import statement in the final Javascript:

 import FILENAME from "FILENAME";

output FILENAMEwith an argument sets the output filename.

setting SETTINGSwith an argument sets various conversion options, they are discussed below.
 Names marked with (*) are set in the default

unit NAME NAME. with an argument sets the output unitname to When not specified,
 it is deduced from the output filename. .

web Adds the web unit to the uses clause and defines type aliases for all web unit classes:
 this unit is part of pas2js and contains definitions of all classes exposed by the browser.
extra-units UNITLIST UNITLIST with an argument will add the units in
 () to the uses clause. a comma separated list of unit names
 Some TypeScript modules depend on other modules using import statements:
 the tool will not recursively translate these other modules, but if you havedts2pas

 translated them already, this option can be used to add the converted unit names

49Blaise Pascal Magazine 102 2022

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS
The setting argument accepts a comma-separated list of named flags that influence
the conversion process and the generated code. When translating TypeScript to Pascal,

sometimes choices must be made because some TypeScript structures to not translate
oneon-one to pascal constructs. Many of these choices are controlled using the flags which
you can specify in the settings option. Here is an overview:

coRaw This will not generate a unit header or implementation section. You can use this to
 generate an include file.

coGenericArrays

 Instead of using array of Type for array types, the converter tool will write arrays as TArray<Type>.
 There is no functional difference in PAS2JS between the 2 declarations.

coUseNativeTypeAliases

 This will translate some basic types such as long to Integer.

coLocalArgumentTypes

 If auxiliary types are generated for methods, these will be generated
 in a Type section within the class, for example:

type
 TSomeClass = Class
 Public
 Type
 TMyMethod_B_Array = Array of integer;
 Function MyMethod(B : TMyMethod_B_Array) : Integer;
end;

type
 TSomeClass_MyMethod_B_Array = Array of integer;
 TSomeClass = Class
 Public
 Function MyMethod(B : TSomeClass_MyMethod_B_Array) : Integer;
 end;
coUntypedTuples

 A tuple* in TypeScript is a fixed-length array of values. If the dts2pas
 tool can determine the type of the element, it will generate a typed array:
(In mathematics, a tuple is a finite ordered list (sequence) of elements.)

 Type
 TSomeTuple = array[1..3] of string;

 If this flag is set, the array element will be untyped (type JSValue):

 Type
 TSomeTuple = array[1..3] of JSValue;

coDynamicTuples

A tuple in TypeScript is a fixed-length array of values. The dts2pas
tool will declare the type with the same number of elements. However, javascript
allows you to specify less elements than in the definition of the tuple. To accomodate
for this, using this flag you can let the converter generate a dynamic array:
 Type
 TSomeTuple = array of string;

The default behaviour is to generate a global type with the class name prepended:

50Blaise Pascal Magazine 102 2022

51

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS

 With the coExpandUnionTypeArgs switch, for function or method arguments
 with union type, the converter will create overloaded versions for each type. In the
 above example this means the following declarations are produced:

 function func (a : string) : integer; overload;
 function func (a : double) : integer; overload;

coaddOptionsToheader
 If this switch is present, the converter will insert a comment with
 the used conversion options to the unit header. If the unit needs to be regenerated,
 the options used to create the original are available.

coInterfaceAsClass
 TypeScript knows interface definitions. The standard behaviour of the dts2pas tool is to
 translate this to an interface definition. With this switch,
 the interface will be declared as a Pascal class.

coSkipImportStatements

 Any import statements in a TypeScript module are written to
 the converted pasal file as comments. With this option, these comments are not
 generated.

coExternalConst

A constant in a TypeScript declaration will be translated literally. For example:

 const myConst = "Hello, World";

 Is translated as:
 const
 myConst = ’Hello, World’;

 This means the constant is duplicated in the pascal code. Using the flag
 coExternalConst, the constant is translated as a reference instead:

 const
 myConst : String; external name ’myConst’;

coExpandUnionTypeArgs

 A variable of union type in TypeScript can have one of the
 possible types in the union type. This cannot be expressed in Pascal, so the default
 behaviour is to replace this with the JSValue catch-all type:

 function func (a : string | number) : int;

 is translated to Pascal as

 function func (a : jsvalue) : integer;

Blaise Pascal Magazine 102 2022

Blaise Pascal Magazine 102 2022 52

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TSw THE WEB-BASED SERVICE
On the Free Pascal server, a (cgi) web service exists that can be used to translate any file
from the DefinitelyTyped repository to a Pascal unit. The service is located at

https://www.freepascal.org/~michael/service/dts2pas.cgi

On the server, the DefinitelyTyped repository is checked out, and is updated daily.
By specifying a file name (relative to the types directory in the repository), the service
outputs the translated unit. Using the following URL

https://www.freepascal.org/~michael/service/dts2pas.cgi/
convert/?file=7zip-min/index.d.ts&unit=7zip

(the line has been split for readability) you will get the same file as in the result above.
The following query variables are accepted, they have the same meaning as their commandline
counterparts.

file the file to convert, relative to the types directory in the DefinitelyTyped repository
unit the unit name to use.
aliases Aliases to to use, using the same format as the command-line tool.
extraunits Extra units to add to the command-line tool.
prependlog Insert conversion log as comments in the source.
flagname=1 Switch on any of the flags mentioned earlier.
 You can get a list of files available for conversion, one per line:

https://www.freepascal.org/~michael/service/dts2pas.cgi/list?raw=1

By leaving out the raw=1 the output is a Javascript array variable definition.
The latter option is used in a small web page, shown in figure 1 on page 7:

Figure 1: dts2pas web front-end

https://www.freepascal.org/~michael/pas2js-demos/ts2pas/

Blaise Pascal Magazine 102 2022 53

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TSThis page (obviously written in pas2js) is a simple front-end to the service. The service
and front-end page will still be extended to provide more options, such as entering aliases
or uploading a TypeScript file to convert.

x INTEGRATION IN THE LAZARUS IDE
Both the web-based service as the command-line tool have been integrated in the Lazarus

IDE: using the File-New menu, you can directly convert a TypeScript file and make the
resulting pascal file part of your program, see figure 2 on page 8.

When clicked, a small wizard pops up which allows you to select a description file from
disk, or you can opt to use the web-based service:
enter the name of a module - a list of matching files will be presented as soon as you enter 2
characters: see figure 3 on page 9.
On the same tab, you can enter extra units, aliases and indicate that the web unit must be
used - together with all known aliases: basically the same options as available in the web
interface or command-line.

The second tab (figure 4 on page 9 of the wizard page) allows you to specify the conversion
settings (or flags).
When done, you can click OK, and the IDE will create a new unit, part of your PAS2JS

project, containing the converted TypeScript declaration module.
If all goes well, it is ready to use, as seen in figure 5 on page 10

Figure 2: The File-New entry to import
a TypeScript descripton file

54

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS

Figure 3: Selecting a TypeScript file or module

Figure 4: Setting the conversion flags

Blaise Pascal Magazine 102 2022

55

LEVERAGING TYPESCRIPT DECLARATIONS IN PAS2JS

TS

Figure 5: The converted result is part of your project

y CONCLUSION
At the time of writing this article, the DefinitelyTyped contained well over 36.000 declaration
files. Theoretically, these can now all be used in PAS2JS You may wonder why the converted units
are not made part of the PAS2JS repository. The answer to this question is twofold:

¦ The archive evolves continously: the PAS2JS units would be outdated almost daily.
¦ The conversion is not always perfect:
 sometimes some manual work is needed to fix the generated unit.

Javascript and Typescript have a lot of idioms which do not always translate well to
Pascal. What is more, the declaration files are sometimes ‘messy‘ – despite being more
strict than Javascript, TypeScript still leaves a lot of room for interpretation and the
translator sometimes simply cannot translate correctly what is being defined in TypeScript:

Different people may have used different methods to describe the same Javascript interface and
some descriptions may translate better to pascal than others.
Some declarations are simply outdated:
TypeScript has evolved, but the declaration files have not been updated accordingly.
The Javascript/Typescript parser included in Free Pascal is not perfect either:

IT TRANSLATES WELL OVER 99% OF THE FILES IN DEFINITELYTYPED, BUT NOT 100%.

Still, using the tool does most of the work for you. Even if some manual work is involved,
the amount of work that you must still do will be negligable compared to writing the import
units manually.

Blaise Pascal Magazine 102 2022

Including the PDF, INDEX and Code Examples

Sewn POCKET ,
almost thousand pages

written by the makers of FPC and Lazarus

934 Pages in two books (euro) 50 €

The books

+ +

FOR PROGRAMMING WITH FREE PASCAL AND LAZARUS

PDF
934 Pages
containes
electronic index

Blaise Pascal Magazine 102 2022 57

LIBRARY SUPPORT IN

<script src="script1.js"></script>
<script src="script2.js"></script>

import { MyText1, MyText2 } from "./script1.js";
document.title = MyText1+MyText2;

PAS JS2

starter expert

D11

BY MICHAËL VAN CANNEYT

 & LIBRARIES

ABSTRACT
This article is meant to show a new feature:
With version 2.2, PAS2JS introduces library
support in the compiler. Libraries in
PAS2JS translate to Javascript modules:
independent blocks of Javascript code which
must be explicitly imported in another block. In
this article we show to use them.

u INTRODUCTION
For the experienced pascal programmer, using
libraries is not uncommon. Till recently, using libraries
in PAS2JS was not possible.
With release 2.2 (released on 22-02-2022) of
PAS2JS libraries can now also be used in PAS2JS

For the pascal programmer, libraries - (DLLs in
Windows) - are independent programs which export
certain functions and variables.
In Javascript, a similar concept exists: Modules.

Modules can import symbols from other modules,
and can export symbols to other modules.
It is therefore natural to transpile a Pascal library to a
Javascript module, and this is now what can be done
with PAS2JS

¦ Import symbols from a module.

¦ Create a module that exports functions and
 variables.

In contrast to Delphi, no special precautions
are needed for using strings or classes in a
PAS2JS library: in particular, there is no
need to enable a module to use shared
memory.

then the code script1 has access to all symbols
(variables, functions etc.) of script2,
and vice versa. This means they can modify or
even annihilate each others’ working.
With Javascript modules, this is not the case.
Take the following HTML snippet:

Here script1, script2 and script3 have
distinct namespaces. They do not interfere
with each other: both script1 and script2 can

have a variable MyVar, but each has a
local copy of this variable. If script2 writes to
MyVar, it will only modify its own copy.
What is more, script3 has no access to the
symbols defined in script1 and script2.
Only modules can import symbols of other
modules. Imagine script1.js has the
following content

As you can see, it exports 2 constants,
MyText1 and MyText2.
This means script2.js can use these
constants as follows:

<script type="module"
src="script1.js"></script>
<script type="module"
src="script2.js"></script>
<script src="script3.js"></script>

2 JAVASCRIPT MODULES
Javascript modules are nothing but Javascript

files which export a number of symbols, but
which otherwise do not share any code or
namespaces. Especially the latter is important.
By default, if you link 2 Javascript scripts to a
HTML page:

PAS JS2

PAGE 1/9

export const MyText1 = "Hello,";
export const MyText2 = " World!";

When loading script2, the browser will also automatically load script1.js, there is
no need to include it explicitly in the HTML file. The file script1 must of course exist
in the specified location.
In contrast with script2, script3 can never access the symbols, because it is not a
module itself. Only modules can import and export symbols.
It is of course possible to share some symbols between modules and non-modules by attaching
them to a global symbol such as the window.

Blaise Pascal Magazine 102 2022 58

To import symbols from a module (written in Pascal or not) 2 things are needed:
¦ a linklib directive:
 {$linklib ./my-file.js myfile}

 this will be transformed to the following Javascript
 import * as myfile from "./my-file.js";

 Javascript supports some more fine-grained import statements, but these are not yet
 supported in Pas2JS. The myfile name is optional, in which case the filename
 without path or extension will be used.

¦ an external declaration for each function or variable exported by the module (the
 declaration has been split over 2 lines for readability):

 Function MyFunction (S: String) : Integer;
 external name ’myfile.myFunction’;
 var
 MyVar : String; external name ’myfile.myVar’;

 Note that these external names contain the prefix ’myfile.’ as part of their name: this
 is because all symbols of the module are available as myfile.NNN, due to the way

 the import statement is constructed from the {$Linklib } directive.

Note that the use of the {$Linklib } directive also requires the use of the module
compiler target. More about this later.

x WRITING LIBRARIES
To write a library using Pas2JS, you can write a library just as you would in Delphi or Free Pascal,

using the library keyword, instead of the default program keyword:

library ;htmlutils
 {$mode objfpc}
 // Your exports Here
 // exports a, b, c;
begin
 // Your library initialization code
here

LIBRARY SUPPORT IN PAS JS2 PAGE 2/9

w IMPORTING LIBRARIES

However, this is not enough. A new transpiler target was introduced: module.
The reason for introducing a new target is the following:

Depending on the target, the transpiler will include a Pas2JS rtl.run(); statement at the
end of the generated Javascript (or not). The output for the nodejs target includes such a
statement, but the browser target does not - because, as a rule, the rtl.run() statement is
included in the .html file: this will ensure that HTML tags and their ids have been processed by
the browser before the program is run.

Since a library (or module) can be used both in node.js and in the browser, a new target has
been created: module. This target will always include the rtl.run() statement.
The {$Linklib} directive also requires the use of the module target.
No import statement will be generated, unless the target is set to module.

Blaise Pascal Magazine 102 2022 59

y CREATING JAVASCRIPT MODULES USING PASCAL
So, how to use libraries and {$Linklib} directives to create Javascript modules?
We will demonstrate this with an example.
We create a library that allows to clear the HTML page below a certain tag (identified by

it’s id attribute), and which allows to set the page title. This is quite simple:

Figure 1: Pas2JS module support in the Lazarus new project menu

library ;htmlutils

uses ;web

Var String DefaultClearID : ;

Procedure String (:);SetPageTitle aTitle
begin
 Document Title aTitle. := ;

end;

Procedure String (:);ClearPage aBelowID
Var
 EL TJSElement : ;

begin
 if then (='') := ;aBelowID aBelowID DefaultClearID
 if then (='') := .aBelowID el Document body
 else
 el Document getElementById aBelowID:= . ();

 if then () . :='';Assigned El El innerHTML
end;

exports
 DefaultClearID SetPageTitle ClearPage, , ;

end.

LIBRARY SUPPORT IN PAS JS2 PAGE 3/9

Blaise Pascal Magazine 102 2022 60

To demonstrate the export of variables, we also export a variable DefaultClearID.
The value of this variable is used to determine which HTML tag to clear. If it is not set,

and no tag ID was specified in the call to ClearPage, the whole HTML body element is cleared.

This library can be compiled with the -Tmodule target:

/home/michael/bin/Pas2JS -Tmodule -Jirtl.js -Jc htmlutils.pas

The Lazarus IDE has support for creating a Pas2JS library in the Project-New project
menu, which will set all necessary options, as can be seen in figure 1 on page 3.

As indicated earlier, to use a library (or module), we must use again a Javascript module:
only javascript modules can use other modules. To create this module, we have 2 options:
¦ Create another library.
¦ Create a program.

It is clear why a library will work: the Javascript

script will need to have the module type and must be compiled with
the module target. However, a program will also work.

From the Javascript point of view, there is no difference between a library and a program.
From a Pascal point of view, the only factor of importantce is whether you want to export

symbols from your module. If you do, then you must create a library.

For demonstration purposes, we’ll create a program, because the Lazarus IDE wizard then
also creates a HTML page which we will need to show the functionality of our library.

In older versions of Lazarus the TargetOS of our program must manually be set to module in the
compiler options. In the latest (trunk, hence not yet released) version, the
Project - New project dialog already offers an option which does this for you,
see figure 2 on page 4.

Figure 2: Pas2JS program as module support in the Lazarus new project menu

LIBRARY SUPPORT IN PAS JS2 PAGE 4/9

Blaise Pascal Magazine 102 2022 61

We start by creating all code that is needed to import the library:

 ;program htmlutilsdemo

{$mode objfpc}
{$linklib ./htmlutils.js utils}

uses
 Web;

Procedure String (:);SetPageTitle aTitle
 external name ' . ';utils SetPageTitle
Procedure String (:);ClearPage aBelowID
 external name ' . ';utils ClearPage
var
 DefaultClearID : ;string
 external name ' . . ';utils vars DefaultClearID

Note the utils.vars.DefaultClearID: the prefix vars is needed for all variables
exported by a Pas2JS-created library.
To use these routines, we create a HTML page with 2 edits (IDs edtTitle, edtBelowID)
and a checkbox (ID cbUserDefaultClearID) and 2 buttons (IDs btnSetTitle
and btnClear). These edits can be used to specify a page title and an element ID,
the onclick event handlers of the buttons will call our imported functions.
The element definitions are bound to the HTML tags in the BindElements function:

Var
 BtnSetTitle BtnClear TJSHTMLButtonElement, : ;

 edtTitle edtBelowID cbUseDefaultClearID TJSHTMLInputElement, , : ;

Procedure ;BindElements

begin
 TJSElement BtnSetTitle Document getElementById btnSetTitle():= . (' ');

 BtnSetTitle OnClick DoSetTitle. :=@ ;

 TJSElement BtnClear Document getElementById btnClear():= . (' ');

 BtnClear onclick DoClear. :=@ ;

 TJSElement edtTitle Document getElementById edtTitle():= . (' ');

 TJSElement edtBelowID Document getElementById edtBelowID():= . (' ');

 TJSElement cbUseDefaultClearID Document getElementById cbUseDefaultClearID():= . (' ');

end;

The BindElements function is called in the program startup code.
The DoSetTitle and DoClear methods are callbacks that will call our imported function:

function (:): ;DoSetTitle aEvent TJSMouseEvent boolean
begin
 Result False:= ;

 SetPageTitle edtTitle Value(.);

end;

LIBRARY SUPPORT IN PAS JS2 PAGE 5/9

Blaise Pascal Magazine 102 2022 62

The DoClear function is a little longer, since it must take into account the
value of the cbUseDefaultClearID element:

LIBRARY SUPPORT IN PAS JS2 PAGE 6/9

The HTML will not be presented here, except to show that the script tag must be modified,
the type of the script must be set to module:
<script type="module" src="htmlutilsdemo.js"></script>

(again, in the latest development version of Lazarus, this is already done for you).
The resulting HTML page can be seen in see figure 3 on page 6, it is available online at
https://www.freepascal.org/~michael/pas2js-demos/modules/htmlutils/

function (:): ;DoClear aEvent TJSMouseEvent boolean
begin
 Result False:= ;

 if then . cbUseDefaultClearID Checked
 begin
 DefaultClearID edtBelowID value:= . ;

 ClearPage('');

 end
 else
 begin
 DefaultClearID:='';

 ClearPage edtBelowID value(.);

 end;

end;

Figure 3: Our page in action

Since we cannot export a class directly from our module, in order for users of the library to
be able to use the class, we must export a function that creates an instance of the class:

Blaise Pascal Magazine 102 2022 63

6 EXPORTING CLASSES
In the exports statement only variables and functions can be specified. Despite this
restriction, it is possible to use classes which are exported from libraries.
The simplest way to do so is to create a function that creates an instance of a class.
Alternatively, for global instances, you can declare a variable of type of the desired class.
To demonstrate this, we’ll rewrite our example to use a class called THTMLUtils:

library ;htmlutils

uses web;

Type
 THTMLUtils TObject = ()class
Public
 DefaultClearID : ;String
 (:);Procedure StringSetPageTitle aTitle
 Procedure String (:);ClearPage aBelowID
end;

Procedure String . (:);THTMLUtils SetPageTitle aTitle
begin
 Document Title aTitle. := ;

end;

Procedure String . (:);THTMLUtils ClearPage aBelowID

Var EL TJSElement : ;

begin
 if then (='') := ;aBelowID aBelowID DefaultClearID
 if then (='') := .aBelowID el Document body
 else
 el Document getElementById aBelowID:= . ();

 if then () . :='';Assigned El El innerHTML
end;

Function : ;CreateUtils THTMLUtils
begin
Result THTMLUtils Create:= . ;

end;

exports
CreateUtils;

end.

LIBRARY SUPPORT IN PAS JS2 PAGE 7/9

Obviously, if you need to specify options to your class’ constructor you’ll need to define
these options in your function.
 Note: Due to a bug in the released Pas2JS compiler it is necessary to disable optimizations
 when compiling this library:
 in the Custom options part of the compiler options dialog, the -O- option must be added.
 This bug has meanwhile been fixed.
To use this class, we must also rewrite our program.
We start by defining the THTMLUtils class as an external class:

Note the use of the {$moduleswitch externalclass}, needed to be able to define
external classes.
Now, to use this class, we must also rewrite our program a little. We define a variable of
the class, which we use in our callbacks:

Blaise Pascal Magazine 102 2022 64

 ;program htmlutilsdemo

{$mode objfpc}
{$linklib ./htmlutils.js utils}
{$modeswitch externalclass}

uses JS Web, ;

type
 THTMLUtils TJSObject = ' ' ()class external name Object
 Public
 DefaultClearID : ;String
 Procedure String (:);SetPageTitle aTitle
 Procedure String (:);ClearPage aBelowID
 end;

Function external name : ; ' . ';CreateUtils THTMLUtils utils CreateUtils

Var
 BtnSetTitle BtnClear TJSHTMLButtonElement, : ;

 edtTitle edtBelowID cbUseDefaultClearID TJSHTMLInputElement, , : ;

 UtilsObj THTMLUtils : ;

function (:): ;DoSetTitle aEvent TJSMouseEvent boolean
begin
 Result False:= ;

 UtilsObj SetPageTitle edtTitle Value. (.);

end;

function (:): ;DoClear aEvent TJSMouseEvent boolean
begin
 Result False:= ;

 if then . cbUseDefaultClearID Checked
 begin
 UtilsObj DefaultClearID edtBelowID value. := . ;

 UtilsObj ClearPage. ('');

 end
 else
 begin
 UtilsObj DefaultClearID. :='';

 UtilsObj ClearPage edtBelowID value. (.);

 end;

end;

LIBRARY SUPPORT IN PAS JS2 PAGE 8/9

Blaise Pascal Magazine 102 2022 65

We initialize the variable with the CreateUtils call exported from our library:

begin
 UtilsObj CreateUtils:= ;

 BindElements;

end.

The resulting page works in exactly the same way as the original example, only
now it uses a class. You can test this at:

https://www.freepascal.org/~michael/pas2js-demos/modules/classes/

For this simple example, exporting a variable of the correct type is also sufficient.
It requires only a few changes. In the library, the function can be CreateUtils

replaced with an exported variable declaration:

var Utils THTMLUtils : ;

exports Utils;

initialization
 Utils THTMLUtils Create:= . ;

end.

{ CONCLUSION
In this article we’ve shown one of the latest features of the Pas2JS transpiler: libraries and
how to use them. We’ve also shown that libraries in Pas2JS are more powerful than libraries
in native code: there is no need for special memory managers, and classes can be used as-is.
There are some small glitches in the library support for classes: the optimization switch,
and using overloads is possible but requires some tweaking of the external names.
Despite this, the support for modules is sufficiently mature to be used in production.

LIBRARY SUPPORT IN PAS JS2

The variable is initializd in the initialization section of the library.
To use this variable, only a small change is needed in our program.
We remove the ’CreateUtils’ function, and change the declaration of the UtilsObj variable:

 var
 UtilsObj THTMLUtils utils vars Utils : ; ' . . ';external name

And of course the statement to assign the variable must be removed.
After these changes, again the example will function as the original example.
You can convince yourself at the live demo:
https://www.freepascal.org/~michael/pas2js-demos/modules/classusingvar/

PAGE 9/9

https://www.barnsten.com/promotions/

Promotions
Delphi & C++Builder are the best development tools on the market to design and develop modern, cross-platform

native apps and services. Also for Windows 11! It’s easier than ever to create stunning, high performing apps for

Windows, macOS, iOS, Android and Linux Server (Linux Server is supported in Delphi Enterprise or higher), using the

same native code base. Share visually designed UIs across multiple platforms that make use of native controls and

platform behaviors, and leverage powerful and modern languages with enhancements that help you code faster.

Introduction offer on RAD Studio, Delphi and C++Builder 11.1 Alexandria – until March 31, 2022:

20% discount on Professional

30% discount on Enterprise

30% discount on Architect

Buy directly in the webshop or ask us for a quote.

This offer is not valid on Academic licenses, term licenses and/or existing contracts.

You can not combine this with other offers.

67

HANDLING MULTIPLE FORMS OR PAGES IN

ABSTRACT
In this article we show how to reduce coding
when creating forms in a PAS2JS web
application. Additionally we show how routing
can be used to show multiple forms in
an SPA (Single Page Application) and keep
the browser experience of the user intact.

The previous articles showed how to implement a
PAS2JS dialog, and how to switch to another
dialog when the user logged in. All the examples
shared a common approach:
whether they used the WebWidget components or
plain HTML classes, they always had one field per
HTML tag element in the web page: the field was
either a TWebWidget component or one of the
HTML classes found in the Web unit. This is identical
to how Delphi code deals with forms.
For example, the login page resulted in this
declaration:

TMyApplication =
class(TBrowserApplication)
edtEmail : TJSHTMLInputElement;
edtPassword : TJSHTMLInputElement;
btnLogin : TJSHTMLButtonElement;
procedure doLoginClick(aEvent: TJSEvent);

This is of course similar to a form declaration in
Delphi. In the previous articles, these
"form declarations" were created manually.
In the following lines, we show how to generate
such a declaration directly from the HTML file.

PAS JS 2 3

PAS JS2

starter expert

D11

BY MICHAËL VAN CANNEYT

PART 3 PAGE 1/21

u INTRODUCTION

In it is very common to show a second Delphi,

form with code like this:

 . (:);Procedure TMainform mnShowUserClick Sender Tobject
var
frm TUserForm : ;

begin
frm TUserForm Create Self:= . ();

. ;frm Show
end

It is possible to mimic this behaviour in a web
application. But this is in fact not really
how a user will expect a web application to
function:
when the user form appears as shown
in the code, the user expects to be able to use
the browser’s back button to return to the
previous form, or to reload the page using the
refresh button.

The solution for this problem is called routing.
With each form of the application, a URL
is associated.
The URL must contain enough information to
reconstruct the form.
For example, the following 3 URLs could be used
to respectively show the overview of users,create
a new user and edit user with ID 123:

/users/
/users/new
/users/123

If the user is currently viewing URL / , and users

navigates to the details of user 123
then the URL becomes /users/123.

When the user wants to go back to the overview of
users, he’ll press the back button.

The application should catch this event and
present the user again with the overview of the
users. We’ll explain how this can be achieved
in a application.PAS2JS

Blaise Pascal Magazine 102 2021

68

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 2/21

Blaise Pascal Magazine 102 2021

2 GENERATING FORM DECLARATIONS

html2form --input=index.html -o frmlogin.pas -f TLoginForm

To avoid having to manually create a form declaration for each HTML file in a web application,
a tool called has been created. Its sources are distributed with html2form Pas2JS,

in the directory . It is a command-line application. When executed with thetools/html2form

-h command-line option, you get some help messages which explain the various options:

¦ help show a help message
¦ below-id=ID HTML Only create fields for child elements of element in the page.ID
¦ formclass=NAME The name of the pascal "form" class to create.
¦ form-file Generate also a form .frm file (see below?).

¦ getelementfunction=NAME

 Name of function: this is the function that is used in agetelementByID
 BindElements method to look up an HTML element based on

 their ID attribute.

¦ When specified, the tool will emit code to bind event handlers to methods. events

¦ With this option, you specify the html file to read. input=file

¦ Read a mapping file, which is used to map HTML tags to classes, map=file Pascal

 based on tag and attributes. By default, the tool maps HTML tags to the
 native Javascript child classes.HTMLElement

¦ By default, the call which maps variables to actual instances no-bind BindElements

 is called from the class constructor. When this option is specified,
 the call to is omitted from the constructorBindElements

¦ The pascal file to write a unit to. output=file

¦ Name of pascal "form" parent class. parentclass=NAME

 There is no fixed class in so the tool needs a class name. TForm Pas2JS,

 By default, this class is Tcomponent.
¦ You can specify a comma-separated list of IDs to exclude: exclude=List

 for these Ids, no field will be created.

 If the value for this option starts with @,
 then the remainder of the option is assumed to be a filename,
 and the list is loaded from the file.

These options give you an idea of the possibilities.

So, how to use this tool?
Let’s take the file from our previous examples index.html

– it contains a login dialog – and run it through the tool using the following command-line:

69

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 3/21

Blaise Pascal Magazine 102 2021

unit frmlogin;
{$MODE ObjFPC}
{$H+}

interface

uses , , ;js web Classes

Type
 TLoginForm TComponent = ()class
 Published
 edtEmail TJSHTMLInputElement : ;

 error TJSHTMLElement : ;

 edtPassword TJSHTMLInputElement : ;

 btnContinue TJSHTMLButtonElement : ;

 Public
 Constructor override (:); ;create aOwner TComponent
 Procedure virtual ; ;BindElements
end;

implementation

Constructor . (:);TLoginForm create aOwner Tcomponent

begin
 Inherited;

 BindElements;

end;

Procedure . ;TLoginForm BindElements
begin
 edtEmail TJSHTMLInputElement document getelementByID edtEmail:= (. (' '));

 error TJSHTMLElement document getelementByID error:= (. (' '));

 edtPassword TJSHTMLInputElement document getelementByID edtPassword:= (. (' '));

 btnContinue TJSHTMLButtonElement document getelementByID btnContinue:= (. (' '));

end;

end.

The result is a file that looks like this ():some comments have been removed

This "form" declaration will compile as-is and can be added to the project.Pas2JS

Many controls on a page need some kind of event handler: a button without event handler
is of little use.

Luckily, the can also generate event handlers for you. For this, a convention is used. html2form tool

When looking at a tag, all attributes that begin and end with an underscore character (_) are considered
event names. The value of the attribute is the event handler method name.
To demonstrate this, we modify the index.html a little.

The login button becomes:
< =" "button id btnContinue
 class is is is is=" - - - - "button block info large fullwidth
 _ =" ">click_ DoLoginClick
 Continue i fa fa sign aria hidden true i < =" - - - =" "></ >class in
</ >button

70

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 4/24

Blaise Pascal Magazine 102 2021

The idea is that the ’click’ event for the button is handled by a methodbtnContinue

called DoLoginClick.
We run again the on this file, but we also pass the -event command-line option: HTML2FORM TOOL

html2form --input=index.html -o frmloginbase.pas --event -f TBaseLoginForm

As you see, we also specify another name for the class file and the unit name. The reason
for this will become apparent soon.
The resulting class has more methods:

 = ()TBaseLoginForm TComponentclass
Published
 edtEmail TJSHTMLInputElement : ;

 error TJSHTMLElement : ;

 edtPassword TJSHTMLInputElement : ;

 btnContinue TJSHTMLButtonElement : ;

 Procedure virtual abstract (:); ; ;DoLoginClick Event TJSEvent
Public
 Constructor override (:); ;create aOwner TComponent
 Procedure virtual ; ;BindElements
 Procedure virtual ; ;BindElementEvents
end;

The is where the events are bound to the callbacks:BindElementEvents

Procedure . ;TBaseLoginForm BindElementEvents
begin
 btnContinue AddEventListener click DoLoginClick. (' ',@);

end;

Note virtual; abstract;that the callbacks are marked .
This is configurable:

If you prefer, you can also simply generate virtual methods with an empty body.

But there is a reason for making these methods abstract:
The class above is not meant to be used directly:
If you generate a class from the HTML file, it can happen that the HTML changes, and
you must change the class definition.
If you do this and regenerate the file, any changes you made to the file will be lost.
This is of course not very convenient.
Instead, the above file is generated with abstract methods.
To actually code the form’s business logic, you create a new unit with a descendent
of TBaseLoginForm:

 ;unit frmlogin
{$MODE ObjFPC}
{$H+}

interface
uses , , , ;js web Classes frmloginbase

Type
 TLoginForm TBaseLoginForm = ()class
 Public
end;

implementation

end.

71

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 5/25

Blaise Pascal Magazine 102 2021

Figure 1: override abstract methods

In this ’form’ class, we override the abstract methods, and implement the
GUI HTML logic of the form. Now, when the File changes, we can simply regenerate the
frmloginbase frmlogin unit, and continue to work in the unit.

Overriding the abstract methods can be done trivially in the IDE: Lazarus

The dialog under the methods menu (see figure 1 on page 5) Source - Refactoring - Abstract

allows you to do this with a couple of mouseclicks.
This dialog is also available from the source editor context menu popup,
or you can attach a shortcut key to it.
The resulting code looks like this:

 = ()TLoginForm TBaseLoginFormclass
procedure override (:); ;DoLoginClick Event TJSEvent
Public
end;

implementation
procedure . (:);TLoginForm DoLoginClick Event TJSEvent
begin
end;

72

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 6/21

Blaise Pascal Magazine 102 2021

All that is needed is to code the necessary or business logic. UI

If you forget to implement some abstract methods, the compiler will warn you about this
when you create an instance of a class which has abstract methods:

frmlogin.pas(29,14) Warning:
Constructing a class "TLoginForm" with abstract method "DoLoginClick”

If you have the latest development version of Lazarus,
this whole process has been automated in the IDE.
In the dialog, you can choose the Class definition from HTML file option (see figure File-New Pas2JS

2 on page 6). When you choose this, you will be presented with a dialog that allows you to enter all
possible options for the generating of the class definition, see figure 3 on page 7 figure 4 on page 7. and
In this dialog, you can also opt to add the HTML file to the project.Lazarus

Once all the options have been set, the will create the unit with the class declaration, and adds the IDE

new file to the project. In figure 4 on page 7 you can see that more options are available in the dialog
than on the command-line.

In these screenshots, you see two toolbuttons: With these buttons you can load and save theoptions
set in this dialog: this allows you to quickly re-use the same options for all forms in your application,
and also allows you to use the saved options in an automated build procedure: the command-line
appplication can read this file as well.

To ensure that you can recreate the class definitions at any given moment, the IDE
automatically stores the options used to generate the unit in the Lazarus project file
(the .lpi file). In the project inspector, you can use the context menu to regenerate one

or more () or all html form class files (see figure 5 on page 8).the selected units

Figure 2: Create a class definition from an HTML File

73

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 7/21

Blaise Pascal Magazine 102 2021

Figure 3: Options for creating a class definition from an HTML File

Figure 4: More options for creating a class definition from an HTML File

74

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 8/21

Blaise Pascal Magazine 102 2021

Figure 5: Quickly regenerate the class definitions from their HTML files

A web application usually shows one form at a time:
for instance, an overview of projects is shown, and when the user clicks a project,
the overview disappears, and the details for the selected project is shown.

In a () this usually happens by showing all ’forms’ below a SPA Single Page Application

designated HTML tag (). This operation resembles docking a form in a let’s give it an id: form-parent

main form in Delphi.

There are several ways to do this: all forms can be made part of the html - you just insert their HTML
below the designated tag give each form’s top level HTML an ID. Then we can just form-parent,

show or hide parts of the HTML by adding or removing the following style element to the top level tag
of the forms: style="display: none;”

You could make the routine that does this part of the form constructor, and just create the
form you need. This is easy and convenient if there are only a few forms in your application.
But in an application with many forms, the page’s HTML will become unwieldy.
Far better and easier is to have the HTML for each form in a separate file. By loading the HTML file at
runtime, we can replace the HTML below the tag, and the browser willform-parent

happily refresh the screen with your new form.

A difficulty with this approach is that loading a file from the server is an asynchronous operation;
it takes some time. But this is not a big issue: we can start loading the forms as soon as the page is
loaded. A second issue is of course that we should not reload a form each time it is opened:
once it was loaded, we better keep the HTML somewhere in the browser, so we don’t need to
download it again next time the form is shown.

To help with all this, comes with a unit called This unit will load Pas2JS Rtl.TemplateLoader.

a bunch of files () and keep them in some memory structure.called templates

When it is time to load a form, the needed template is requested from the template loader,
and the form can be shown. If the template loader does not have it yet, you will need to tell
it to load it and wait till it is loaded: the component will notify you when it was loaded

so you can display the form.

3 NAVIGATING FROM ONE FORM TO THE NEXT

75

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 9/21

Blaise Pascal Magazine 102 2021

The method names speak for themselves:

RemoveTemplate aName. clears the template with name
FetchTemplate aURL Loads the template from URL and stores the template with name
 Returns a promise you can use to wait for the result.aName.

LoadTemplate aURL Loads the template from URL and stores the template with name
 You can optionally specify 2 event handlers, which will beaName.

 called when the template is loaded or when the load fails.
LoadTemplates Passes a list of strings, strings at even indexes are the names of
 templates, strings at odd indexes are the URLS to load.
 You can optionally specify 2 event handlers,
 which will be called when a template is loaded.

The property names are equally clear:

BaseURL FetchTemplate, LoadTemplate(s) All urls in are relative to this URL.
Templates Here you can access a loaded template by name.
 If the template does not exist, an empty string is returned.
OnLoad Allows you to set a global template load notification event.
 This is called in addition to the ones specified in the load call.
OnFail Allows you to set a global template load failure notification event.

To demonstrate the use of this component, we’ll make a web page with 3 "forms" – actually
an HTML template file, and a button to show each form. The HTML template files will have
an accompanying form declaration (we now know how to generate one quickly), which we
will instantiate once the HTML has been loaded. For this, we need 3 html files:

u The global HTML file. We’ll name it and it will contain the buttonsindex.html,

 to display the 2 forms. This file would normally contain a menu, nav bar etc:
 the things which are always the same in every form.
v The HTML file for the first form, a login page: we’ll name it login.html.
w The HTML file for the second form, a projects list page: we’ll name it projects.html.
x The HTML file for the third form, a users list page: we’ll name it users.html.

Each HTML file will be accompagnied by a class form file, and we’ll add some events to
it, to demonstrate the capability of the html-to-form converter.

TTemplateLoader TComponent = ()Class
 Procedure String (:);RemoveRemplate aName
 Function Const String (, :) : ;FetchTemplate aName aURL TJSPromise
 Procedure Const String (, : ;LoadTemplate aName aURL
 aOnSuccess TTemplateNotifyEvent : = ;Nil
 AOnFail TTemplateErrorNotifyEvent : =);Nil
 Procedure Const Array of String (: ;LoadTemplates Templates
 aOnSuccess TTemplateNotifyEvent : = ;Nil
 AOnFail TTemplateErrorNotifyEvent : =);nil
 Property String : ;BaseURL
 Property String String [:] : ;Templates aName
 Property : ;OnLoad TTemplateNotifyEvent
 Property : ;OnLoadFail TTemplateErrorNotifyEvent
end;

The class is defined as follows:TTemplateLoader

76

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 10/21

Blaise Pascal Magazine 102 2021

The file is quite simple (we show just the HTML body):index.html

 <div =" ">class container
 <div =" ">class box
 < =" - " =" "button button primary id btnLoginclass is
 _ =" "> </ >click_ DoLoginClick Login button
 < =" - " =" "button button info id btnProjectsclass is
 _ =" "> </ >click_ DoProjectsClick Projects button
 < =" - " =" "button button info id btnUsersclass is
 _ =" "> </ >click_ DoUsersClick Users button
 </div>
 <div =" - " >class box form container
 <div =" - " >id form parent
 <div =" - - ">class is isnotification info light
 Click one the buttons above .of
 </div>
 </div>
 </div>
</div>

procedure . (:);TIndexForm DoLoginClick Event TJSEvent

Procedure ;ShowLogin
begin
 form_parent innerHTML GlobalTemplates Templates login. := . [' '];

 FreeAndNil FCurrentForm();

 FCurrentForm TLoginForm Create Self:= . ();

end;

procedure const String (: ; :);DoShowLogin Sender TObject aTemplate
begin
 ShowLogin;

end;

begin
if then . [' ']<>'' GlobalTemplates Templates login ShowLogin
else
 GlobalTemplates LoadTemplate login login html DoShowLogin. (' ',' . ',@);

end;

We do the same for the login, projects and users HTML files:
For these files, the IDE will generate a class definition that looks much like the above.

After doing this, we end up with 4 units in our project: f and rmIndex, frmLogin, frmProjects
frmUsers.

For simplicity, we will deviate from the ’proper’ way to do things and simply implement the
needed functionality in the units themselves.
The class is the ’main’ form of our application. In this form, we mustTIndexForm

implement the logic for navigation between the login, projects and users form. Here is the
logic to show the login page:

As you can see, there are 3 buttons, plus some tags that use to create a Bulma CSS

visually more pleasing HTML page.
From this we use the File-New wizard to create a unit with the following class:frmIndex.pp

TIndexForm TComponent = ()class

Published
 btnLogin TJSHTMLButtonElement : ;

 btnProjects TJSHTMLButtonElement : ;

 btnUsers TJSHTMLButtonElement : ;

 form_parent TJSHTMLElement : ;

 procedure (:);DoLoginClick Event TJSEvent
 procedure (:);DoProjectsClick Event TJSEvent
 procedure (:);DoUsersClick Event TJSEvent
Public
 constructor override (:); ;create aOwner TComponent
 procedure virtual ; ;BindElements
 procedure virtual ; ;BindElementEvents
end;

77

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 11/21

Blaise Pascal Magazine 102 2021

Figure 6: Multi-form project with projects tab

TFormManager TComponent = ()Class
Public
 Procedure (: ;RegisterForm aClass TBaseFormClass
 : = ''; const StringaName
 : = '');aHTMLFile String
 Procedure string (:);UnregisterForm aName
 Procedure string (: ;ShowForm aName
 OnShow TFormProcedure : =);nil
 Property : ;CurrentForm TBaseForm
 Property : ;FormParent TJSHTMLElement
 Class property : ;Instance TFormManager
end;

4 USING A FACTORY PATTERN

The code is quite straightforward.
GlobalTemplates is a global instance of the

TTemplateLoader class, defined in the
Rtl.TemplateLoader unit. If the template is known,

then the is called. If the template is not yet known, it is loaded, and in the success ShowLogin

handler, is called. For simplicity, we didn’t use a failure event handler.ShowLogin

The ShowLogin routine enters the template HTML below the HTML tag with id .form-parent

It then destroys any previous form instance in - a variable that keeps theFCurrentForm

current form. Finally it creates the new form class and saves it.

That’s all there is to it. For the and pages, a similar routine is made, only the names Projects Users

differ. The result after pressing the button is shown inProjects figure 6on page 11.

The routines to show the login, projects, an users pages are the same. All that differs is the class
name, and the name of the template and html file. If there are a lot of forms, then repeating the
above code is of course not very efficient.
So, an obvious improvement to reduce code is to create a routine (or better, a class) which does all
this in one call. It would also be nice if we could just pass a form name which says which form
must be shown, without having to specify a class or a HTML file name.
To achieve this, we create a TFormManager class in a frmBase unit, which looks like this:

 In class-based programming, the
 factory method pattern is a
 creational pattern that uses factory
 methods to deal with the problem of
creating objects without having to specify the
exact class of the object that will be created.
This is done by creating objects by calling
a factory method - either specified in
an interface and implemented by
child classes, or implemented in a base class
and optionally overridden by derived classes -
rather than by calling a constructor.

WIKIPEDIA

78

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 12/21

Blaise Pascal Magazine 102 2021

procedure string . (: ; :);TFormManager ShowForm aName OnShow TFormProcedure
Var Idx Integer Reg TFormRegistration : ; : ;

 Procedure ;ShowForm
 var stringhtml : ;

 begin
 If then () ();Assigned FCurrentForm FreeAndNil FCurrentForm
 html GlobalTemplates Templates form Reg:= . [' :'+ .];Name
 FFormParent innerHTML html. := ;

 FCurrentForm Reg FFormClass Create Self:= . . ();

 If then () (,);Assigned OnShow OnShow Self FCurrentForm
 end;

 procedure (: ;FormFailed Sender TObject
 const String , : ;aTemplate aError
 aErrorcode Integer:);

 begin
 Writeln Error loading form template aTemplate(' ', ,' : ',

 aError Code aErrorCode,' (:', ,')');

 end;

 procedure const String (: ; :);HaveForm Sender TObject aTemplate
 begin
 ShowForm;

 end;

 begin
 Idx FForms IndexOf aName:= . ();

 if then =- Idx 1
 Raise . (,[]);EForms CreateFmt SErrUnknownForm aName
 Reg TFormRegistration FForms Objects Idx:= (. []);

 if Name then . [' :'+ .]='' GlobalTemplates Templates form Reg
 GlobalTemplates LoadTemplate form Reg Reg HTML. (' :'+ . , . ,Name
 @ ,@)HaveForm FormFailed
 else
 ShowForm;

end;

procedure . (:);TIndexForm DoLoginClick Event TJSEvent
begin
 FormManager ShowForm login. (' ');

end;

procedure . (:);TIndexForm DoProjectsClick Event TJSEvent
begin
 FormManager ShowForm projects. (' ');

end;

procedure . (:);TIndexForm DoUsersClick Event TJSEvent
begin
 FormManager ShowForm users. (' ');

end;

The class property returns a global instance, which can be used to manage Instance

all forms.
With the routine, we can register a form class, using a name with whichRegisterClass

it can be shown, and a HTML file with which to load the HTML for the form. You can
choose these last 2 parameters at will, but if you don’t specify them, some defaults will be

taken.
The method can then be used to show a form using just the name used toShowForm

register the form; A callback handler can be specified: it will be called when the form is
shown.
The routine looks much like the handler which we presented ShowForm OnClick

before, with as an addition a call to the handler that can be OnShow

passed to the method:

The handlers of our menu buttons in the index form can now be reduced to theOnClick

following:

79

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 13/21

Blaise Pascal Magazine 102 2021

Obviously, before this can work, the login, projects and users forms need to be registered.
In the method of the class, the parameter isRegisterForm TFormManager aClass

of type This class reference type is also defined in the unit:TBaseFormClass. frmBase

TBaseForm = ()class TComponent
Public
 Class Function String virtual : ; ;FormName
 Class Function String virtual : ; ;FormHTMLFileName
 Class Procedure Register ;

end;

TBaseFormClass TBaseForm = ;class of

class procedure Register . ;TBaseForm
begin
 With do . TFormManager Instance
 RegisterForm Self FormName FormHTMLFileName(, ,);

;end

class function String . : ;TBaseForm FormName
Var P integer : ;

begin
 Result LowerCase ClassName:= ();

 if then . (' ') Result StartsWith tfrm
 Result Copy Result Length Result:= (, , ()-)5 4
 else if then . (' ') Result StartsWith t
 Result Copy Result Length Result:= (, , ()-);2 1
 if then . (' ') Result EndsWith form
 begin
 P Pos form Result:= (' ',);

 Result Copy Result P:= (, , -);1 1
 end;

end;

class function String . : ;TBaseForm FormHTMLFileName
begin
 Result FormName html:= +'. ';

end;

The class method looks like this:Register

The FormName and FormHTMLFileName look like this:

The result of all this code is that the line

TFrmLogin.Register;

will register the form class with name and html file TFrmLogin login login.html.

The mechanism presented here is of course just a convention which makes life easier;
you can perfectly invent other algorithms. The start of our program becomes therefore:

Note TIndexForm that the is not registered:
It has no associated HTML which must be loaded:
the index.html file is already loaded.

TUsersForm. ;Register
TProjectsForm. ;Register
TLoginForm. ;Register
FIndex TIndexForm Create Self:= . ();

FormManager FormParent FIndex form_parent. := . ;

80

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 14/21

Blaise Pascal Magazine 102 2021

5 ROUTING

We have now reduced the code it takes to show a form to a one-liner in an handler. onclick

However, this does not solve our principal problem: the use of the back and
forward buttons in the browser:
if the user first opens the projects list and then goes to the users list, he will naturally assume he
can go back to the projects list by hitting the back button.
With the application as it is coded now, if you press the back button while the users list is
shown, either
¦ Nothing will happen if the demo is the first page loaded in your browser.
¦ Or you will be taken back to the website you were looking at before you opened the demo.

The solution to this problem is called routing: with each form we associate an URL.
As the user navigates between the forms, the URL changes.
This is easy with a website where each form is an actual and separate HTML page.

But how to do this in a ? Single Page Application (SPA)

Luckily, in , this is possible: the browser offers access to the history mechanism HTML 5

of your browser page. You can be notified if the URL changes, and you can also change
the URL. Since we are creating a we must of course try to SPA (Single Page Application)

avoid a page reload, and remain in the current page.
But how to stay on the same page when we require that the URL must change when navigating
from one form to another? This also is possible: the hash part of the URL can
be used. The following 3 URLs are the same page:

http://localhost:3000/index.html#/login
http://localhost:3000/index.html#/users
http://localhost:3000/index.html#/projects

These are 3 different URLs, but they all refer to the same HTML page. When you are on
the last URL in the list, and press the back button, the browser will see that the previous
URL is actually the same page, and will not reload the page from the webserver.
This mechanism can be further expanded, you can pass more information in the URL.
The following can refer to 1 page (a fictitious project detail page), which will – in turn –
show the details for project 1, a new project and project 2.

http://localhost:3000/index.html#/project/1
http://localhost:3000/index.html#/project/new
http://localhost:3000/index.html#/project/2

What is more, the user can copy the URL, send it to someone else, and the receiver can
open the application and be presented with the same page.

So, how to achieve this?
The comes with a webrouter unit, which implements Pas2JS RTL

a class. This class allows you to associate a callback with a route. A route isTRouter

simply a URL fragment: when the URL changes, the router will catch the browse event
for it, and match the new URL with the list of known routes. If it finds a route definition
that matches the URL, it will call the registered callback for that route.

81

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 15/21

Blaise Pascal Magazine 102 2021

TRouter TComponent = ()Class
 Procedure (:);DeleteRoute aIndex Integer
 Function Const String (: ;RegisterRoute aPattern
 aEvent TRouteEvent: ;

 IsDefault Boolean False TRoute : =) : ;

 function const String (: ;FindHTTPRoute Path
 Params TStrings TRoute:): ;

 function const String (: ;GetRoute Path
 Params TStrings TRoute:): ;

 Function Const String (: ;RouteRequest aRouteURL
 DoPush Boolean False TRoute : =) : ;

 Property [:] : ;Routes AIndex Integer TRoute
 Property : ;RouteCount Integer
 Property : ;BeforeRequest TBeforeRouteEvent
 Property : ;AfterRequest TAfterRouteEvent
end;

The purpose of these methods should be clear:
¦ DeleteRoute Delete given route by index.
¦ RegisterRoute Register a callback for a route: the aPattern is a pattern to match
 with the URL. If the URL matches the route, then aEvent is called.
 If is then this route is used if no matching route canisDefault True

 be found for a given URL fragment.
¦ FindHTTPRoute Find a route definition for Path, and return parameter values in Params.
 Returns the route definition. If no route is found, Nil is returned.
¦ GetRoute calls FindHTTPRoute, and raises an exception if no route was found.
¦ RouteRequest Perform the routing for a request with URL frament aRouteURL.
 If DoPush is true, the new route is pushed onto the browser’s URL history.
¦ Routes Array access to the registered routes.
¦ RouteCount The number of known routes.
¦ BeforeRequest An event that is fired before handling a routing request.
¦ AfterRequest An event that is fired after handling a routing request.

For example, these are possible routes for our application:

/login
/project
/project/new
/project/:ID
/user
/user/:ID/Tab/:TAB
/user/:ID/
/*

Notice the and in these routes. They present parameters: any string that does:ID :TAB

not contain a / character. When the router matches the URL, it will replace ID with what
was actually in the URL. This means that the following URL fragments:

/project/123
/project/789

will result in a match for the route , but with set to and respectively./project/:ID ID 123 789,

You can also use the wildcard character * to match any fragment. URL

This can be used for example to register an error page if no matching URL was found,
or to handle all that start with a certain fragment in a single route definition.URLS

The following is the declaration of the class, TRouter

with only the most important methods:

82

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 16/21

Blaise Pascal Magazine 102 2021

How can we use this object to show our forms automatically in the application ?
A simple mechanism suggests itself: each form registers a route starting with the
form name used to create the form.
This means that our three forms must register 3 routes:

Now we can pluck additional fruits of the factory pattern that we introduced earlier. We
can use the call to register a route for the form.RegisterForm

To allow a form to register multiple routes for itself, we create a method inFormRoutes
TBaseForm:

This method (which can return multiple routes) is then used to register the routes for the
form in the form manager’s method. This method starts with some sanityRegisterForm

checks, before adding a form registration object to a list. The method is thenFormRoutes

used to register the various routes for the form:

function . (: ;TFormManager RegisterForm aClass TBaseFormClass
 const String : ;aName
 aHTMLFile:):String
 TRouteDynArray;

Var
 aRoute N H, , : ;String
 aRoutes TStringDynArray : ;

 aReg TFormRegistration : ;

 Idx Integer : ;

begin
 // Some cleanup
 N aName:= ;

 if then ='' := . ;N N aClass FormName
 H aHTMLFile:= ;

 if then ='' := . ;H H aClass FormHTMLFileName
 // Create and save form registration.
 aReg TFormRegistration Create aClass N H:= . (, ,);

 FForms AddObject N aReg. (,);

 // Register routes
 aRoutes aClass FormRoutes:= . ;

 SetLength Result Length aRoutes(, ());

 Idx:= ;0
 for in do aRoute aRoutes
 begin
 Result Idx Router RegisterRoute aRoute DoFormRoute False[]:= . (,@ ,);

 Inc Idx();

 end;

 // Save routes in registration.
 aReg FRoutes Result. := ;

end;

/login
/projects
/users

class function . : ;TBaseForm FormRoutes TStringDynArray
begin
 Result FormName:=[];

end;

As a last step, the created routes are saved in the form registration. This is needed in the
DoFormRoute method, which will be called when the route is matched.
In the method, we start with looking up the form registration associatedDoFormRoute

with the route. The helper function checks if the given route is in the array ofHasRoute

routes for that form registration.

Finally, if a valid form registration is found, then we show the form using the existing
ShowForm method. In the callback we call a new method of our base formOnShow

class, ShowRoute:

83

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 17/21

Blaise Pascal Magazine 102 2021

This virtual method can be overridden to let the form act on the particular route that
was used to show the form. For instance, to react on parameters in the route.

So, now that we have our routing in place, how to use it? This is simple, and we actually
end up with less code. The 3 buttons in the index.html page to show our 3 forms can now
be replaced with 3 anchor elements:

<div class="box">
Login
Projects
Users
</div>

procedure String . (: ;TFormManager DoFormRoute URl
 aRoute TRoute: ;

 Params TStrings:);

Var
 Idx Integer : ;

 Reg TFormRegistration : ;

begin
 // Find the form registration for this route:
 Reg:= ;Nil
 Idx FForms Count:= . - ;1
While Nil and do (=) (>=) Reg Idx 0
 begin
 Reg TFormRegistration FForms Objects Idx:= (. []);

 if Not then . () Reg HasRoute aRoute
 Reg:= ;Nil
 Dec Idx();

 end;

 // If we found a registration, show the form
 if then () Assigned Reg
 ShowForm Reg(. ,Name
 procedure (: ; :)sender TObject aForm TBaseForm
 begin
 aForm ShowRoute URL aRoute Params. (, ,);

 end);

end;

procedure const String . (: ; : ; :);TBaseForm ShowRoute aURL aRoute Troute aParams TStrings
begin
 Writeln Showing route URL aURL pattern(' ', ,' : ',for with
 aRoute FullPath params aParams CommaText. ,' : ', .);and
end;

84

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 18/21

Blaise Pascal Magazine 102 2021

Figure 7: Multi-form project using routing

As you can see, the HTML tag has been replaced with an button

anchor HTML tag . In the anchor tag’s attribute, we enter the route for (a) href

the form that must be shown: , followed by the form name. #/

The handler has also been removed: it is no longer needed. click

If we now regenerate the class file associated with our file, we notice that the index.html

click handlers are gone. The navigation is now handled by the router.

The result can be seen in . Notice how in in the address bar of thefigure 7 on page 18

browser, the route is now displayed within the URL’s hash. As you navigate between
forms, the URL will change as you switch forms. Additionally, if you now use the back
and forward buttons of the browser, you will actually switch forms !
With this mechanism, you are giving the user a real browser experience.
Incidentally, note that the hyperlink elements look exactly like button elements used before:
this is one of the perks of using a .CSS framework

85

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 19/21

Blaise Pascal Magazine 102 2021

 < >tr
 < >td
 < =" / / "> </ >a href project Implement interfaces a# 1
 </ >td
 < >td
 May 2018
 </ >td
</ >tr

 < =" "h1 id pagetitle
 class is=" - "> :title Project3
 < =" ">?</ >span id hdrProjectName span
</ >h1
<div =" " id lblNotFound
 class is is is=" - - - ">notification danger light hidden
 Project d found % !</div>not
<div =" "> class field
 < =" "> </ >label class label Name labelProject
 <div =" ">class control
 < =" "input inputclass
 id edtProjectName=" "

 type=" "text
 placeholder Project=" ">name
 </div>
</div>

<div =" "> class field
 < =" "> </ >label class label labeldate due
 <div =" - - "> class control has icons left
 < =" - "input input success class is
 type=" " =" "text id edtDueDate
 placeholder project due date=" ">

 < =" - - ">span icon small leftclass is is
 < =" - - "></ >i las la calendar check iclass
 </ >span
 </div>
</div>

<div =" - ">class isfield grouped
 <div =" ">class control
 < =" "button id btnSave
 class is=" - ">button link
 Save
 </ >button
 </div>

 <div =" ">class control
 < =" "button id btnCancel
 class is is=" - - ">button link light
 Cancel
 </ >button
 </div>
</div>

The HTML of the project detail page (project.html) looks like this:

Procedure Const String (: ;ShowRoute aURL
 aRoute TRoute : ;

 aParams TStrings :); ;override
Class function String override : ; ;FormHTMLFileName
Class function override : ; ;FormRoutes TStringDynArray

To demonstrate the use of parameters in the URL, we change the projects overview
page to show links to a ’project details’ page for a project:

6 ROUTE PARAMETERS

When we generate the form for this HTML, we call the form class TProjectDetailForm,
and we override the following methods:

86

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 20/21

Blaise Pascal Magazine 102 2021

Since the form class name differs from the html file name (the convention that was presented
earlier), we need to give the form factory the correct HTML file name:

class function TProjectDetailForm.FormHTMLFileName: String;
begin
Result:=’project.html’;
end;

class function TProjectDetailForm.FormRoutes: TStringDynArray;
begin
Result:=[’/project/:ID’]
end;

Since we wish to obtain the value of the form ID as a parameter in the URL, we
must register a fitting route for this:

 . (: ;procedure const StringTProjectDetailForm ShowRoute aURL
 aRoute TRoute: ;

 aParams TStrings:);

Const
 NotFound Project s found = ' "% " !';not

Var
 aID NativeInt : ;

 aError aName aDue, , : ;String

begin
 aID StrToInt64Def aParams Values ID:= (. [' '],-);1
 // Show an error if the ID is unknown.
 if or then (<) (>) aID aID ProjectCount1
 begin
 aError Format NotFound aParams Values ID:= (,[. [' ']]);

 lblNotFound innerText aError. := ;

 lblNotFound classList remove hidden. . (' - ');is
 Exit;

 end;

 // Show project data
 aName ProjectNames aID:= [];

 aDue ProjectDates aID:= [];

 hdrProjectName InnerText aName. := ;

 edtProjectName value aName. := ;

 edtDueDate value aDue. := ;

end;

The result is that project ID will be passed to the ShowRoute in the ID parameter.

We can now use this parameter to load the correct project data. If a wrong ID or a false
ID is loaded an error message is displayed:

The user can type an arbitrary or outdated URl in the browser address bar,
and we must be prepared to deal with errors.
With a simple class (), a HTML element can be shown or hidden. Bulma CSS is-hidden

Showing a warning is thus simply a matter of removing the CSS class from the is-hidden

HTML element that shows the warning.

The data is loaded from 2 arrays of values and (ProjectNames ProjectDates).

87

HANDLING MULTIPLE FORMS OR PAGES IN PAS JS2 PART 3 PAGE 21/21

Blaise Pascal Magazine 102 2021

Figure 8: Routing parameters in action

The last lines are
not very different from what you would do in a

regular Class: only the property names are different.VCL

The result of this code can be seen in . figure 8 on page 23

NOTE URL ID. the which contains the project
As you navigate between the various projects, you can always go back to a

previously visited project with the browser’s back button.

7 CONCLUSION

In this article, we’ve shown how to present the user with an actual browser
experience:

back and forward buttons for navigation now work. In doing so, the work needed to
show forms was significantly reduced:
Using a router and changing buttons to anchor elements in the html reduces code.
There are still small glitches: when reloading the page, you will return to the initial page,
even though the URL contains the route for the last visited page. It would also be nice if
data for the projects could be loaded from an actual database.

We will deal with these issues in a next contribution.

THE NEW LIBRARY OF
BLAISE PASCAL MAGAZINE

COMPLETELY RENEWD PDF VIEWER
ON A USB STICK

https://www.blaisepascalmagazine.eu/product/lib-stick/

 € 75,00

Blaise Pascal Magazine 102 2022

 ABSTRACT
 Electron is a platform to enable you to
create desktop applications of any size that can
run on Linux MacOS and Windows. Because
it is possible through Pas2JS to create Website
applications it is worth exploring other options
for creating applications for the desktop.
Electron is one other possibility. In this article I
‘ll explain what Electron is and what one can
achieve with it.

INTRODUCTION
Electron is basically a platform that enables you
to easily built a Graphical User Interface

(GUI), It combines the Node.JS (*1)with

Chromium(*2) (the open source foundation of
Google Chrome).

Electron enables you to have easy access at the
parts of your computer that the browser’s
sandbox can not access.
As an example: Web apps cant get through to the
filesystem. It does not have access or hook into
the operating system API which a desktop app
needs.

Most web applications aren’t available when
there isn’t a reliable internet connection.
Electron is a runtime environment that allows
you to create desktop applications with
HTML5, CSS, and JavaScript.

It’s an open source project started
by Cheng Zhao, an engineer
at GitHub. Previously called
Atom Shell, Electron is
the foundation for Atom,

a cross-platform text
editor by GitHub built
with web tech.

ELECTRON
(formerly known as ATOM SHELL) is a free and
open-source (started by “Cheng Zhao”)software
framework developed and maintained by GitHub.

It allows for the development of desktop GUI
applications using web technologies: it combines
the Chromium rendering engine and the Node.JS
runtime.
It was originally built for Atom. Electron is the
main GUI framework behind several open-source
projects including Atom,

GitHub Desktop, Light Table,
Visual Studio Code, EverNote,

WordPress Desktop and
Eclipse Theia.

ELECTRON

ATOM is a free
and open-source

text and source code
editor for macOS, Linux,

and Windows with support for
plug-ins written in JavaScript, and

embedded Git Control.
Developed by GitHub, Atom is

a desktop application built using web
technologies. Most of the extending packages

have free software licenses and are community-built
and maintained. Atom is based on Electron (formerly

known as Atom Shell), a framework that enables
cross-platform desktop applications using Chromium

and Node.js.
Atom was initially written in CoffeeScript and Less,

but much of it has been converted to JavaScript.
Atom was released from beta, as version 1.0, on 25

June 2015. Its developers call it a "hackable text
editor for the 21st Century", as it is fully

customizable in HTML, CSS, and JavaScript.

Electron combines the CHROMIUM CONTENT
MODULE and Node.js runtimes. Chromium and
Node are both wildly popular application
platforms in their own right, and both have been
used independently to create ambitious
applications.

Electron brings the two platforms
together to allow you to use JavaScript
to build an entirely new class of
application.
Anything you can do in the browser, you can do
with Electron.

Electron apps comprise multiple processes.
There is the “main” process and several
“renderer” processes. (See schema on page 6 of

this article). The main process runs the application
logic, and can then launch multiple renderer
processes, rendering the windows that appear on
a user's screen rendering HTML and CSS.

Both the main and renderer processes can run
with Node.JS integration if enabled.

WIKIPEDIA

89

SIMPLE EXPLANATION:
suppose you create a form within the
Chromium Browser and use that as your
runtime environment for your Desktop
application.
So that is actually a Web browser environment
but one that can run on your desktop or even
in your Web Bowser (as long as they are
Chromium based: Edge / Chrome /FireFox

/ Safari / Opera / Dolphin etc.)
So remember it must be installed on your
desktop and has the advantage that it
will look on all OS’s the same.
That is its great trump card.

Node.js is an open-source, cross-platform, back-

end JavaScript runtime environment that runs on

the V8 engine and executes JavaScript code

outside a web browser.

Node.js lets developers use JavaScript to write

command line tools and for server-side script-

ing—running scripts server-side to produce

dynamic web page content before the page is sent

to the user's web browser.

Consequently, Node.js represents a "JavaScript

everywhere" paradigm, unifying web-application

development around a single programming lan-

guage, rather than different languages for server-

side and client-side scripts.

Though .js is the standard filename extension for

JavaScript code, the name "Node.js" does not refer

to a particular file in this context and is merely the

name of the product.

Node.js has an event-driven architecture capable of

asynchronous I/O.

(In computer science, asynchronous I/O (also non-

sequential I/O) is a form of input/output processing that

permits other processing to continue before the

transmission has finished.)

Page 2/6

WIKIPEDIA

90

Figure1: Droste effect

These design choices aim to optimize throughput

and scalability in web applications with many

input/output operations, as well as for real-time

Web applications (e.g., real-time communication

programs and browser games).

The Node.js distributed development project was

previously governed by the Node.js Foundation,

and has now merged with the JS Foundation to

form the OpenJS Foundation, which is facilitated

by the Linux Foundation's Collaborative Projects

program.

V8 is an open-source JavaScript engine

developed by the Chromium Project for Google

Chrome and Chromium web browsers.

The project’s creator is Lars Bak.

The first version of the V8 engine was released at

the same time as the first version of Chrome: 2

September 2008.

Chromium is a free and open-source web browser

project, principally developed and maintained by

Google.

This codebase provides the vast majority of code

for the Google Chrome browser, which is propri-

etary software and has some additional features.

The Chromium codebase is widely used.

Microsoft Edge, Samsung Internet, Opera, and

many other browsers are based on the code.

Moreover, significant portions of the code are used

by several app frameworks.

Google does not provide an official or stable version

of the Chromium browser. All versions released

with the Chromium name and logo are built by

other parties.

https://en.wikipedia.org/wiki/Chromium_(web_browser)

Understanding Electron,
how to build Desktop apps using web technolgies

Blaise Pascal Magazine 102 2022

EXAMPLE:
You want to do something necessary and a must
have: You need to view/search and edit a folder
where ever your documents are. Browser
applications are not capable of accessing the
file system without user interaction.

With you can implement all the Node.JS,

features necessary, but you can’t create a
Graphical User Interface, as a result your
application would be worthless.
By combining the browser environment with
Node.JS, Electron you can use to create an
application where you can open and edit docs
as well as provide a User Interface for doing so.
So you need together with Chromium. Node.JS
See figure 2 right top

You can find the Chromium licensing here:

https://www.chromium.org/chromium-os/licensing/

The part of the license that applies to Node.js here:
https://github.com/joyent/node/blob/

it is commonly known as the MIT license, which you can compare to here:
http://www.opensource.org/licenses/mit-license.php

This license, which is officially known as the Expat License, is here:

http://www.gnu.org/licenses/license-ist.html#Expat

a complete explanation you can find here:

https://en.wikipedia.org/wiki/MIT_License

Understanding Electron,
how to build Desktop apps using web technolgies

Page 3/6

Electron is a simple runtime. Like the way you
use Node from the command line, you can run
Electron applications using the Electron
command-line tool.

Electron

Node.js

Filesystem
access

Support for
compiled modules

CommonJS Module
System

Chromium Content
Module

Rendering HTML
and CSS

Document Object
Model (DOM)

Web APIs

}

Figure 2: Electron combines the core web browsing component
of Chromium with the low-level system access of Node.

91

CHROMIUM CONTENT MODULE
Chromium is the open source version of
Google’s Chrome web browser. It has most of
the feature and same code with small differences
and the licensing.
The portion is shared under Google-authored

the 3-clause license. BSD

Other parts are subject to a variety of licenses,
including MIT, LGPL, Ms-PL,

and an tri-license, while MPL / GPL / LGPL

Node.js MIT uses a permissive license for the
main library.
The license applies to all parts of the MIT Node.

The Content Module is the core code that allows
Chromium to render web pages in independent
processes and use acceleration. GPU

The Content Module includes only the core
technologies required to render and HTML, CSS,

JavaScript.

Blaise Pascal Magazine 102 2022

Page 4/6

Blaise Pascal Magazine 102 2022 92

WHAT IS NODE.JS?
For the first 15 years of its existence, JavaScript wasn’t much used because it just applied within the
web browser.
There wasn’t a good way of support for running JavaScript on the server. There were projects, but
hardly ever used.
The Node.JS project was initially released in 2009, as an open source, cross-platform runtime for
developing server-side applications using JavaScript.
It used Google’s open source V8 engine (See page 3 of this article) to interpret JavaScript and
added API’s for accessing the filesystem, creating servers, and loading code from external modules.

Over the last few years, Node has become very popular and is used for a wide range of purposes,
from writing web servers, to control (example) IOT (Internet Of Things) or building desktop
applications.
Node comes bundled with a package manager called NPM (Node Package Manager), which makes
the more than 250,000 libraries available in its registry.

Figure 3: Node.Js Download

Understanding Electron,
how to build Desktop apps using web technolgies

REASONS TO USE ELECTRON
When you create applications for a web browser,
you have to be cautious in what technologies
you choose to use and how you write your code:
You’re writing code that will be executed on a
computer not owned by you.

Your users could be using the latest version of a
modern browser such as Chrome or Firefox, or
they could very well be using an outdated
version of Internet Explorer.

u You have little to no say in where your code
 is being rendered and executed.
v You have to be ready for anything.
w You must write code for the lowest
 common denominator of features that have
 the widest support across all versions of all
 browsers in use today.

When you build your applications with Electron,

you’re packaging a particular version of
Chromium Node.js, and so you can rely on
whatever features are available in those versions.
You don’t have to concern yourself with what
features other browsers and their versions
support.

Page 5/6

93

Traditional
Web application

 Server Application

Client side code

Figure 4 Bottom: In an Electron application, clients-side code
has all of the same privileges as the server sidecode and
therefore make requests to a third - party API directlyCAN

Figure 4 left: In atradional Web
Application, client side code can

request data from a thirdNOT
party API.
Requests must be proxied
through a server side application

Electron application

Client side code A third party API

A third party API

Applications
Slack, Skype,
Github Desktop etc

Repository
http://github.com/
electron/electron

OS
Windows, Mac ,
Linux

Main
Process

Electrons Core

API call API call

Operating System Kernel

IPC Messages
Renderer
Process

Figure 5: Overview of the layered architecture a very high-level
overview of Electron and applications built using Electron.

Understanding Electron,
how to build Desktop apps using web technolgies

Blaise Pascal Magazine 102 2022

MAIN PROCESS
Electron has 2 parts to it:

the main process and the rendering process.

u The main process has very important
 responsibilities.
 It responds to application lifecycle events:
 such as starting up, quitting, preparing to
 quit, going to the background, coming to
 the foreground, and more.

v The main process is also responsible for
 communicating to native operating
 system APIs.
 If you want to display a dialog box to open
 or save a file, you do it from the main
 process.

RENDERING
The main process can create and destroy
renderer processes using Electron’s Browser-

Window module. Renderer processes can load
web pages to display a . Each processGUI

takes advantage of Chromium’s multiprocess

architecture and runs on its own thread.
These pages can then load in additional
JavaScript files and execute code in this
process.

Unlike normal web pages, you have access to
almost all the Node.js APIs in your renderer code.
Renderer processes are isolated from each other
and unable to access operating system integration
APIs. Electron includes the ability to facilitate
communication between processes to allow
renderer processes to communicate with the main
process in the event that they need to trigger an
Open or Save File dialogue box or access any
other OS-level integration.

Electron Windows 7 supports only and later.
For multimedia-focused applications, is Electron

typically a better choice because Electron

supports more codecs out of the box.

Page 6/6

94

CRITICISM
Electron applications have been criticized for
incurring significant overhead when compared
with native applications with similar functionality.
Applications built with Electron can take up
more storage and RAM, and may run at less
speed than a similar app built with technologies
native to the operating system.

VERSIONS
In September of 2021, Electron moved to an 8

week release cycle between major versions to

match the release cycle of Chromium

Extended Stable and to comply with a new

requirement from the Microsoft Store that

requires browser-based apps to be within two

major versions of the latest release of the

browser engine.

Electron actively supports the latest three stable

major versions. From September 2021 to May

2022, four major versions were temporarily

supported due to the change in release cycles.

Figure X: Electron’s multiprocess architecture

Electron

Main Process Rendering Process

Rendering Process

Rendering Process

Renderer processes must communicate with the main process
if they need to access an OS-level API

Electron reads the “main” entry in package.json to
determine which file to run as the main process.

The main process
can create multiple
renderer processes.

Understanding Electron,
how to build Desktop apps using web technolgies

Blaise Pascal Magazine 102 2022

COMPONENTS
DEVELOPERS4

 If you are from Ukrainian origin you can get a
free Subscription Blaise Pascal Magazine, for

we will also give you a
free pdf version of the Lazarus Handbook.

You need to send us your Ukrainian Name and Ukrainian email address
(that still works for you), so that it proofs you are real Ukrainian.

please send it to editor@blaisepascal.eu and you will receive your

book and subscription

DONATE FOR UKRAINE AND GET A FREE LICENSE AT:
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

(Just click)

BLAISE PASCAL MAGAZINE

EESB, SOA,MoM, EAI TOOLS FOR INTELLIGENT SOLUTIONS. kbmMW IS THE PREMIERE N-TIER PRODUCT FOR DELPHI / C++BUILDER

kbmMemTable is the fastest and most feature rich in
memory table for Embarcadero products.
● Easily supports large datasets with millions of records
● Easy data streaming support
● Optional to use native SQL engine
● Supports nested transactions and undo
● Native and fast build in M/D, aggregation/grouping,
 range selection features
● Advanced indexing features for extreme performance

● RAD Studio XE5 to 11 Alexandria supported
● Win32, Win64, Linux64, Android, IOS 32, IOS 64 and
 OSX client and server support
● Native high performance 100% developer defined
 application server
● Full support for centralized and distributed load
 balancing and failover
● Advanced ORM/OPF support including support of
 existing databases
● Advanced logging support
● Advanced configuration framework
● Advanced scheduling support for easy access to
 multithread programming
● Advanced smart service and clients for very easy
 publication of functionality
● High quality random functions.
● High quality pronouncable password generators.
● High performance LZ4 and Jpeg compression
● Complete object notation framework including full
 support for YAML, BSON, Messagepack, JSON and XML
● Advanced object and value marshalling to and from
 YAML, BSON, Messagepack, JSON and XML
● High performance native TCP transport support
● High performance HTTPSys transport for Windows.
● CORS support in REST/HTML services.
● Native PHP, Java, OCX, ANSI C, C#, Apache Flex client
 support!

● High speed, unified database access (35+ supported
 database APIs) with connection pooling, metadata and
 data caching on all tiers
● Multi head access to the application server, via REST/AJAX,
 native binary, Publish/Subscribe, SOAP,
 XML, RTMP from web browsers, embedded devices, linked
 application servers, PCs, mobile devices, Java systems
 and many more clients
● Complete support for hosting FastCGI based applications
 (PHP/Ruby/Perl/Python typically)
● Native complete AMQP 0.91 support (Advanced Message
 Queuing Protocol)
● Complete end 2 end secure brandable Remote Desktop with
 near realtime HD video, 8 monitor support,
 texture detection, compression and clipboard sharing.
● Bundling kbmMemTable Professional which is the fastest
 and most feature rich in memory table for Embarcadero
 products.

COMPONENTS
DEVELOPERS4

= New I18N context sensitive internationalization framework to
 make your applications multilingual.
= New ORM LINQ support for Delete and Update.
= Comments support in YAML.
= New StreamSec TLS v4 support (by StreamSec)
= Many other feature improvements and fixes.

Please visit
http://www.components4developers.com

for more information about kbmMW

KBMMW PROFESSIONAL AND ENTERPRISE EDITION RELEASED! V. 5.18.00

D11

DONATE FOR UKRAINE AND GET A FREE LICENSE AT:
https://components4developers.blog/2022/02/26/donate-to-ukraine-humanitarian-aid/

(Just click)

	1: Coverpage
	2: Content-Articles
	3: Addresses
	4: From your editor
	5: From our technical advisor
	6: LIB stick/Subscr/2Books
	7: D4Python Introduction
	8: D4Python Import
	9: D4Python VCL
	10: D4Python Hello World
	11: D4Python Conclusion
	12: D4Python Additonal Installer
	13: D4Python IDLE Shell
	14: D4Python Command Prompt
	15: D4Python Command Prompt 2
	16: D4Python Get It Package Manager
	17: D4Python Installing
	18: D4Python Index of Modules
	19: Barnsten Delphi Dag
	20: The latest Delphi version 11.1
	21: D11.1 Migration
	22: D11.1 Migration Import
	23: D11.1 Installing
	24: Delphi 11.1 The IDE
	25: Delphi 11.1 after install
	26: Delphi 11.1 Dark Theme
	27: Delphi 11.1 Code Ins/Comp-Debug
	28: Delphi 11.1 RTL/UI/Databases
	29: Delphi 11.1Integration/Target.
	30: Delphi 11.1 High DPI
	31: Delphi 11.1 VCL Styles at design
	32: Delphi 11.1 Android
	33: Delphi 11.1 macOS M1
	34: SuperPack
	35: Daily Snaphot Lazarus
	36: DSLazarus Preliminaries
	37: DSLazarus Path Var
	38: DSLazarus Download with Git
	39: DSLazarus Building
	40: DSLazarus Configuring
	41: DSLazarus Conclusion
	42: Droste Effect Prgram
	43: Droste Effect D7 Preview
	44: Droste Effect Preview D11.1
	45: Hardcover & Subscription
	46: Typescript Introduction
	47: Typescript DTS2PAS
	48: Typescript Output
	49: Typescript Help
	50: Typescript Settings
	51: Typescript Settings 2
	52: Typescript Web-Based Service
	53: Typescript Integrat. in Lazarus
	54: Typescript Selections to make
	55: Conclusion
	56: Sewn Pocket
	57: PAS2JS Lib Introduction
	58: PAS2JS Lib Import & Writing
	59: PAS2JS Lib Creat.Jscript Modules
	60: PAS2JS Lib Creat. Jscr. Mod 2
	61: PAS2JS Lib creat. JS Modules3
	62: PAS2JS Lib Exmple
	63: PAS2JS Lib Export classes
	64: PAS2JS Lib Export Classes 2
	65: PAS2JS Lib Conclusion
	66: Barnsten Delphi
	67: PAS2JS Introduction
	68: PAS2JS Generating Frm Decl.
	69: PAS2JS LogIn Frm
	70: PAS2JS HTML2FormTool
	71: PAS2JS LoginOverride
	72: PAS2JS definition from html
	73: PAS2JS Html to form
	74: PAS2JS Navigating through forms
	75: PAS2JS Methods
	76: PAS2JS Index.html
	77: PAS2JS Using A factory Pattern
	78: PAS2JS Register Class
	79: PAS2JS RegisterFormMethod
	80: PAS2JS Routing
	81: PAS2JS Route methods
	82: PAS2JS Registerform Call
	83: PAS2JS ShowRoute
	84: PAS2JS UserList
	85: PAS2JS Route Params
	86: PAS2JS Show Route
	87: PAS2JS Conclusio
	88: LIBStick on USB
	89: Electron Introduction
	90: Electron Simple Explanation
	91: Electron Example
	92: Electron Node JS
	93: Electron Reasons to use
	94: Electron Main Process
	95: Free License/Blaise
	96: Components4

	Delphi11:
	1:

	Libstick USB:
	LiB+Two Books:
	LH pocket:
	LH Hardcover:
	Delphi Dag:
	Offer Delphi:
	SuperPack:
	kbmMW:
	Editor:
	Cartoons:
	Delphi VCL 4 Python:
	Python Install:
	Snapshot Lazarus:
	Droste effect:
	PAS2JS Typescript:
	Library Support in PAS2JS:
	Electron:
	PAS2JS Forms:
	Multple Forms:

